PolevalFastAPI/main.py

175 lines
5.5 KiB
Python
Raw Permalink Normal View History

2023-12-14 16:39:46 +01:00
from fastapi import FastAPI
from pydantic import BaseModel
from sklearn.metrics import f1_score
import pandas as pd
import distance
import io
ERROR_RESPONSE = {
"status": 400
}
app = FastAPI()
class Data(BaseModel):
2024-01-12 10:20:16 +01:00
metric: str
file_expected: str = ""
file_out: str = ""
file_in: str = ""
2023-12-14 16:39:46 +01:00
def preprocess_data(out, expected):
out = out.split("\n")
expected = expected.split("\n")[:-1]
out = out[:len(expected)]
return out, expected
def get_levenshtein_score(trues, preds):
def normalize_answer(s):
return s.lower()
levenstein_scores = []
for true, pred in [(true, pred) for (true, pred) in zip(trues, preds) if true != ""]:
if pred == "":
levenstein_score = 0
else:
levenstein_score = 1 - distance.nlevenshtein(normalize_answer(true), normalize_answer(pred))
levenstein_scores.append(levenstein_score)
avg_levenstein_score = sum(levenstein_scores) / len(levenstein_scores) * 100
return avg_levenstein_score
def get_answerability_f1(trues, preds):
def get_answerability(answers):
return [1 if answer == "" else 0 for answer in answers]
true_answerability = get_answerability(trues)
predicted_answerability = get_answerability(preds)
answerability_f1 = f1_score(true_answerability, predicted_answerability, zero_division=0.0) * 100
return answerability_f1
2024-01-12 10:20:16 +01:00
def get_final_score(trues, preds):
2023-12-14 16:39:46 +01:00
scores = {}
scores["Levenshtein"] = get_levenshtein_score(trues, preds)
scores["AnswerabilityF1"] = get_answerability_f1(trues, preds)
2024-01-12 10:20:16 +01:00
return round((scores["Levenshtein"] + scores["AnswerabilityF1"]) / 2, 2)
2023-12-14 16:39:46 +01:00
def get_emotion_recognition_scores(df_in, df_expected, df_predition):
text_annotation = df_in['text'].apply(lambda x: x == '#' * len(x))
df_expected_text = df_expected[text_annotation]
df_expected_sentence = df_expected[~text_annotation]
df_prediction_text = df_predition[text_annotation]
df_prediction_sentence = df_predition[~text_annotation]
f1_text_score = f1_score(
2024-01-02 12:22:45 +01:00
df_prediction_text,
df_expected_text,
2023-12-14 16:39:46 +01:00
average='macro',
2024-01-02 12:22:45 +01:00
zero_division=0.0
2023-12-14 16:39:46 +01:00
)
f1_text_score = f1_text_score * 100
f1_sentence_score = f1_score(
2024-01-02 12:22:45 +01:00
df_expected_sentence,
df_prediction_sentence,
2023-12-14 16:39:46 +01:00
average='macro',
2024-01-02 12:22:45 +01:00
zero_division=0.0
2023-12-14 16:39:46 +01:00
)
f1_sentence_score = f1_sentence_score * 100
final_score = (f1_text_score + f1_sentence_score) / 2
return {
"SentenceF1": round(f1_sentence_score, 2),
"TextF1": round(f1_text_score, 2),
"FinalF1": round(final_score, 2)
}
@app.get("/")
async def root(data: Data):
2024-01-12 10:20:16 +01:00
metric = data.metric
file_expected = data.file_expected
file_out = data.file_out
file_in = data.file_in
try:
if metric == "Final":
if len(file_out) > 0:
file_out, file_expected = preprocess_data(file_out, file_expected)
if len(file_out) != len(file_expected):
return ERROR_RESPONSE
return {
"status": 200,
"result": get_final_score(file_expected, file_out)
}
elif metric == "Levenshtein":
if len(file_out) > 0:
file_out, file_expected = preprocess_data(file_out, file_expected)
if len(file_out) != len(file_expected):
return ERROR_RESPONSE
return {
"status": 200,
"result": round(get_levenshtein_score(file_expected, file_out), 2)
}
elif metric == "AnswerabilityF1":
if len(file_out) > 0:
file_out, file_expected = preprocess_data(file_out, file_expected)
if len(file_out) != len(file_expected):
return ERROR_RESPONSE
return {
"status": 200,
"result": round(get_answerability_f1(file_expected, file_out), 2)
}
elif metric == "FinalF1":
if len(file_out) > 0:
df_in = pd.read_table(io.StringIO(file_in))
df_expected = pd.read_table(io.StringIO(file_expected))
df_predition = pd.read_table(io.StringIO(file_out))
results = get_emotion_recognition_scores(df_in, df_expected, df_predition)
return {
"status": 200,
"result": results["FinalF1"]
}
elif metric == "SentenceF1":
if len(file_out) > 0:
df_in = pd.read_table(io.StringIO(file_in))
df_expected = pd.read_table(io.StringIO(file_expected))
df_predition = pd.read_table(io.StringIO(file_out))
results = get_emotion_recognition_scores(df_in, df_expected, df_predition)
return {
"status": 200,
"result": results["SentenceF1"]
}
elif metric == "TextF1":
if len(file_out) > 0:
df_in = pd.read_table(io.StringIO(file_in))
df_expected = pd.read_table(io.StringIO(file_expected))
df_predition = pd.read_table(io.StringIO(file_out))
results = get_emotion_recognition_scores(df_in, df_expected, df_predition)
return {
"status": 200,
"result": results["TextF1"]
}
except:
return ERROR_RESPONSE
2023-12-14 16:39:46 +01:00
2024-01-12 10:20:16 +01:00
return ERROR_RESPONSE