Zadanie 5

This commit is contained in:
unknown 2021-06-10 22:10:42 +02:00
parent 5bd0649ffa
commit 60194de853

View File

@ -113,7 +113,7 @@
"text/plain": [ "text/plain": [
"array([[3, 4, 0, 0, 5, 0, 0, 4],\n", "array([[3, 4, 0, 0, 5, 0, 0, 4],\n",
" [0, 1, 2, 3, 0, 0, 0, 0],\n", " [0, 1, 2, 3, 0, 0, 0, 0],\n",
" [0, 0, 0, 5, 0, 3, 4, 0]])" " [0, 0, 0, 5, 0, 3, 4, 0]], dtype=int64)"
] ]
}, },
"metadata": {}, "metadata": {},
@ -256,7 +256,7 @@
"name": "stderr", "name": "stderr",
"output_type": "stream", "output_type": "stream",
"text": [ "text": [
"943it [00:00, 9004.71it/s]\n" "943it [00:00, 9914.99it/s]\n"
] ]
}, },
{ {
@ -293,6 +293,8 @@
" <th>MRR</th>\n", " <th>MRR</th>\n",
" <th>LAUC</th>\n", " <th>LAUC</th>\n",
" <th>HR</th>\n", " <th>HR</th>\n",
" <th>HitRate2</th>\n",
" <th>HitRate3</th>\n",
" <th>Reco in test</th>\n", " <th>Reco in test</th>\n",
" <th>Test coverage</th>\n", " <th>Test coverage</th>\n",
" <th>Shannon</th>\n", " <th>Shannon</th>\n",
@ -315,6 +317,8 @@
" <td>0.000368</td>\n", " <td>0.000368</td>\n",
" <td>0.496391</td>\n", " <td>0.496391</td>\n",
" <td>0.003181</td>\n", " <td>0.003181</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.392153</td>\n", " <td>0.392153</td>\n",
" <td>0.11544</td>\n", " <td>0.11544</td>\n",
" <td>4.174741</td>\n", " <td>4.174741</td>\n",
@ -331,8 +335,11 @@
" precision_super recall_super NDCG mAP MRR LAUC \\\n", " precision_super recall_super NDCG mAP MRR LAUC \\\n",
"0 0.0 0.0 0.000214 0.000037 0.000368 0.496391 \n", "0 0.0 0.0 0.000214 0.000037 0.000368 0.496391 \n",
"\n", "\n",
" HR Reco in test Test coverage Shannon Gini \n", " HR HitRate2 HitRate3 Reco in test Test coverage Shannon \\\n",
"0 0.003181 0.392153 0.11544 4.174741 0.965327 " "0 0.003181 0.0 0.0 0.392153 0.11544 4.174741 \n",
"\n",
" Gini \n",
"0 0.965327 "
] ]
}, },
"execution_count": 5, "execution_count": 5,
@ -365,12 +372,15 @@
"name": "stderr", "name": "stderr",
"output_type": "stream", "output_type": "stream",
"text": [ "text": [
"943it [00:00, 8517.83it/s]\n", "943it [00:00, 9928.75it/s]\n",
"943it [00:00, 11438.64it/s]\n", "943it [00:00, 10480.56it/s]\n",
"943it [00:00, 11933.36it/s]\n", "943it [00:00, 8591.71it/s]\n",
"943it [00:00, 10307.81it/s]\n", "943it [00:00, 9949.81it/s]\n",
"943it [00:00, 12250.41it/s]\n", "943it [00:00, 9925.57it/s]\n",
"943it [00:00, 12064.07it/s]\n" "943it [00:00, 9911.02it/s]\n",
"943it [00:00, 9196.77it/s]\n",
"943it [00:00, 9443.97it/s]\n",
"943it [00:00, 8577.83it/s]\n"
] ]
}, },
{ {
@ -408,6 +418,8 @@
" <th>MRR</th>\n", " <th>MRR</th>\n",
" <th>LAUC</th>\n", " <th>LAUC</th>\n",
" <th>HR</th>\n", " <th>HR</th>\n",
" <th>HitRate2</th>\n",
" <th>HitRate3</th>\n",
" <th>Reco in test</th>\n", " <th>Reco in test</th>\n",
" <th>Test coverage</th>\n", " <th>Test coverage</th>\n",
" <th>Shannon</th>\n", " <th>Shannon</th>\n",
@ -431,6 +443,8 @@
" <td>0.400939</td>\n", " <td>0.400939</td>\n",
" <td>0.555546</td>\n", " <td>0.555546</td>\n",
" <td>0.765642</td>\n", " <td>0.765642</td>\n",
" <td>0.492047</td>\n",
" <td>0.290562</td>\n",
" <td>1.000000</td>\n", " <td>1.000000</td>\n",
" <td>0.038961</td>\n", " <td>0.038961</td>\n",
" <td>3.159079</td>\n", " <td>3.159079</td>\n",
@ -452,6 +466,8 @@
" <td>0.198193</td>\n", " <td>0.198193</td>\n",
" <td>0.515501</td>\n", " <td>0.515501</td>\n",
" <td>0.437964</td>\n", " <td>0.437964</td>\n",
" <td>0.239661</td>\n",
" <td>0.126193</td>\n",
" <td>1.000000</td>\n", " <td>1.000000</td>\n",
" <td>0.033911</td>\n", " <td>0.033911</td>\n",
" <td>2.836513</td>\n", " <td>2.836513</td>\n",
@ -460,23 +476,94 @@
" <tr>\n", " <tr>\n",
" <th>0</th>\n", " <th>0</th>\n",
" <td>Ready_Random</td>\n", " <td>Ready_Random</td>\n",
" <td>1.521845</td>\n", " <td>1.516512</td>\n",
" <td>1.225949</td>\n", " <td>1.217214</td>\n",
" <td>0.047190</td>\n", " <td>0.045599</td>\n",
" <td>0.020753</td>\n", " <td>0.021001</td>\n",
" <td>0.024810</td>\n", " <td>0.024136</td>\n",
