working simple search
This commit is contained in:
parent
0fe53f05fb
commit
f38734c6a7
@ -2,4 +2,4 @@
|
||||
|
||||
source corpus.cfg
|
||||
|
||||
./add_fast_aligned_TM.py $CORPUS_NAME $CORPUS_PATH/src_clean.txt $CORPUS_PATH/src_clean.lem $SRC_LANG_ID $CORPUS_PATH/trg_clean.txt $TRG_LANG_ID $CORPUS_PATH/alignments.txt $CORPUS_PATH/ids_clean.txt
|
||||
./add_fast_aligned_TM.py $CORPUS_NAME $CORPUS_PATH/src_clean.txt $CORPUS_PATH/src_clean.tok $CORPUS_PATH/src_clean.lem $SRC_LANG_ID $CORPUS_PATH/trg_clean.txt $TRG_LANG_ID $CORPUS_PATH/alignments.txt $CORPUS_PATH/ids_clean.txt
|
||||
|
@ -18,33 +18,40 @@ def file_len(fname):
|
||||
pass
|
||||
return i + 1
|
||||
|
||||
def add_examples(examplesData):
|
||||
def add_examples(examples, tmId):
|
||||
examplesData = {
|
||||
'operation': 'addSentences',
|
||||
'tmId':tmId,
|
||||
'examples':examples
|
||||
}
|
||||
req = urllib2.Request(address)
|
||||
req.add_header('Content-Type', 'application/json')
|
||||
response = json.loads(urllib2.urlopen(req, json.dumps(examplesData), timeout = 3600).read())
|
||||
print(response)
|
||||
#print(response)
|
||||
if response['status'] == 'error':
|
||||
raise Exception(response['message'])
|
||||
|
||||
if len(sys.argv) != 9:
|
||||
if len(sys.argv) != 10:
|
||||
raise Exception("wrong number of arguments")
|
||||
|
||||
name = sys.argv[1]
|
||||
sourceFile = sys.argv[2]
|
||||
lemmatizedSourceFile = sys.argv[3]
|
||||
sourceLangId = int(sys.argv[4])
|
||||
targetFile = sys.argv[5]
|
||||
targetLangId = int(sys.argv[6])
|
||||
alignmentsFile = sys.argv[7]
|
||||
sourceIdsFile = sys.argv[8]
|
||||
tokenizedSourceFile = sys.argv[3]
|
||||
lemmatizedSourceFile = sys.argv[4]
|
||||
sourceLangId = int(sys.argv[5])
|
||||
targetFile = sys.argv[6]
|
||||
targetLangId = int(sys.argv[7])
|
||||
alignmentsFile = sys.argv[8]
|
||||
sourceIdsFile = sys.argv[9]
|
||||
|
||||
sourceFileLength = file_len(sourceFile)
|
||||
tokenizedSourceFileLength = file_len(tokenizedSourceFile)
|
||||
lemmatizedSourceFileLength = file_len(lemmatizedSourceFile)
|
||||
targetFileLength = file_len(targetFile)
|
||||
alignmentsFileLength = file_len(alignmentsFile)
|
||||
sourceIdsFileLength = file_len(sourceIdsFile)
|
||||
|
||||
if not (sourceFileLength == lemmatizedSourceFileLength and lemmatizedSourceFileLength == targetFileLength and targetFileLength == alignmentsFileLength and alignmentsFileLength == sourceIdsFileLength):
|
||||
if not (sourceFileLength == tokenizedSourceFileLength and tokenizedSourceFileLength == lemmatizedSourceFileLength and lemmatizedSourceFileLength == targetFileLength and targetFileLength == alignmentsFileLength and alignmentsFileLength == sourceIdsFileLength):
|
||||
print("File lengths:")
|
||||
print("source file: %d\nlemmatized source file: %d\ntarget file: %d\nalignments file: %d\nsource ids file: %d" % (sourceFileLength, lemmatizedSourceFileLength, targetFileLength, alignmentsFileLength, sourceIdsFileLength))
|
||||
raise Exception("files are not of the same length!")
