Update notebook 08
This commit is contained in:
parent
3b1afa2e37
commit
518b2764e7
@ -19,6 +19,21 @@
|
|||||||
"https://github.com/unslothai/unsloth - biblioteka do efektywnego finetune'owania LLMów (są gotowe notebooki z kodem na platformie Colab)"
|
"https://github.com/unslothai/unsloth - biblioteka do efektywnego finetune'owania LLMów (są gotowe notebooki z kodem na platformie Colab)"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"#### Co to jest wektor?\n",
|
||||||
|
"\n",
|
||||||
|
"Wektor - jednowymiarowa macierz\n",
|
||||||
|
"\n",
|
||||||
|
"[0, 1, 0, 0, 0] - one hot encoding - tylko wartości 0/1\n",
|
||||||
|
"\n",
|
||||||
|
"[0, 2, 0, 5, 1, 100] - frequency encoding - liczby całkowite >= 0\n",
|
||||||
|
"\n",
|
||||||
|
"[-1.5, 0.0002, 5000.01] - wektor"
|
||||||
|
]
|
||||||
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "markdown",
|
"cell_type": "markdown",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
@ -62,9 +77,18 @@
|
|||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 62,
|
"execution_count": 67,
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [
|
||||||
|
{
|
||||||
|
"name": "stderr",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"c:\\Users\\ryssta\\AppData\\Local\\anaconda3\\Lib\\site-packages\\transformers\\tokenization_utils_base.py:1601: FutureWarning: `clean_up_tokenization_spaces` was not set. It will be set to `True` by default. This behavior will be depracted in transformers v4.45, and will be then set to `False` by default. For more details check this issue: https://github.com/huggingface/transformers/issues/31884\n",
|
||||||
|
" warnings.warn(\n"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
"source": [
|
"source": [
|
||||||
"from transformers import GPT2Tokenizer, GPT2Model\n",
|
"from transformers import GPT2Tokenizer, GPT2Model\n",
|
||||||
"import torch\n",
|
"import torch\n",
|
||||||
@ -78,7 +102,23 @@
|
|||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 63,
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"[\n",
|
||||||
|
" [0.1, 0.2, 0.3], # Ala\n",
|
||||||
|
" [-0.5, 0.5, 0.9], # ma\n",
|
||||||
|
" ...\n",
|
||||||
|
" # 50254\n",
|
||||||
|
" ...\n",
|
||||||
|
" [0.1, -0.1, -0.2] # w GPT2 jest 768 wartości w pojedynczym wektorze, a nie 3\n",
|
||||||
|
"]"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 78,
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [
|
"outputs": [
|
||||||
{
|
{
|
||||||
@ -86,20 +126,31 @@
|
|||||||
"output_type": "stream",
|
"output_type": "stream",
|
||||||
"text": [
|
"text": [
|
||||||
"Tekst 'cat' jest konwertowany do tokenu 9246\n",
|
"Tekst 'cat' jest konwertowany do tokenu 9246\n",
|
||||||
|
"\n",
|
||||||
|
"Tokenizacja\n",
|
||||||
"{'input_ids': [33215], 'attention_mask': [1]}\n",
|
"{'input_ids': [33215], 'attention_mask': [1]}\n",
|
||||||
"cat\n"
|
"\n",
|
||||||
|
"Detokenizacja\n",
|
||||||
|
"computer\n",
|
||||||
|
"\n",
|
||||||
|
"Liczba tokenów w słowniku\n",
|
||||||
|
"50257\n"
|
||||||
]
|
]
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
"source": [
|
"source": [
|
||||||
"print(\"Tekst 'cat' jest konwertowany do tokenu 9246\")\n",
|
"print(\"Tekst 'cat' jest konwertowany do tokenu 9246\")\n",
|
||||||
|
"print(\"\\nTokenizacja\")\n",
|
||||||
"print(tokenizer(\"computer\"))\n",
|
"print(tokenizer(\"computer\"))\n",
|
||||||
"print(tokenizer.decode([9246]))"
|
"print(\"\\nDetokenizacja\")\n",
|
||||||
|
"print(tokenizer.decode([33215]))\n",
|
||||||
|
"print(\"\\nLiczba tokenów w słowniku\")\n",
|
||||||
|
"print(len(tokenizer))"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 66,
|
"execution_count": 73,
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [
|
"outputs": [
|
||||||
{
|
{
|
||||||
@ -107,7 +158,11 @@
|
|||||||
"output_type": "stream",
|
"output_type": "stream",
|
||||||
"text": [
|
"text": [
|
||||||
"Embedding tokenu: 9246\n",
|
"Embedding tokenu: 9246\n",
|
||||||
|
"\n",
|
||||||
|
"Rozmiar embeddingu (wektora)\n",
|
||||||
"torch.Size([1, 768])\n",
|
"torch.Size([1, 768])\n",
|
||||||
|
"\n",
|
||||||
|
"Wartości embeddingu\n",
|
||||||
"tensor([[-0.0164, -0.0934, 0.2425, 0.1398, 0.0388, -0.2592, -0.2724, -0.1625,\n",
|
"tensor([[-0.0164, -0.0934, 0.2425, 0.1398, 0.0388, -0.2592, -0.2724, -0.1625,\n",
|
||||||
" 0.1683, 0.0829, 0.0136, -0.2788, 0.1493, 0.1408, 0.0557, -0.3691,\n",
|
" 0.1683, 0.0829, 0.0136, -0.2788, 0.1493, 0.1408, 0.0557, -0.3691,\n",
|
||||||
" 0.2200, -0.0428, 0.2206, 0.0865, 0.1237, -0.1499, 0.1446, -0.1150,\n",
|
" 0.2200, -0.0428, 0.2206, 0.0865, 0.1237, -0.1499, 0.1446, -0.1150,\n",
|
||||||
@ -211,13 +266,15 @@
|
|||||||
"source": [
|
"source": [
|
||||||
"print(\"Embedding tokenu: 9246\")\n",
|
"print(\"Embedding tokenu: 9246\")\n",
|
||||||
"cat_embedding = embedding_layer(torch.LongTensor([9246]))\n",
|
"cat_embedding = embedding_layer(torch.LongTensor([9246]))\n",
|
||||||
|
"print(\"\\nRozmiar embeddingu (wektora)\")\n",
|
||||||
"print(cat_embedding.shape)\n",
|
"print(cat_embedding.shape)\n",
|
||||||
|
"print(\"\\nWartości embeddingu\")\n",
|
||||||
"print(cat_embedding)"
|
"print(cat_embedding)"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 65,
|
"execution_count": null,
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [
|
"outputs": [
|
||||||
{
|
{
|
||||||
|
Loading…
Reference in New Issue
Block a user