" <td>0.032269</td>\n", " <td>0.031226</td>\n",
" <td>0.029506</td>\n", " <td>0.028541</td>\n",
" <td>0.023707</td>\n", " <td>0.022057</td>\n",
" <td>0.050075</td>\n", " <td>0.050154</td>\n",
" <td>0.018728</td>\n", " <td>0.019000</td>\n",
" <td>0.121957</td>\n", " <td>0.125089</td>\n",
" <td>0.506893</td>\n", " <td>0.507013</td>\n",
" <td>0.329799</td>\n", " <td>0.327678</td>\n",
" <td>0.986532</td>\n", " <td>0.093319</td>\n",
" <td>0.184704</td>\n", " <td>0.026511</td>\n",
" <td>5.099706</td>\n", " <td>0.988017</td>\n",
" <td>0.907217</td>\n", " <td>0.192641</td>\n",
" <td>5.141246</td>\n",
" <td>0.903763</td>\n",
" </tr>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Ready_I-KNN</td>\n",
" <td>1.030386</td>\n",
" <td>0.813067</td>\n",
" <td>0.026087</td>\n",
" <td>0.006908</td>\n",
" <td>0.010593</td>\n",
" <td>0.016046</td>\n",
" <td>0.021137</td>\n",
" <td>0.009522</td>\n",
" <td>0.024214</td>\n",
" <td>0.008958</td>\n",
" <td>0.048068</td>\n",
" <td>0.499885</td>\n",
" <td>0.154825</td>\n",
" <td>0.072110</td>\n",
" <td>0.024390</td>\n",
" <td>0.402333</td>\n",
" <td>0.434343</td>\n",
" <td>5.133650</td>\n",
" <td>0.877999</td>\n",
" </tr>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Ready_I-KNNBaseline</td>\n",
" <td>0.935327</td>\n",
" <td>0.737424</td>\n",
" <td>0.002545</td>\n",
" <td>0.000755</td>\n",
" <td>0.001105</td>\n",
" <td>0.001602</td>\n",
" <td>0.002253</td>\n",
" <td>0.000930</td>\n",
" <td>0.003444</td>\n",
" <td>0.001362</td>\n",
" <td>0.011760</td>\n",
" <td>0.496724</td>\n",
" <td>0.021209</td>\n",
" <td>0.004242</td>\n",
" <td>0.000000</td>\n",
" <td>0.482821</td>\n",
" <td>0.059885</td>\n",
" <td>2.232578</td>\n",
" <td>0.994487</td>\n",
" </tr>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Ready_U-KNN</td>\n",
" <td>1.023495</td>\n",
" <td>0.807913</td>\n",
" <td>0.000742</td>\n",
" <td>0.000205</td>\n",
" <td>0.000305</td>\n",
" <td>0.000449</td>\n",
" <td>0.000536</td>\n",
" <td>0.000198</td>\n",
" <td>0.000845</td>\n",
" <td>0.000274</td>\n",
" <td>0.002744</td>\n",
" <td>0.496441</td>\n",
" <td>0.007423</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.602121</td>\n",
" <td>0.010823</td>\n",
" <td>2.089186</td>\n",
" <td>0.995706</td>\n",
" </tr>\n", " </tr>\n",
" <tr>\n", " <tr>\n",
" <th>0</th>\n", " <th>0</th>\n",
@ -494,6 +581,8 @@
" <td>0.003348</td>\n", " <td>0.003348</td>\n",
" <td>0.496433</td>\n", " <td>0.496433</td>\n",
" <td>0.009544</td>\n", " <td>0.009544</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.699046</td>\n", " <td>0.699046</td>\n",
" <td>0.005051</td>\n", " <td>0.005051</td>\n",
" <td>1.945910</td>\n", " <td>1.945910</td>\n",
@ -515,6 +604,8 @@
" <td>0.001677</td>\n", " <td>0.001677</td>\n",
" <td>0.496424</td>\n", " <td>0.496424</td>\n",
" <td>0.009544</td>\n", " <td>0.009544</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.600530</td>\n", " <td>0.600530</td>\n",
" <td>0.005051</td>\n", " <td>0.005051</td>\n",
" <td>1.803126</td>\n", " <td>1.803126</td>\n",
@ -536,6 +627,8 @@
" <td>0.000368</td>\n", " <td>0.000368</td>\n",
" <td>0.496391</td>\n", " <td>0.496391</td>\n",
" <td>0.003181</td>\n", " <td>0.003181</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.392153</td>\n", " <td>0.392153</td>\n",
" <td>0.115440</td>\n", " <td>0.115440</td>\n",
" <td>4.174741</td>\n", " <td>4.174741</td>\n",
@ -549,7 +642,10 @@
" Model RMSE MAE precision recall F_1 \\\n", " Model RMSE MAE precision recall F_1 \\\n",
"0 Self_TopPop 2.508258 2.217909 0.188865 0.116919 0.118732 \n", "0 Self_TopPop 2.508258 2.217909 0.188865 0.116919 0.118732 \n",
"0 Ready_Baseline 0.949459 0.752487 0.091410 0.037652 0.046030 \n", "0 Ready_Baseline 0.949459 0.752487 0.091410 0.037652 0.046030 \n",
"0 Ready_Random 1.521845 1.225949 0.047190 0.020753 0.024810 \n", "0 Ready_Random 1.516512 1.217214 0.045599 0.021001 0.024136 \n",
"0 Ready_I-KNN 1.030386 0.813067 0.026087 0.006908 0.010593 \n",
