concordia-aligner/sentence_lemmatizer.py

49 lines
1.5 KiB
Python
Raw Normal View History

2019-06-13 12:34:19 +02:00
#!/usr/bin/python3
# -*- coding: utf-8 -*-
import json
import requests
import sys
BUFFER_SIZE = 500
def lemmatize_sentences(language_code, sentences):
data = {
'lemmatize': True,
'language':language_code,
'sentences':sentences
}
response = requests.post(url = 'http://127.0.0.1:10002/preprocess', json = data)
response_json = json.loads(response.text)
result = {'normalized':[], 'lemmatized':[]}
for processed_sentence in response_json['processed_sentences']:
result['normalized'].append(processed_sentence['normalized'])
result['lemmatized'].append(processed_sentence['tokens'])
return result
def write_result(result, norm_file, lem_file):
for s in result['normalized']:
norm_file.write(s+'\n')
for s in result['lemmatized']:
lem_file.write(s+'\n')
file_name = sys.argv[1]
language_code = sys.argv[2]
norm_output_name = sys.argv[3]
lem_output_name = sys.argv[4]
sentences_buffer = []
with open(file_name) as in_file, open(norm_output_name, 'w') as out_norm, open(lem_output_name, 'w') as out_lem:
for line in in_file:
sentences_buffer.append(line.rstrip())
if len(sentences_buffer) == BUFFER_SIZE:
write_result(lemmatize_sentences(language_code,sentences_buffer), out_norm, out_lem)
sentences_buffer = []
if len(sentences_buffer) > 0:
write_result(lemmatize_sentences(language_code,sentences_buffer), out_norm, out_lem)