concordia-server/import-requests/handle_requests.py

116 lines
3.8 KiB
Python
Raw Normal View History

2017-06-25 23:16:43 +02:00
#!/usr/bin/python3
# -*- coding: utf-8 -*-
import psycopg2, os, shutil, subprocess, urllib3, time, json
from importlib.machinery import SourceFileLoader
BUFFER_SIZE = 500
def postJson(address, data):
http = urllib3.PoolManager()
response = http.request('POST', address, headers={'Content-Type': 'application/json'},body=json.dumps(data).encode('utf-8'))
return json.loads(response.data.decode('utf-8'))
def add_examples(address, examplesData):
response = postJson(address, examplesData)
if response['status'] == 'error':
raise Exception(response['message'])
def file_len(fname):
with open(fname) as f:
for i, l in enumerate(f):
pass
return i + 1
mgiza_path = os.path.dirname(os.path.realpath(__file__))+'/../mgiza-aligner'
conn = psycopg2.connect("dbname='concordia_server' user='concordia' host='localhost' port='6543' password='concordia'")
cur = conn.cursor()
cur.execute("""select request.id, request.source_file_path, request.target_file_path, request.name, src_lang.id as src_lang_id, src_lang.code as src_code, trg_lang.id as trg_lang_id, trg_lang.code as trg_code, request.status, request.type, request.tm_id from request inner join language as src_lang on src_lang.id = request.source_lang_id inner join language as trg_lang on trg_lang.id = request.target_lang_id order by request.created limit 1""")
request = cur.fetchone()
request_id, src_file_path, trg_file_path, tm_name, src_lang_id, src_lang_code, trg_lang_id, trg_lang_code, status, tm_type, tm_id = request
request_corpus_path = mgiza_path+'/corpora/request_'+str(request_id)
os.makedirs(request_corpus_path)
shutil.copy(src_file_path, request_corpus_path+'/src.txt')
shutil.copy(trg_file_path, request_corpus_path+'/trg.txt')
subprocess.run(["make","SRC_LANG="+src_lang_code, "TRG_LANG="+trg_lang_code, "CORPUS_NAME=request_"+str(request_id)], cwd=mgiza_path)
cur.close()
conn.close()
host = SourceFileLoader("host", os.path.dirname(os.path.realpath(__file__))+'/../tests/host.py').load_module()
address = 'http://'+host.concordia_host
if len(host.concordia_port) > 0:
address += ':'+host.concordia_port
sourceFile = request_corpus_path+'/src_final.txt'
targetFile = request_corpus_path+'/trg_final.txt'
alignmentsFile = request_corpus_path+'/aligned_final.txt'
if (file_len(sourceFile) != file_len(targetFile)):
raise Exception("source and target files are not of the same length!")
if (file_len(alignmentsFile) != 3*file_len(sourceFile)):
raise Exception("alignments file is not exactly 3 times longer than source and target")
data = {
'operation': 'addTm',
'sourceLangId':src_lang_id,
'targetLangId':trg_lang_id,
'name':tm_name,
'tmLemmatized':True
}
response = postJson(address, data)
tmId = int(response['newTmId'])
print("Added new tm: %d" % tmId)
data = {
'operation': 'addAlignedLemmatizedSentences',
'tmId':tmId
}
examples = []
with open(sourceFile) as sf, open(targetFile) as tf, open(alignmentsFile) as af:
for sourceLine in sf:
sourceSentence = sourceLine.strip()
targetSentence = tf.readline().strip()
# skip to lines of the alignments file, these are lemmatized and we need the raw sentences from the source and target files.
af.readline()
af.readline()
alignmentString = af.readline().strip()
examples.append([sourceSentence, targetSentence, alignmentString])
if len(examples) >= BUFFER_SIZE:
data['examples'] = examples
add_examples(address, data)
examples = []
if len(examples) > 0:
data['examples'] = examples
add_examples(address, data)
print("Generating index...")
start = time.time()
data = {
'operation': 'refreshIndex',
'tmId' : tmId
}
response = postJson(address, data)
end = time.time()
print("Index regeneration complete. The operation took %.4f s" % (end - start))