"0 Ready_I-KNNBaseline 0.935327 0.737424 0.002545 0.000755 0.001105 \n",
"0 Ready_U-KNN 1.023495 0.807913 0.000742 0.000205 0.000305 \n",
"0 Self_TopRated 1.030712 0.820904 0.000954 0.000188 0.000298 \n", "0 Self_TopRated 1.030712 0.820904 0.000954 0.000188 0.000298 \n",
"0 Self_BaselineUI 0.967585 0.762740 0.000954 0.000170 0.000278 \n", "0 Self_BaselineUI 0.967585 0.762740 0.000954 0.000170 0.000278 \n",
"0 Self_IKNN 1.018363 0.808793 0.000318 0.000108 0.000140 \n", "0 Self_IKNN 1.018363 0.808793 0.000318 0.000108 0.000140 \n",
@ -557,18 +653,35 @@
" F_05 precision_super recall_super NDCG mAP MRR \\\n", " F_05 precision_super recall_super NDCG mAP MRR \\\n",
"0 0.141584 0.130472 0.137473 0.214651 0.111707 0.400939 \n", "0 0.141584 0.130472 0.137473 0.214651 0.111707 0.400939 \n",
"0 0.061286 0.079614 0.056463 0.095957 0.043178 0.198193 \n", "0 0.061286 0.079614 0.056463 0.095957 0.043178 0.198193 \n",
"0 0.032269 0.029506 0.023707 0.050075 0.018728 0.121957 \n", "0 0.031226 0.028541 0.022057 0.050154 0.019000 0.125089 \n",
"0 0.016046 0.021137 0.009522 0.024214 0.008958 0.048068 \n",
"0 0.001602 0.002253 0.000930 0.003444 0.001362 0.011760 \n",
"0 0.000449 0.000536 0.000198 0.000845 0.000274 0.002744 \n",
"0 0.000481 0.000644 0.000223 0.001043 0.000335 0.003348 \n", "0 0.000481 0.000644 0.000223 0.001043 0.000335 0.003348 \n",
"0 0.000463 0.000644 0.000189 0.000752 0.000168 0.001677 \n", "0 0.000463 0.000644 0.000189 0.000752 0.000168 0.001677 \n",
"0 0.000189 0.000000 0.000000 0.000214 0.000037 0.000368 \n", "0 0.000189 0.000000 0.000000 0.000214 0.000037 0.000368 \n",
"\n", "\n",
" LAUC HR Reco in test Test coverage Shannon Gini \n", " LAUC HR HitRate2 HitRate3 Reco in test Test coverage \\\n",
"0 0.555546 0.765642 1.000000 0.038961 3.159079 0.987317 \n", "0 0.555546 0.765642 0.492047 0.290562 1.000000 0.038961 \n",
"0 0.515501 0.437964 1.000000 0.033911 2.836513 0.991139 \n", "0 0.515501 0.437964 0.239661 0.126193 1.000000 0.033911 \n",
"0 0.506893 0.329799 0.986532 0.184704 5.099706 0.907217 \n", "0 0.507013 0.327678 0.093319 0.026511 0.988017 0.192641 \n",
"0 0.496433 0.009544 0.699046 0.005051 1.945910 0.995669 \n", "0 0.499885 0.154825 0.072110 0.024390 0.402333 0.434343 \n",
"0 0.496424 0.009544 0.600530 0.005051 1.803126 0.996380 \n", "0 0.496724 0.021209 0.004242 0.000000 0.482821 0.059885 \n",
"0 0.496391 0.003181 0.392153 0.115440 4.174741 0.965327 " "0 0.496441 0.007423 0.000000 0.000000 0.602121 0.010823 \n",
"0 0.496433 0.009544 0.000000 0.000000 0.699046 0.005051 \n",
"0 0.496424 0.009544 0.000000 0.000000 0.600530 0.005051 \n",
"0 0.496391 0.003181 0.000000 0.000000 0.392153 0.115440 \n",
"\n",
" Shannon Gini \n",
"0 3.159079 0.987317 \n",
"0 2.836513 0.991139 \n",
"0 5.141246 0.903763 \n",
"0 5.133650 0.877999 \n",
"0 2.232578 0.994487 \n",
"0 2.089186 0.995706 \n",
"0 1.945910 0.995669 \n",
"0 1.803126 0.996380 \n",
"0 4.174741 0.965327 "
] ]
}, },
"execution_count": 6, "execution_count": 6,
@ -718,15 +831,15 @@
"name": "stderr", "name": "stderr",
"output_type": "stream", "output_type": "stream",
"text": [ "text": [
"943it [00:00, 11286.27it/s]\n", "943it [00:00, 8051.57it/s]\n",
"943it [00:00, 10874.86it/s]\n", "943it [00:00, 9790.90it/s]\n",
"943it [00:00, 11509.97it/s]\n", "943it [00:00, 9404.38it/s]\n",
"943it [00:00, 11855.81it/s]\n", "943it [00:00, 9429.83it/s]\n",
"943it [00:00, 11574.00it/s]\n", "943it [00:00, 9915.86it/s]\n",
"943it [00:00, 11080.19it/s]\n", "943it [00:00, 8625.66it/s]\n",
"943it [00:00, 11550.84it/s]\n", "943it [00:00, 9687.63it/s]\n",
"943it [00:00, 12148.14it/s]\n", "943it [00:00, 10469.91it/s]\n",
"943it [00:00, 10779.39it/s]\n" "943it [00:00, 8577.63it/s]\n"
] ]
}, },
{ {
@ -764,6 +877,8 @@
" <th>MRR</th>\n", " <th>MRR</th>\n",
" <th>LAUC</th>\n", " <th>LAUC</th>\n",
" <th>HR</th>\n", " <th>HR</th>\n",
" <th>HitRate2</th>\n",
" <th>HitRate3</th>\n",
