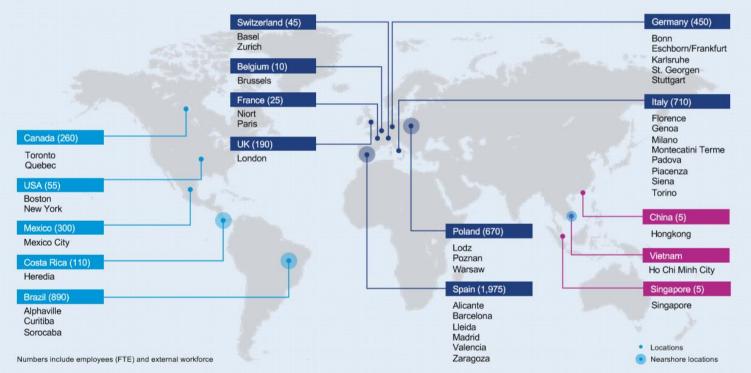
CLOUD COMPUTING


INTRODUCTION TO CLOUD DATA PROCESSING

Jakub Kasprzak UAM, Big Data 2024

THE REVOLUTION

$\mathsf{ABOUT}\,\mathbf{GFT}\,\&\,\mathsf{ME}$

5,700 experts in 16 countries

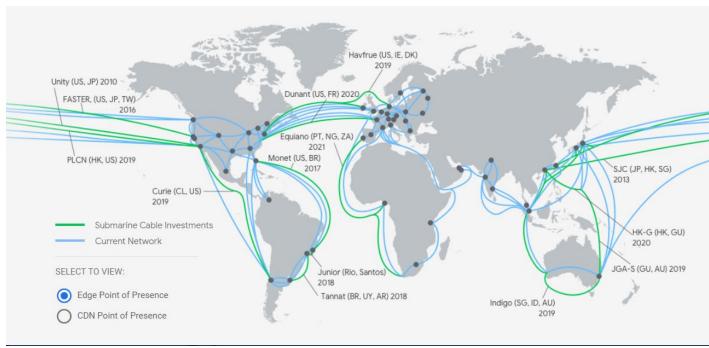
Jakub Kasprzak Principal Consultant AWS Data Architect

jakub.kasprzak@sqlpedia.pl

INTRODUCTION TO CLOUD COMPUTING AGENDA

- How clouds are formed
- What the cloud computing is
- Evolution of cloud computing
- Solution architectures, design principles
- What kind of services we can find on the cloud quick overview
- Examples of (big) data processing using cloud services
- Migration to the clouds

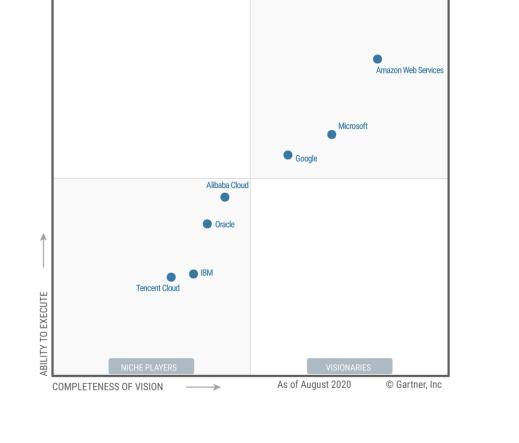
HOW CLOUDS ARE FORMED


HOW CLOUDS ARE FORMED **DRIVERS AND FACTORS**

- Resource sharing and usage optimization, hard to predict demand for computing power
- Fast time to market, infrastructure and environments (DEV/STG/UAT) on demand
- Building new solutions based on existing components (focus on your business!)
 Go global in minutes, short *time-to-market (6 months as a base-line for projects)*
- Testing and experimenting with new ideas low entry-cost for new projects, testing with different components, infra
- High availability and scalability
- Advanced technologies used as services
 Building skills to DIY vs consuming the services

WHAT DOES A CLOUD LOOK LIKE **INFRASTRUCTURE**

- Geographic Regions (EU, America, ASIA etc.)
- Regions consists of multiple AZ (at least two) it is a physical location around the world with cluster data centers.
- Availability Zone (AZ) is one or more discrete data centers with redundant power, networking, and connectivity in an AWS Region
- High througput **network**, multiple parallel 100Gbs links
- Edge points / Content Delivery Network
- Dedicated connections (np. AWS Direct Connect, Azure ExpressRoute)
- Azure Stack Arc, AWS Outposts, GCP
 Anthos (Compliance and Data Residency)



CLOUD MIGRATION PUBLIC CLOUD PROVIDERS

- Is it right for my business ? What technologies do I need ? What are my motivations ?
- Compliance with regulators
- Which cloud is the best?
- Service availability in your region
- Skills of my IT team ?
- Cloud migration multi-cloud providers
- Vendor lock-in. Cloud agnostic, does it work ?

