concordia-docker/tests/addAlignedLemmatizedTM.py

112 lines
3.1 KiB
Python
Raw Normal View History

2019-05-16 18:28:30 +02:00
#!/usr/bin/python
# -*- coding: utf-8 -*-
import unittest
import json
import urllib2
import sys
import host
import time
BUFFER_SIZE = 500
address = 'http://'+host.concordia_host
if len(host.concordia_port) > 0:
address += ':'+host.concordia_port
def file_len(fname):
with open(fname) as f:
for i, l in enumerate(f):
pass
return i + 1
def add_examples(examplesData):
req = urllib2.Request(address)
req.add_header('Content-Type', 'application/json')
response = json.loads(urllib2.urlopen(req, json.dumps(examplesData)).read())
if response['status'] == 'error':
raise Exception(response['message'])
if len(sys.argv) != 7:
raise Exception("wrong number of arguments")
name = sys.argv[1]
sourceFile = sys.argv[2]
sourceLangId = int(sys.argv[3])
targetFile = sys.argv[4]
targetLangId = int(sys.argv[5])
alignmentsFile = sys.argv[6]
if (file_len(sourceFile) != file_len(targetFile)):
raise Exception("source and target files are not of the same length!")
if (file_len(alignmentsFile) != 3*file_len(sourceFile)):
raise Exception("alignments file is not exactly 3 times longer than source and target")
totalExamples = file_len(sourceFile)
data = {
'operation': 'addTm',
'sourceLangId':sourceLangId,
'targetLangId':targetLangId,
'name':name,
'tmLemmatized':True
}
req = urllib2.Request(address)
req.add_header('Content-Type', 'application/json')
response = json.loads(urllib2.urlopen(req, json.dumps(data)).read())
print(response)
tmId = int(response['newTmId'])
print "Added new tm: %d" % tmId
data = {
'operation': 'addAlignedLemmatizedSentences',
'tmId':tmId
}
examples = []
start = time.time()
with open(sourceFile) as sf, open(targetFile) as tf, open(alignmentsFile) as af:
for lineNumber in range(totalExamples):
sourceSentence = sf.readline().strip()
targetSentence = tf.readline().strip()
# skip to lines of the alignments file, these are lemmatized and we need the raw sentences from the source and target files.
af.readline()
af.readline()
alignmentString = af.readline().strip()
examples.append([sourceSentence, targetSentence, alignmentString])
if len(examples) >= BUFFER_SIZE:
data['examples'] = examples
add_examples(data)
mark = time.time()
print "Added %d of %d lemmatized examples. Time elapsed: %.4f s, current speed: %.4f examples/second" % ( (lineNumber+1), totalExamples, mark-start, (lineNumber+1)/(mark-start))
examples = []
if len(examples) > 0:
data['examples'] = examples
add_examples(data)
end = time.time()
print "Added all %d lemmatized sentences. Time elapsed: %.4f s, overall speed: %.4f sentences/second" % ((lineNumber+1), end-start, (lineNumber+1)/(end-start))
print "Generating index..."
start = time.time()
data = {
'operation': 'refreshIndex',
'tmId' : tmId
}
req = urllib2.Request(address)
req.add_header('Content-Type', 'application/json')
urllib2.urlopen(req, json.dumps(data)).read()
end = time.time()
print "Index regeneration complete. The operation took %.4f s" % (end - start)