" <th>Reco in test</th>\n", " <th>Reco in test</th>\n",
" <th>Test coverage</th>\n", " <th>Test coverage</th>\n",
" <th>Shannon</th>\n", " <th>Shannon</th>\n",
@ -787,6 +902,8 @@
" <td>0.400939</td>\n", " <td>0.400939</td>\n",
" <td>0.555546</td>\n", " <td>0.555546</td>\n",
" <td>0.765642</td>\n", " <td>0.765642</td>\n",
" <td>0.492047</td>\n",
" <td>0.290562</td>\n",
" <td>1.000000</td>\n", " <td>1.000000</td>\n",
" <td>0.038961</td>\n", " <td>0.038961</td>\n",
" <td>3.159079</td>\n", " <td>3.159079</td>\n",
@ -808,6 +925,8 @@
" <td>0.198193</td>\n", " <td>0.198193</td>\n",
" <td>0.515501</td>\n", " <td>0.515501</td>\n",
" <td>0.437964</td>\n", " <td>0.437964</td>\n",
" <td>0.239661</td>\n",
" <td>0.126193</td>\n",
" <td>1.000000</td>\n", " <td>1.000000</td>\n",
" <td>0.033911</td>\n", " <td>0.033911</td>\n",
" <td>2.836513</td>\n", " <td>2.836513</td>\n",
@ -816,23 +935,25 @@
" <tr>\n", " <tr>\n",
" <th>0</th>\n", " <th>0</th>\n",
" <td>Ready_Random</td>\n", " <td>Ready_Random</td>\n",
" <td>1.521845</td>\n", " <td>1.516512</td>\n",
" <td>1.225949</td>\n", " <td>1.217214</td>\n",
" <td>0.047190</td>\n", " <td>0.045599</td>\n",
" <td>0.020753</td>\n", " <td>0.021001</td>\n",
" <td>0.024810</td>\n", " <td>0.024136</td>\n",
" <td>0.032269</td>\n", " <td>0.031226</td>\n",
" <td>0.029506</td>\n", " <td>0.028541</td>\n",
" <td>0.023707</td>\n", " <td>0.022057</td>\n",
" <td>0.050075</td>\n", " <td>0.050154</td>\n",
" <td>0.018728</td>\n", " <td>0.019000</td>\n",
" <td>0.121957</td>\n", " <td>0.125089</td>\n",
" <td>0.506893</td>\n", " <td>0.507013</td>\n",
" <td>0.329799</td>\n", " <td>0.327678</td>\n",
" <td>0.986532</td>\n", " <td>0.093319</td>\n",
" <td>0.184704</td>\n", " <td>0.026511</td>\n",
" <td>5.099706</td>\n", " <td>0.988017</td>\n",
" <td>0.907217</td>\n", " <td>0.192641</td>\n",
" <td>5.141246</td>\n",
" <td>0.903763</td>\n",
" </tr>\n", " </tr>\n",
" <tr>\n", " <tr>\n",
" <th>0</th>\n", " <th>0</th>\n",
@ -850,6 +971,8 @@
" <td>0.048068</td>\n", " <td>0.048068</td>\n",
" <td>0.499885</td>\n", " <td>0.499885</td>\n",
" <td>0.154825</td>\n", " <td>0.154825</td>\n",
" <td>0.072110</td>\n",
" <td>0.024390</td>\n",
" <td>0.402333</td>\n", " <td>0.402333</td>\n",
" <td>0.434343</td>\n", " <td>0.434343</td>\n",
" <td>5.133650</td>\n", " <td>5.133650</td>\n",
@ -871,6 +994,8 @@
" <td>0.011760</td>\n", " <td>0.011760</td>\n",
" <td>0.496724</td>\n", " <td>0.496724</td>\n",
" <td>0.021209</td>\n", " <td>0.021209</td>\n",
" <td>0.004242</td>\n",
" <td>0.000000</td>\n",
" <td>0.482821</td>\n", " <td>0.482821</td>\n",
" <td>0.059885</td>\n", " <td>0.059885</td>\n",
" <td>2.232578</td>\n", " <td>2.232578</td>\n",
@ -892,6 +1017,8 @@
" <td>0.002744</td>\n", " <td>0.002744</td>\n",
" <td>0.496441</td>\n", " <td>0.496441</td>\n",
" <td>0.007423</td>\n", " <td>0.007423</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.602121</td>\n", " <td>0.602121</td>\n",
" <td>0.010823</td>\n", " <td>0.010823</td>\n",
" <td>2.089186</td>\n", " <td>2.089186</td>\n",
@ -913,6 +1040,8 @@
" <td>0.003348</td>\n", " <td>0.003348</td>\n",
" <td>0.496433</td>\n", " <td>0.496433</td>\n",
" <td>0.009544</td>\n", " <td>0.009544</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.699046</td>\n", " <td>0.699046</td>\n",
" <td>0.005051</td>\n", " <td>0.005051</td>\n",
" <td>1.945910</td>\n", " <td>1.945910</td>\n",
@ -934,6 +1063,8 @@
" <td>0.001677</td>\n", " <td>0.001677</td>\n",
" <td>0.496424</td>\n", " <td>0.496424</td>\n",
" <td>0.009544</td>\n", " <td>0.009544</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.600530</td>\n", " <td>0.600530</td>\n",
" <td>0.005051</td>\n", " <td>0.005051</td>\n",
" <td>1.803126</td>\n", " <td>1.803126</td>\n",
@ -955,6 +1086,8 @@
" <td>0.000368</td>\n", " <td>0.000368</td>\n",
" <td>0.496391</td>\n", " <td>0.496391</td>\n",
" <td>0.003181</td>\n", " <td>0.003181</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.392153</td>\n", " <td>0.392153</td>\n",