Microsoft Azure

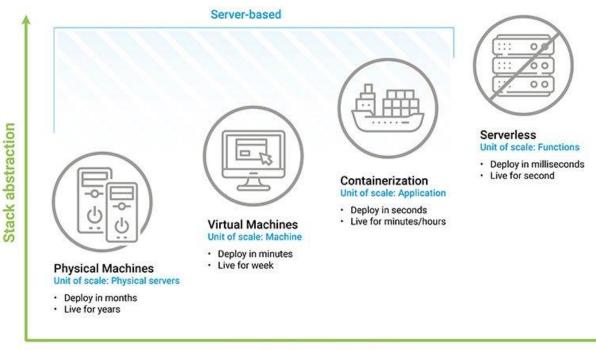

Google Cloud

Figure 1. Magic Quadrant for Cloud Infrastructure and Platform Services

EVOLUTION OF CLOUD COMPUTING **WAY TO SERVERLESS**

- Physical Machines
 The old world.
- Virtual Instances
 virtualized servers, you can change their
 capabilities with the click of a button
- Containerization
 Run your application and its dependencies in resource-isolated processes
- Serverless (functions) abstract the execution environment from the code you want to execute

Focus on business logic

9

IAAS, PAAS, SAAS **RESPONSIBILITY MODEL**

-Prem	Responsibility	On-Prem laaS	PaaS SaaS
Customer's responsibility (CR) : FULL	Data classification & accountability		
S			
CR : People, Data, Applications, Runtime, Middleware, Operating System, Virtual Network	Client & end-point protection		
CSP responsibility: Hypervisor, Servers, Storage, Physical Network	Identity & access management		
R: People, Data, Applications SP: Runtime, Middleware, Operating System, Virtual Network, Typervisor, Servers, Storage, Physical Network	Application level controls		
	Network controls		
nS	Host infrastructure		
CR : People, Data			
CSP : Applications, Runtime, Middleware, Operating System, Virtual Network, Hypervisor, Servers, Storage, Physical Network	Physical security		
		Cloud Customer	Cloud Provider

