import urllib.parse import awswrangler as wr import pandas as pd import boto3 client_ssm = boto3.client('ssm') def etl_function(event, context): processed_zone_prefix = "processed-zone" record = event["Records"][0] raw_bucket = record["s3"]["bucket"]["name"] key = urllib.parse.unquote(record["s3"]["object"]["key"]) event_prefix = key.split('/')[1] full_src_path = f's3://{raw_bucket}/{key}' # Pobierz nazwÄ™ bucketu przetworzonych danych z SSM processed_bucket = client_ssm.get_parameter(Name='s3_processed_bucket_name')['Parameter']['Value'] print(f'Processing key = {full_src_path}') df = wr.s3.read_json(path=full_src_path, lines=True) filename = key.split('/')[-1][-36:] dest_prefix = f"s3://{processed_bucket}/{processed_zone_prefix}/{event_prefix}" df['transaction_date'] = pd.to_datetime(df['transaction_ts'], unit='s') df['year'] = df['transaction_date'].dt.year df['month'] = df['transaction_date'].dt.month df['day'] = df['transaction_date'].dt.day df['hour'] = df['transaction_date'].dt.hour cols_to_return = ["transaction_date", "price", "amount", "dollar_amount", "type", "trans_id"] new_keys = [] for [symbol, year, month, day, hour], data in df.groupby(['symbol', 'year', 'month', 'day', 'hour']): partitions = f"symbol={symbol}/year={year}/month={month}/day={day}/hour={hour}" full_key_name = '/'.join([dest_prefix, partitions, filename + '.parquet']) print(f'Saving a new key = {full_key_name}') new_keys.append(full_key_name) wr.s3.to_parquet( df=data[cols_to_return], path=full_key_name, compression='snappy' ) return { 'key': key, 'statusCode': 200, 'new_keys': new_keys }