" <td>0.115440</td>\n", " <td>0.115440</td>\n",
" <td>4.174741</td>\n", " <td>4.174741</td>\n",
@ -968,7 +1101,7 @@
" Model RMSE MAE precision recall F_1 \\\n", " Model RMSE MAE precision recall F_1 \\\n",
"0 Self_TopPop 2.508258 2.217909 0.188865 0.116919 0.118732 \n", "0 Self_TopPop 2.508258 2.217909 0.188865 0.116919 0.118732 \n",
"0 Ready_Baseline 0.949459 0.752487 0.091410 0.037652 0.046030 \n", "0 Ready_Baseline 0.949459 0.752487 0.091410 0.037652 0.046030 \n",
"0 Ready_Random 1.521845 1.225949 0.047190 0.020753 0.024810 \n", "0 Ready_Random 1.516512 1.217214 0.045599 0.021001 0.024136 \n",
"0 Ready_I-KNN 1.030386 0.813067 0.026087 0.006908 0.010593 \n", "0 Ready_I-KNN 1.030386 0.813067 0.026087 0.006908 0.010593 \n",
"0 Ready_I-KNNBaseline 0.935327 0.737424 0.002545 0.000755 0.001105 \n", "0 Ready_I-KNNBaseline 0.935327 0.737424 0.002545 0.000755 0.001105 \n",
"0 Ready_U-KNN 1.023495 0.807913 0.000742 0.000205 0.000305 \n", "0 Ready_U-KNN 1.023495 0.807913 0.000742 0.000205 0.000305 \n",
@ -979,7 +1112,7 @@
" F_05 precision_super recall_super NDCG mAP MRR \\\n", " F_05 precision_super recall_super NDCG mAP MRR \\\n",
"0 0.141584 0.130472 0.137473 0.214651 0.111707 0.400939 \n", "0 0.141584 0.130472 0.137473 0.214651 0.111707 0.400939 \n",
"0 0.061286 0.079614 0.056463 0.095957 0.043178 0.198193 \n", "0 0.061286 0.079614 0.056463 0.095957 0.043178 0.198193 \n",
"0 0.032269 0.029506 0.023707 0.050075 0.018728 0.121957 \n", "0 0.031226 0.028541 0.022057 0.050154 0.019000 0.125089 \n",
"0 0.016046 0.021137 0.009522 0.024214 0.008958 0.048068 \n", "0 0.016046 0.021137 0.009522 0.024214 0.008958 0.048068 \n",
"0 0.001602 0.002253 0.000930 0.003444 0.001362 0.011760 \n", "0 0.001602 0.002253 0.000930 0.003444 0.001362 0.011760 \n",
"0 0.000449 0.000536 0.000198 0.000845 0.000274 0.002744 \n", "0 0.000449 0.000536 0.000198 0.000845 0.000274 0.002744 \n",
@ -987,16 +1120,27 @@
"0 0.000463 0.000644 0.000189 0.000752 0.000168 0.001677 \n", "0 0.000463 0.000644 0.000189 0.000752 0.000168 0.001677 \n",
"0 0.000189 0.000000 0.000000 0.000214 0.000037 0.000368 \n", "0 0.000189 0.000000 0.000000 0.000214 0.000037 0.000368 \n",
"\n", "\n",
" LAUC HR Reco in test Test coverage Shannon Gini \n", " LAUC HR HitRate2 HitRate3 Reco in test Test coverage \\\n",
"0 0.555546 0.765642 1.000000 0.038961 3.159079 0.987317 \n", "0 0.555546 0.765642 0.492047 0.290562 1.000000 0.038961 \n",
"0 0.515501 0.437964 1.000000 0.033911 2.836513 0.991139 \n", "0 0.515501 0.437964 0.239661 0.126193 1.000000 0.033911 \n",
"0 0.506893 0.329799 0.986532 0.184704 5.099706 0.907217 \n", "0 0.507013 0.327678 0.093319 0.026511 0.988017 0.192641 \n",
"0 0.499885 0.154825 0.402333 0.434343 5.133650 0.877999 \n", "0 0.499885 0.154825 0.072110 0.024390 0.402333 0.434343 \n",
"0 0.496724 0.021209 0.482821 0.059885 2.232578 0.994487 \n", "0 0.496724 0.021209 0.004242 0.000000 0.482821 0.059885 \n",
"0 0.496441 0.007423 0.602121 0.010823 2.089186 0.995706 \n", "0 0.496441 0.007423 0.000000 0.000000 0.602121 0.010823 \n",
"0 0.496433 0.009544 0.699046 0.005051 1.945910 0.995669 \n", "0 0.496433 0.009544 0.000000 0.000000 0.699046 0.005051 \n",
"0 0.496424 0.009544 0.600530 0.005051 1.803126 0.996380 \n", "0 0.496424 0.009544 0.000000 0.000000 0.600530 0.005051 \n",
"0 0.496391 0.003181 0.392153 0.115440 4.174741 0.965327 " "0 0.496391 0.003181 0.000000 0.000000 0.392153 0.115440 \n",
"\n",
" Shannon Gini \n",
"0 3.159079 0.987317 \n",
"0 2.836513 0.991139 \n",
"0 5.141246 0.903763 \n",
"0 5.133650 0.877999 \n",
"0 2.232578 0.994487 \n",
"0 2.089186 0.995706 \n",
"0 1.945910 0.995669 \n",
"0 1.803126 0.996380 \n",
"0 4.174741 0.965327 "
] ]
}, },
"execution_count": 10, "execution_count": 10,
@ -1021,7 +1165,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 11, "execution_count": null,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -1031,6 +1175,463 @@