|
||||
@ -52,59 +59,67 @@ if not (sourceFileLength == lemmatizedSourceFileLength and lemmatizedSourceFileL
|
||||
totalExamples = sourceFileLength / LEAVE_OUT
|
||||
|
||||
data = {
|
||||
'operation': 'addTm',
|
||||
'operation': 'addPairedTms',
|
||||
'sourceLangId':sourceLangId,
|
||||
'targetLangId':targetLangId,
|
||||
'name':name,
|
||||
'tmLemmatized':True
|
||||
'name':name
|
||||
}
|
||||
|
||||
req = urllib2.Request(address)
|
||||
req.add_header('Content-Type', 'application/json')
|
||||
response = json.loads(urllib2.urlopen(req, json.dumps(data), timeout = 3600).read())
|
||||
print(response)
|
||||
tmId = int(response['newTmId'])
|
||||
print "Added new tm: %d" % tmId
|
||||
#print(response)
|
||||
|
||||
data = {
|
||||
'operation': 'addSentences',
|
||||
'tmId':tmId
|
||||
}
|
||||
lemmatizedTmId = int(response['lemmatizedTmId'])
|
||||
nonLemmatizedTmId = int(response['nonLemmatizedTmId'])
|
||||
print "Added new paired tm: lemmatized id: %d, non lemmatized id: %d" % (lemmatizedTmId, nonLemmatizedTmId)
|
||||
|
||||
examples = []
|
||||
examples_lemmatized = []
|
||||
start = time.time()
|
||||
with open(sourceFile) as source_file, open(lemmatizedSourceFile) as lemmatized_source_file, open(targetFile) as target_file, open(alignmentsFile) as alignments_file, open(sourceIdsFile) as source_ids_file:
|
||||
with open(sourceFile) as source_file, open(tokenizedSourceFile) as tokenized_source_file, open(lemmatizedSourceFile) as lemmatized_source_file, open(targetFile) as target_file, open(alignmentsFile) as alignments_file, open(sourceIdsFile) as source_ids_file:
|
||||
addedCount = 0
|
||||
for lineNumber in range(sourceFileLength):
|
||||
if lineNumber % LEAVE_OUT == 0:
|
||||
sourceSentence = source_file.readline().strip()
|
||||
tokenizedSourceSentence = tokenized_source_file.readline().strip()
|
||||
lemmatizedSourceSentence = lemmatized_source_file.readline().strip()
|
||||
targetSentence = target_file.readline().strip()
|
||||
alignment = json.loads(alignments_file.readline().strip())
|
||||
sourceId = int(source_ids_file.readline().strip())
|
||||
|
||||
examples.append([sourceSentence, lemmatizedSourceSentence, targetSentence, alignment, sourceId])
|
||||
examples.append([sourceSentence, tokenizedSourceSentence, targetSentence, alignment, sourceId])
|
||||
examples_lemmatized.append([sourceSentence, lemmatizedSourceSentence, targetSentence, alignment, sourceId])
|
||||
addedCount += 1
|
||||
if len(examples) >= BUFFER_SIZE:
|
||||
data['examples'] = examples
|
||||
add_examples(data)
|
||||
add_examples(examples, nonLemmatizedTmId)
|
||||
add_examples(examples_lemmatized, lemmatizedTmId)
|
||||
mark = time.time()
|
||||
print "Added %d of %d lemmatized examples. Time elapsed: %.4f s, current speed: %.4f examples/second" % (addedCount, totalExamples, mark-start, addedCount/(mark-start))
|
||||
print "Added %d of %d examples. Time elapsed: %.4f s, current speed: %.4f examples/second" % (addedCount, totalExamples, mark-start, addedCount/(mark-start))
|
||||
examples = []
|
||||
examples_lemmatized = []
|
||||
|
||||
|
||||
if len(examples) > 0:
|
||||
data['examples'] = examples
|
||||
add_examples(data)
|
||||
add_examples(examples, nonLemmatizedTmId)
|
||||
add_examples(examples_lemmatized, lemmatizedTmId)
|
||||
|
||||
end = time.time()
|
||||
print "Added all %d lemmatized sentences. Time elapsed: %.4f s, overall speed: %.4f sentences/second" % (addedCount, end-start, addedCount/(end-start))
|
||||
print "Added all %d sentences. Time elapsed: %.4f s, overall speed: %.4f sentences/second" % (addedCount, end-start, addedCount/(end-start))
|
||||
|
||||
print "Generating index..."
|
||||
print "Generating indexes..."
|
||||
start = time.time()
|
||||
data = {
|
||||
'operation': 'refreshIndex',
|
||||
'tmId' : tmId
|
||||
'tmId' : nonLemmatizedTmId
|
||||
}
|
||||
req = urllib2.Request(address)
|
||||
req.add_header('Content-Type', 'application/json')
|
||||
urllib2.urlopen(req, json.dumps(data), timeout = 3600).read()
|
||||
|
||||
data = {
|
||||
'operation': 'refreshIndex',
|
||||
'tmId' : lemmatizedTmId
|
||||
}
|
||||
req = urllib2.Request(address)
|
||||
req.add_header('Content-Type', 'application/json')
|
||||
|
@ -11,7 +11,7 @@ import host
|
||||
data = {
|
||||
'operation': 'simpleSearch',
|
||||
'pattern':sys.argv[1],
|
||||
'tmId':int(sys.argv[2])
|
||||
'tmId':int(sys.argv[2]),
|
||||
}
|
||||
|
||||
address = 'http://'+host.concordia_host
|
||||
|
Loading…
Reference in New Issue
Block a user