On-Prem

⊳

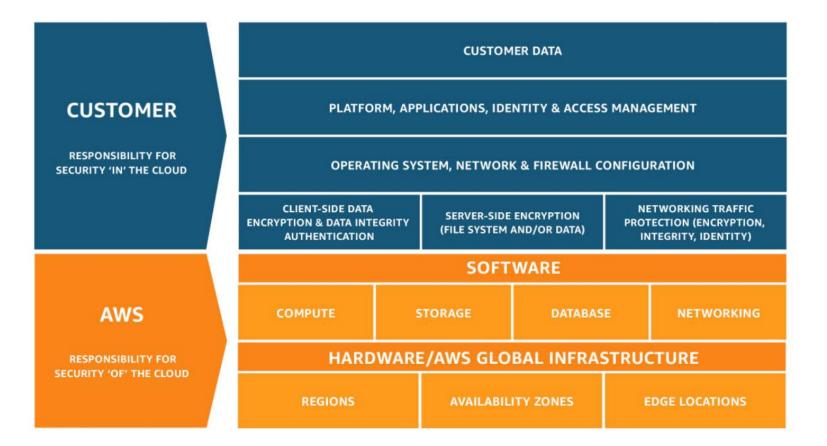
⊳

⊳

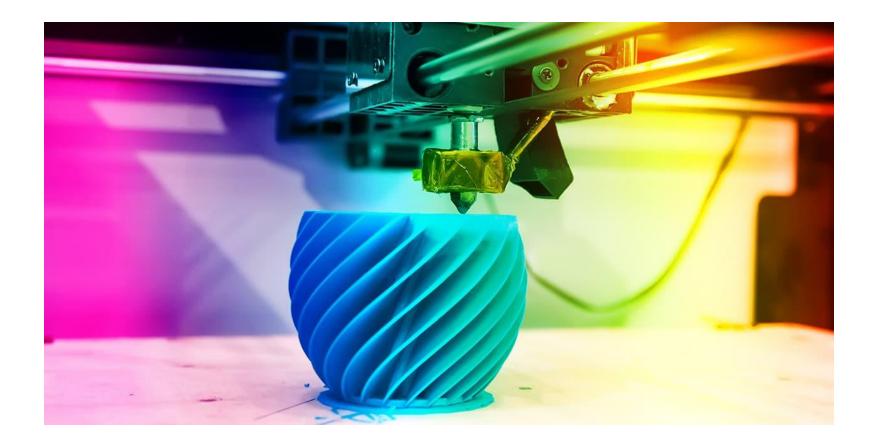
⊳

⊳

⊳


⊳

PaaS


SaaS

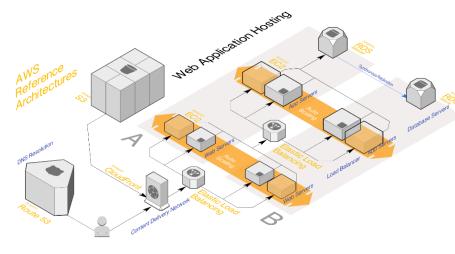
laaS

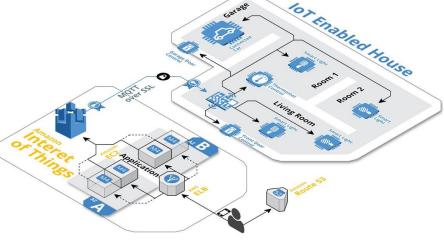
EXAMPLE AWS SHARED RESPONSIBILITY MODEL

HOW WOULD YOU DESCRIBE AN OBJECT?

INFRASTRUCTURE AS A CODE **IAAC**

- Cloud native approaches AWS Cloud Formation, GCP Deployment Manager, Azure Resource Manager
- It enables you to **quickly** set up your complete infrastructure by running a script (for all ENVs !)
- you can go through the same version control, automated testing and CI/CD processes
- It's the single source of truth for your configuration (consistency). You guarantee the same configurations will be deployed over and over, without discrepancies
- ▶ Lowering the **costs** of infrastructure management




CLOUD SOLUTIONS ARCHITECTURE **DESIGN PRINCIPLES**

- Every design must be justified by the **business**
- Preapre yourself for **failuers**, they happen
 Failures detection (metrics, alarms), automatically recover, logging, **self-healing** (AWS Fault Injection Sim), idempotency, retries (transient failures), fail over, isolation
- Stop guessing your capacity needs
 Idle resources, under/over provisioning, autoscaling (up/down)
 test at production scale, partitioning (horizontal and functional)
- High availability redundancy
 SPOF, Load Balancers, replication
- Serverless vs Managed Services vs Virtualization
 When possible use Serverless / PaaS rather than IaaS
 (Presto/Athena, RabbitMQ/SQS, Hadoop/EMR, Kafka/Kinesis)

CLOUD SOLUTIONS ARCHITECTURE **DESIGN PRINCIPLES**

- Infrastructure as a Code / configuration as Code Automated deployments CI/CD – frequent small deployements, limiting human errors in the process
- Don't use one solution for everything
 There is no silver bullet, RDBMS/NoSQL/Hadoop are great but there is no one answer for all needs/questions
- Boudned-context approach (Domain Driven Design)
 A bounded context maps to a subdomain of the business domain
 Partition data based on processing logic
- Preapre for evolution **loosely coupled architecture** Async messaging

CLOUD SERVICES AWS/ AZURE/ GCP

Compute

16

- Storage
- **Data Analytics**
- Data Collection \triangleright
- Databases
- Networking
- Security
- AI/ML \triangleright
- IoT

Analytics
Business Applications
Developer Tools

Management & Governance

Quantum Technologies

Application Integration

ન્દુન

Compute

<u>F</u>

End User Computing

[D¦]

Media Services

Robotics

 \square

AR & VR

Migration & Transfer

Satellite

AWS Cost Management

র্থাচ

Internet of Things

Ľ.