"# please save the output in 'Recommendations generated/ml-100k/Self_KNNSurprisetask_reco.csv' and\n", "# please save the output in 'Recommendations generated/ml-100k/Self_KNNSurprisetask_reco.csv' and\n",
"# 'Recommendations generated/ml-100k/Self_KNNSurprisetask_estimations.csv'" "# 'Recommendations generated/ml-100k/Self_KNNSurprisetask_estimations.csv'"
] ]
},
{
"cell_type": "code",
"execution_count": 43,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Estimating biases using als...\n",
"Computing the msd similarity matrix...\n",
"Done computing similarity matrix.\n",
"Generating predictions...\n",
"Generating top N recommendations...\n",
"Generating predictions...\n"
]
}
],
"source": [
"sim_options = {\n",
" \"name\": \"cosine\",\n",
" \"user_based\": True,\n",
"} # compute similarities between items\n",
"algorytm = sp.KNNBaseline(min_k=55, k=155)\n",
"\n",
"helpers.ready_made(\n",
" algorytm,\n",
" reco_path=\"Recommendations generated/ml-100k/Self_KNNSurprisetask_reco.csv\",\n",
" estimations_path=\"Recommendations generated/ml-100k/Self_KNNSurprisetask_estimations.csv\",\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 44,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"943it [00:00, 12777.10it/s]\n",
"943it [00:00, 13902.58it/s]\n",
"943it [00:00, 13703.41it/s]\n",
"943it [00:00, 12363.57it/s]\n",
"943it [00:00, 14321.56it/s]\n",
"943it [00:00, 13132.35it/s]\n",
"943it [00:00, 14318.76it/s]\n",
"943it [00:00, 11530.04it/s]\n",
"943it [00:00, 11255.60it/s]\n",
"943it [00:00, 12605.02it/s]\n",
"943it [00:00, 12946.27it/s]\n",
"943it [00:00, 12127.73it/s]\n"
]
},
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Model</th>\n",
" <th>RMSE</th>\n",
" <th>MAE</th>\n",
" <th>precision</th>\n",
" <th>recall</th>\n",
" <th>F_1</th>\n",
" <th>F_05</th>\n",
" <th>precision_super</th>\n",
" <th>recall_super</th>\n",
" <th>NDCG</th>\n",
" <th>mAP</th>\n",
" <th>MRR</th>\n",
" <th>LAUC</th>\n",
" <th>HR</th>\n",
" <th>HitRate2</th>\n",
" <th>HitRate3</th>\n",
" <th>Reco in test</th>\n",
" <th>Test coverage</th>\n",
" <th>Shannon</th>\n",
" <th>Gini</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Self_RP3Beta</td>\n",
" <td>3.501158</td>\n",
" <td>3.321368</td>\n",
" <td>0.315907</td>\n",
" <td>0.213088</td>\n",
" <td>0.208492</td>\n",
" <td>0.242756</td>\n",
" <td>0.233476</td>\n",
" <td>0.270002</td>\n",
" <td>0.382946</td>\n",
" <td>0.245988</td>\n",
" <td>0.626241</td>\n",
" <td>0.604180</td>\n",
" <td>0.896076</td>\n",
" <td>0.727466</td>\n",
" <td>0.538706</td>\n",
" <td>1.000000</td>\n",
" <td>0.122655</td>\n",
" <td>4.342930</td>\n",
" <td>0.959561</td>\n",
" </tr>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Self_P3</td>\n",
" <td>3.702446</td>\n",
" <td>3.527273</td>\n",
" <td>0.282185</td>\n",
" <td>0.192092</td>\n",
" <td>0.186749</td>\n",
" <td>0.216980</td>\n",
" <td>0.204185</td>\n",
" <td>0.240096</td>\n",
" <td>0.339114</td>\n",
" <td>0.204905</td>\n",
" <td>0.572157</td>\n",
" <td>0.593544</td>\n",
" <td>0.875928</td>\n",
" <td>0.685048</td>\n",
" <td>0.495228</td>\n",
" <td>1.000000</td>\n",
" <td>0.077201</td>\n",
" <td>3.875892</td>\n",
" <td>0.974947</td>\n",
" </tr>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Self_TopPop</td>\n",
" <td>2.508258</td>\n",
" <td>2.217909</td>\n",
" <td>0.188865</td>\n",
" <td>0.116919</td>\n",
" <td>0.118732</td>\n",
" <td>0.141584</td>\n",
" <td>0.130472</td>\n",
" <td>0.137473</td>\n",
" <td>0.214651</td>\n",
" <td>0.111707</td>\n",
" <td>0.400939</td>\n",
" <td>0.555546</td>\n",
" <td>0.765642</td>\n",
" <td>0.492047</td>\n",
" <td>0.290562</td>\n",
" <td>1.000000</td>\n",
" <td>0.038961</td>\n",
" <td>3.159079</td>\n",
" <td>0.987317</td>\n",
" </tr>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Self_KNNSurprisetask</td>\n",
" <td>0.942531</td>\n",
" <td>0.744851</td>\n",
" <td>0.090562</td>\n",
" <td>0.038031</td>\n",
" <td>0.045951</td>\n",
" <td>0.060863</td>\n",
