diff --git a/tools/prepare_corpus_figures.py b/tools/prepare_corpus_figures.py index 687dbe3..26cd726 100755 --- a/tools/prepare_corpus_figures.py +++ b/tools/prepare_corpus_figures.py @@ -4,6 +4,7 @@ from os import listdir import numpy as np import matplotlib.pyplot as plt +import sys input_dir = 'stats' @@ -37,9 +38,9 @@ with open(output_dir+'/stats_table.tex', 'w') as stats_table: stats_table.write(r'Corpus name & Total sentences & Non-empty & Unique\\'+'\n') stats_table.write(r'\hline\hline'+'\n') for corpus in corpora: - non_empty_percentage = float(100*corpus["total"] - corpus["empty"])/corpus["total"] + non_empty_percentage = float(100*(corpus["total"] - corpus["empty"]))/corpus["total"] unique_percentage = float(100*corpus["unique"])/corpus["total"] - stats_table.write("%s & %d & %d (%.2f%%) & %d (%.2f%%) \\\\\n" % (corpus["name"], corpus["total"], corpus["total"] - corpus["empty"], non_empty_percentage, corpus["unique"], unique_percentage)) + stats_table.write("%s & %d & %d (%.2f\%%) & %d (%.2f\%%) \\\\\n" % (corpus["name"], corpus["total"], corpus["total"] - corpus["empty"], non_empty_percentage, corpus["unique"], unique_percentage)) stats_table.write(r'\hline'+'\n') stats_table.write(r'\end{tabular}'+'\n') @@ -59,7 +60,7 @@ for corpus in corpora: freq_table.write(r'Occurences & Sentence\\'+'\n') freq_table.write(r'\hline\hline'+'\n') for data in corpus["most_frequent"]: - freq_table.write("%d & %s\n" % data) + freq_table.write("%d & %s\\\\\n" % data) freq_table.write(r'\hline'+'\n') freq_table.write(r'\end{tabular}'+'\n') freq_table.write(r'\caption{Most frequent sentences in the corpus '+corpus["name"]+'}\n') @@ -69,23 +70,21 @@ for corpus in corpora: # plot -N = 5 -menMeans = (20, 35, 30, 35, 27) -womenMeans = (25, 32, 34, 20, 25) -menStd = (2, 3, 4, 1, 2) -womenStd = (3, 5, 2, 3, 3) +N = len(corpora) +uniques = [float(100*corpus["unique"]) / corpus["total"] for corpus in corpora] +repeated = [float(100*(corpus["total"] - corpus["unique"] - corpus["empty"])) / corpus["total"] for corpus in corpora] +empty = [float(100*corpus["empty"]) / corpus["total"] for corpus in corpora] + ind = np.arange(N) # the x locations for the groups width = 0.35 # the width of the bars: can also be len(x) sequence -p1 = plt.bar(ind, menMeans, width, color='r', yerr=womenStd) -p2 = plt.bar(ind, womenMeans, width, color='y', - bottom=menMeans, yerr=menStd) +p1 = plt.bar(ind, uniques, width, color='#009900') +p2 = plt.bar(ind, repeated, width, color='#99FF66', bottom=uniques) +p3 = plt.bar(ind, empty, width, color='#999966', bottom=[sum(x) for x in zip(repeated,uniques)]) -plt.ylabel('Scores') -plt.title('Scores by group and gender') -plt.xticks(ind+width/2., ('G1', 'G2', 'G3', 'G4', 'G5') ) -plt.yticks(np.arange(0,81,10)) -plt.legend( (p1[0], p2[0]), ('Men', 'Women') ) +plt.xticks(ind+width/2., [corpus["name"] for corpus in corpora] ) +plt.yticks(np.arange(0,101,10)) +plt.legend( (p1[0], p2[0], p3[0]), ('unique', 'repeated', 'empty') ) -plt.savefig('bar_graph.eps', format='eps') +plt.savefig(output_dir+'/bar_graph.eps', format='eps')