projekt_grafika/dependencies/physx-4.1/include/foundation/PxVec2.h

348 lines
7.4 KiB
C
Raw Normal View History

2022-01-27 23:56:43 +01:00
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
// * Neither the name of NVIDIA CORPORATION nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Copyright (c) 2008-2019 NVIDIA Corporation. All rights reserved.
// Copyright (c) 2004-2008 AGEIA Technologies, Inc. All rights reserved.
// Copyright (c) 2001-2004 NovodeX AG. All rights reserved.
#ifndef PXFOUNDATION_PXVEC2_H
#define PXFOUNDATION_PXVEC2_H
/** \addtogroup foundation
@{
*/
#include "foundation/PxMath.h"
#if !PX_DOXYGEN
namespace physx
{
#endif
/**
\brief 2 Element vector class.
This is a 2-dimensional vector class with public data members.
*/
class PxVec2
{
public:
/**
\brief default constructor leaves data uninitialized.
*/
PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec2()
{
}
/**
\brief zero constructor.
*/
PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec2(PxZERO r) : x(0.0f), y(0.0f)
{
PX_UNUSED(r);
}
/**
\brief Assigns scalar parameter to all elements.
Useful to initialize to zero or one.
\param[in] a Value to assign to elements.
*/
explicit PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec2(float a) : x(a), y(a)
{
}
/**
\brief Initializes from 2 scalar parameters.
\param[in] nx Value to initialize X component.
\param[in] ny Value to initialize Y component.
*/
PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec2(float nx, float ny) : x(nx), y(ny)
{
}
/**
\brief Copy ctor.
*/
PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec2(const PxVec2& v) : x(v.x), y(v.y)
{
}
// Operators
/**
\brief Assignment operator
*/
PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec2& operator=(const PxVec2& p)
{
x = p.x;
y = p.y;
return *this;
}
/**
\brief element access
*/
PX_CUDA_CALLABLE PX_FORCE_INLINE float& operator[](int index)
{
PX_SHARED_ASSERT(index >= 0 && index <= 1);
return reinterpret_cast<float*>(this)[index];
}
/**
\brief element access
*/
PX_CUDA_CALLABLE PX_FORCE_INLINE const float& operator[](int index) const
{
PX_SHARED_ASSERT(index >= 0 && index <= 1);
return reinterpret_cast<const float*>(this)[index];
}
/**
\brief returns true if the two vectors are exactly equal.
*/
PX_CUDA_CALLABLE PX_FORCE_INLINE bool operator==(const PxVec2& v) const
{
return x == v.x && y == v.y;
}
/**
\brief returns true if the two vectors are not exactly equal.
*/
PX_CUDA_CALLABLE PX_FORCE_INLINE bool operator!=(const PxVec2& v) const
{
return x != v.x || y != v.y;
}
/**
\brief tests for exact zero vector
*/
PX_CUDA_CALLABLE PX_FORCE_INLINE bool isZero() const
{
return x == 0.0f && y == 0.0f;
}
/**
\brief returns true if all 2 elems of the vector are finite (not NAN or INF, etc.)
*/
PX_CUDA_CALLABLE PX_INLINE bool isFinite() const
{
return PxIsFinite(x) && PxIsFinite(y);
}
/**
\brief is normalized - used by API parameter validation
*/
PX_CUDA_CALLABLE PX_FORCE_INLINE bool isNormalized() const
{
const float unitTolerance = 1e-4f;
return isFinite() && PxAbs(magnitude() - 1) < unitTolerance;
}
/**
\brief returns the squared magnitude
Avoids calling PxSqrt()!
*/
PX_CUDA_CALLABLE PX_FORCE_INLINE float magnitudeSquared() const
{
return x * x + y * y;
}
/**
\brief returns the magnitude
*/
PX_CUDA_CALLABLE PX_FORCE_INLINE float magnitude() const
{
return PxSqrt(magnitudeSquared());
}
/**
\brief negation
*/
PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec2 operator-() const
{
return PxVec2(-x, -y);
}
/**
\brief vector addition
*/
PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec2 operator+(const PxVec2& v) const
{
return PxVec2(x + v.x, y + v.y);
}
/**
\brief vector difference
*/
PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec2 operator-(const PxVec2& v) const
{
return PxVec2(x - v.x, y - v.y);
}
/**
\brief scalar post-multiplication
*/
PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec2 operator*(float f) const
{
return PxVec2(x * f, y * f);
}
/**
\brief scalar division
*/
PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec2 operator/(float f) const
{
f = 1.0f / f; // PT: inconsistent notation with operator /=
return PxVec2(x * f, y * f);
}
/**
\brief vector addition
*/
PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec2& operator+=(const PxVec2& v)
{
x += v.x;
y += v.y;
return *this;
}
/**
\brief vector difference
*/
PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec2& operator-=(const PxVec2& v)
{
x -= v.x;
y -= v.y;
return *this;
}
/**
\brief scalar multiplication
*/
PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec2& operator*=(float f)
{
x *= f;
y *= f;
return *this;
}
/**
\brief scalar division
*/
PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec2& operator/=(float f)
{
f = 1.0f / f; // PT: inconsistent notation with operator /
x *= f;
y *= f;
return *this;
}
/**
\brief returns the scalar product of this and other.
*/
PX_CUDA_CALLABLE PX_FORCE_INLINE float dot(const PxVec2& v) const
{
return x * v.x + y * v.y;
}
/** return a unit vector */
PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec2 getNormalized() const
{
const float m = magnitudeSquared();
return m > 0.0f ? *this * PxRecipSqrt(m) : PxVec2(0, 0);
}
/**
\brief normalizes the vector in place
*/
PX_CUDA_CALLABLE PX_FORCE_INLINE float normalize()
{
const float m = magnitude();
if(m > 0.0f)
*this /= m;
return m;
}
/**
\brief a[i] * b[i], for all i.
*/
PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec2 multiply(const PxVec2& a) const
{
return PxVec2(x * a.x, y * a.y);
}
/**
\brief element-wise minimum
*/
PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec2 minimum(const PxVec2& v) const
{
return PxVec2(PxMin(x, v.x), PxMin(y, v.y));
}
/**
\brief returns MIN(x, y);
*/
PX_CUDA_CALLABLE PX_FORCE_INLINE float minElement() const
{
return PxMin(x, y);
}
/**
\brief element-wise maximum
*/
PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec2 maximum(const PxVec2& v) const
{
return PxVec2(PxMax(x, v.x), PxMax(y, v.y));
}
/**
\brief returns MAX(x, y);
*/
PX_CUDA_CALLABLE PX_FORCE_INLINE float maxElement() const
{
return PxMax(x, y);
}
float x, y;
};
PX_CUDA_CALLABLE static PX_FORCE_INLINE PxVec2 operator*(float f, const PxVec2& v)
{
return PxVec2(f * v.x, f * v.y);
}
#if !PX_DOXYGEN
} // namespace physx
#endif
/** @} */
#endif // #ifndef PXFOUNDATION_PXVEC2_H