" <td>0.080258</td>\n",
" <td>0.058681</td>\n",
" <td>0.090174</td>\n",
" <td>0.038552</td>\n",
" <td>0.178715</td>\n",
" <td>0.515679</td>\n",
" <td>0.448568</td>\n",
" <td>0.232238</td>\n",
" <td>0.123012</td>\n",
" <td>1.000000</td>\n",
" <td>0.042569</td>\n",
" <td>3.015508</td>\n",
" <td>0.989612</td>\n",
" </tr>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Ready_Baseline</td>\n",
" <td>0.949459</td>\n",
" <td>0.752487</td>\n",
" <td>0.091410</td>\n",
" <td>0.037652</td>\n",
" <td>0.046030</td>\n",
" <td>0.061286</td>\n",
" <td>0.079614</td>\n",
" <td>0.056463</td>\n",
" <td>0.095957</td>\n",
" <td>0.043178</td>\n",
" <td>0.198193</td>\n",
" <td>0.515501</td>\n",
" <td>0.437964</td>\n",
" <td>0.239661</td>\n",
" <td>0.126193</td>\n",
" <td>1.000000</td>\n",
" <td>0.033911</td>\n",
" <td>2.836513</td>\n",
" <td>0.991139</td>\n",
" </tr>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Ready_Random</td>\n",
" <td>1.516512</td>\n",
" <td>1.217214</td>\n",
" <td>0.045599</td>\n",
" <td>0.021001</td>\n",
" <td>0.024136</td>\n",
" <td>0.031226</td>\n",
" <td>0.028541</td>\n",
" <td>0.022057</td>\n",
" <td>0.050154</td>\n",
" <td>0.019000</td>\n",
" <td>0.125089</td>\n",
" <td>0.507013</td>\n",
" <td>0.327678</td>\n",
" <td>0.093319</td>\n",
" <td>0.026511</td>\n",
" <td>0.988017</td>\n",
" <td>0.192641</td>\n",
" <td>5.141246</td>\n",
" <td>0.903763</td>\n",
" </tr>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Ready_I-KNN</td>\n",
" <td>1.030386</td>\n",
" <td>0.813067</td>\n",
" <td>0.026087</td>\n",
" <td>0.006908</td>\n",
" <td>0.010593</td>\n",
" <td>0.016046</td>\n",
" <td>0.021137</td>\n",
" <td>0.009522</td>\n",
" <td>0.024214</td>\n",
" <td>0.008958</td>\n",
" <td>0.048068</td>\n",
" <td>0.499885</td>\n",
" <td>0.154825</td>\n",
" <td>0.072110</td>\n",
" <td>0.024390</td>\n",
" <td>0.402333</td>\n",
" <td>0.434343</td>\n",
" <td>5.133650</td>\n",
" <td>0.877999</td>\n",
" </tr>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Ready_I-KNNBaseline</td>\n",
" <td>0.935327</td>\n",
" <td>0.737424</td>\n",
" <td>0.002545</td>\n",
" <td>0.000755</td>\n",
" <td>0.001105</td>\n",
" <td>0.001602</td>\n",
" <td>0.002253</td>\n",
" <td>0.000930</td>\n",
" <td>0.003444</td>\n",
" <td>0.001362</td>\n",
" <td>0.011760</td>\n",
" <td>0.496724</td>\n",
" <td>0.021209</td>\n",
" <td>0.004242</td>\n",
" <td>0.000000</td>\n",
" <td>0.482821</td>\n",
" <td>0.059885</td>\n",
" <td>2.232578</td>\n",
" <td>0.994487</td>\n",
" </tr>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Ready_U-KNN</td>\n",
" <td>1.023495</td>\n",
" <td>0.807913</td>\n",
" <td>0.000742</td>\n",
" <td>0.000205</td>\n",
" <td>0.000305</td>\n",
" <td>0.000449</td>\n",
" <td>0.000536</td>\n",
" <td>0.000198</td>\n",
" <td>0.000845</td>\n",
" <td>0.000274</td>\n",
" <td>0.002744</td>\n",
" <td>0.496441</td>\n",
" <td>0.007423</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.602121</td>\n",
" <td>0.010823</td>\n",
" <td>2.089186</td>\n",
" <td>0.995706</td>\n",
" </tr>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Self_TopRated</td>\n",
" <td>1.030712</td>\n",
" <td>0.820904</td>\n",
" <td>0.000954</td>\n",
" <td>0.000188</td>\n",
" <td>0.000298</td>\n",
" <td>0.000481</td>\n",
" <td>0.000644</td>\n",
" <td>0.000223</td>\n",
" <td>0.001043</td>\n",
" <td>0.000335</td>\n",
" <td>0.003348</td>\n",
" <td>0.496433</td>\n",
" <td>0.009544</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.699046</td>\n",
" <td>0.005051</td>\n",
" <td>1.945910</td>\n",
" <td>0.995669</td>\n",
" </tr>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Self_BaselineUI</td>\n",
" <td>0.967585</td>\n",
" <td>0.762740</td>\n",
" <td>0.000954</td>\n",
" <td>0.000170</td>\n",
" <td>0.000278</td>\n",
" <td>0.000463</td>\n",
" <td>0.000644</td>\n",
" <td>0.000189</td>\n",
" <td>0.000752</td>\n",
" <td>0.000168</td>\n",
" <td>0.001677</td>\n",
" <td>0.496424</td>\n",
" <td>0.009544</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.600530</td>\n",
" <td>0.005051</td>\n",
" <td>1.803126</td>\n",
" <td>0.996380</td>\n",
" </tr>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Self_IKNN</td>\n",
" <td>1.018363</td>\n",
" <td>0.808793</td>\n",
" <td>0.000318</td>\n",
" <td>0.000108</td>\n",
" <td>0.000140</td>\n",
" <td>0.000189</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.000214</td>\n",
" <td>0.000037</td>\n",
" <td>0.000368</td>\n",
" <td>0.496391</td>\n",
" <td>0.003181</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.392153</td>\n",
" <td>0.115440</td>\n",
" <td>4.174741</td>\n",
" <td>0.965327</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" Model RMSE MAE precision recall F_1 \\\n",
"0 Self_RP3Beta 3.501158 3.321368 0.315907 0.213088 0.208492 \n",
"0 Self_P3 3.702446 3.527273 0.282185 0.192092 0.186749 \n",
"0 Self_TopPop 2.508258 2.217909 0.188865 0.116919 0.118732 \n",
"0 Self_KNNSurprisetask 0.942531 0.744851 0.090562 0.038031 0.045951 \n",
"0 Ready_Baseline 0.949459 0.752487 0.091410 0.037652 0.046030 \n",
"0 Ready_Random 1.516512 1.217214 0.045599 0.021001 0.024136 \n",
"0 Ready_I-KNN 1.030386 0.813067 0.026087 0.006908 0.010593 \n",
"0 Ready_I-KNNBaseline 0.935327 0.737424 0.002545 0.000755 0.001105 \n",
"0 Ready_U-KNN 1.023495 0.807913 0.000742 0.000205 0.000305 \n",
"0 Self_TopRated 1.030712 0.820904 0.000954 0.000188 0.000298 \n",
"0 Self_BaselineUI 0.967585 0.762740 0.000954 0.000170 0.000278 \n",
"0 Self_IKNN 1.018363 0.808793 0.000318 0.000108 0.000140 \n",
"\n",
" F_05 precision_super recall_super NDCG mAP MRR \\\n",
"0 0.242756 0.233476 0.270002 0.382946 0.245988 0.626241 \n",
"0 0.216980 0.204185 0.240096 0.339114 0.204905 0.572157 \n",
"0 0.141584 0.130472 0.137473 0.214651 0.111707 0.400939 \n",
"0 0.060863 0.080258 0.058681 0.090174 0.038552 0.178715 \n",
"0 0.061286 0.079614 0.056463 0.095957 0.043178 0.198193 \n",
"0 0.031226 0.028541 0.022057 0.050154 0.019000 0.125089 \n",
"0 0.016046 0.021137 0.009522 0.024214 0.008958 0.048068 \n",
"0 0.001602 0.002253 0.000930 0.003444 0.001362 0.011760 \n",
"0 0.000449 0.000536 0.000198 0.000845 0.000274 0.002744 \n",
"0 0.000481 0.000644 0.000223 0.001043 0.000335 0.003348 \n",
"0 0.000463 0.000644 0.000189 0.000752 0.000168 0.001677 \n",
"0 0.000189 0.000000 0.000000 0.000214 0.000037 0.000368 \n",
"\n",
" LAUC HR HitRate2 HitRate3 Reco in test Test coverage \\\n",
"0 0.604180 0.896076 0.727466 0.538706 1.000000 0.122655 \n",
"0 0.593544 0.875928 0.685048 0.495228 1.000000 0.077201 \n",
"0 0.555546 0.765642 0.492047 0.290562 1.000000 0.038961 \n",
"0 0.515679 0.448568 0.232238 0.123012 1.000000 0.042569 \n",
"0 0.515501 0.437964 0.239661 0.126193 1.000000 0.033911 \n",
"0 0.507013 0.327678 0.093319 0.026511 0.988017 0.192641 \n",
"0 0.499885 0.154825 0.072110 0.024390 0.402333 0.434343 \n",
"0 0.496724 0.021209 0.004242 0.000000 0.482821 0.059885 \n",
"0 0.496441 0.007423 0.000000 0.000000 0.602121 0.010823 \n",
"0 0.496433 0.009544 0.000000 0.000000 0.699046 0.005051 \n",
"0 0.496424 0.009544 0.000000 0.000000 0.600530 0.005051 \n",
"0 0.496391 0.003181 0.000000 0.000000 0.392153 0.115440 \n",
"\n",
" Shannon Gini \n",
"0 4.342930 0.959561 \n",
"0 3.875892 0.974947 \n",
"0 3.159079 0.987317 \n",
"0 3.015508 0.989612 \n",
"0 2.836513 0.991139 \n",
"0 5.141246 0.903763 \n",
"0 5.133650 0.877999 \n",
"0 2.232578 0.994487 \n",
"0 2.089186 0.995706 \n",
"0 1.945910 0.995669 \n",
"0 1.803126 0.996380 \n",
"0 4.174741 0.965327 "
]
},
"execution_count": 44,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"dir_path = \"Recommendations generated/ml-100k/\"\n",
"super_reactions = [4, 5]\n",
"test = pd.read_csv(\"./Datasets/ml-100k/test.csv\", sep=\"\\t\", header=None)\n",
"\n",
"ev.evaluate_all(test, dir_path, super_reactions)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
} }
], ],
"metadata": { "metadata": {