Mobile

Security, Identity &

Compliance

Customer Engagement

Machine Learning

Networking & Content Delivery

Storage

Database

0:0:0

Blockchain

CLOUD COMPUTE EC2, EKS, ECS, FARGATE

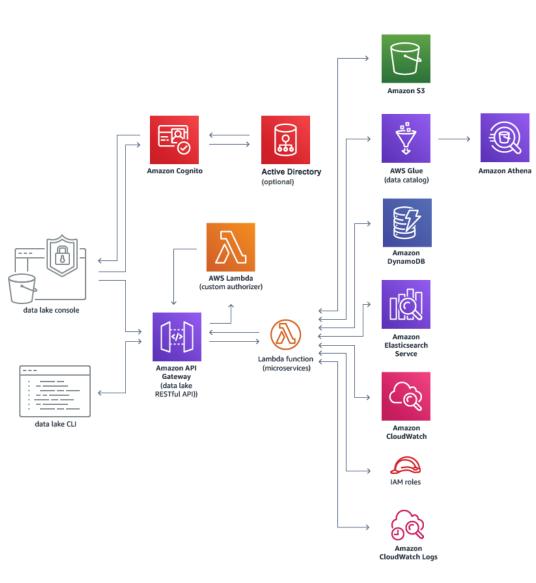
17

- EC2 instances don't show the full potential of cloud services !
- Types of the instances adjusted to the needs
 Dedicated (bare metal), general purpose, memory, compute, storage optimized, accelerated computing (GPU)
- EC2 purchasing options
 On-demand, reserved (marketplace), spot instances, dedicated hosts (single tenant hardware)
- EC2 Autoscaling groups
- Compute engine for containers choice between serverless (Fargate) and managed service (ECS/EKS based on EC2 instances)
- Farget Spot instances (up to 70% discount)
 Ideal for fault-tolerant use cases such as big data, CI/CD, and batch processing

EC2

ECS

EKS


Fargate

CLOUD SERVERLESS COMPUTE AWS LAMBDA

- Serverless event-driven data processing You can run code without provisioning or managing servers. You pay only for the compute time you consume.
- Great integration with other services
 Could be triggered by S3 events, DynamoDB,
 Kinesis, SQS, Step functions and many others
- Great for small, short tasks
 Limits : max 10GB memory, 900s, 1000 concurent executions (soft limit), layers 5/250MB
- Use cases

Continuous ETL's, IoT backends, Web applications, API endpoints, support for your own docker images (up to 10GB in size)

CLOUD ANALYTICS **EMR, GLUE**

Managed cluster platform that simplifies running big data frameworks

▶ The modern way how to use **Hadoop**

Launch your clusters in minutes. Don't worry about node provisioning, infrastructure setup, Hadoop configuration, versions compatibility Scale your cluster if needs be

- A broad range of Big Data technologies in one place
 Spark, Flink, Presto, Pig, Scoop, Hadoop, HBase, Hue, JupyterHub,
 Zeppelin, Mahout, Mxnet, TensorFlow and many others
- Glue is a fully managed ETL service
 Supports Python/Scala code to run ETL tasks (Spark or Python jobs)
- Glue **Data Catalogue** as a metadata store (for jobs/Athena)
- ▶ Glue **DataBrew** (lineage)

EMR

Glue

DATABASES **RDS, REDSHIFT, DYNAMODB, DOCUMENTDB**...

- RDS managed relational database service
 Supports the most popular database engines (MySQL, Postgre, Oracle, SQL Server, MariaDB, AWS Aurora), scalable, highly available (multi AZ deployments, automatic backups snapshots)
- Redshift a modern data warehouse
 based on Postgre, petabyte-scale data warehousing & data lake analytics
- DynamoDB, NoSQL database

key-value database that delivers single-digit millisecond performance at any scale (pricing pay on demand / provisioned cap)

DocumentDB (Mongo 3.6), Cassandra, QLDB, Neptune and others Specialized database engines for different types of use cases: documents, timeseries, blockchain (banking transactions), graphs.

Amazon Redshift

OBJECT STORE SIMPLE STORAGE SERVICE

- The optimal storage solution is based on the kind of access method
- General characteristic
 Durability 99.999999999%, low latency, high throughput performance
- Strong consistency model (new 2020 Nov) Replaced old Read after write consistency (for new objects) and seventual consistency for DELETES and PUTS of the existing objects
- Storage tiers
 Standard, IA, One-zone, Glacier, Deep Glacier, Intelligent tiering
- Versioning
- Security (KMS data encryption in transit & at rest),

DATA SECURITY SERVICES

- Identity and Access Management (IAM)
 It's the most important security service for managing access to AWS services and resources
- Key Managements Service (KMS)
 Encryption at rest and in transit at every single step of data journey
- Amazon Macie

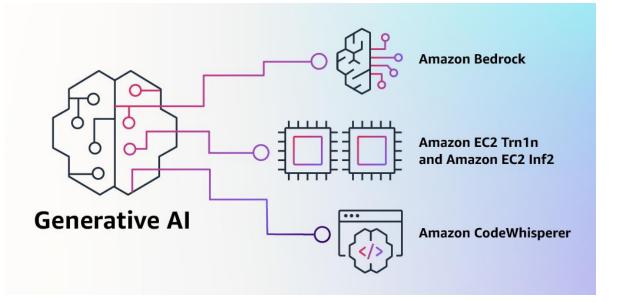
Data protection & classification. Macie is a security service that uses machine learning to automatically discover, classify, and protect sensitive data (only two US regions at the moment)

- Virtual Private Cloud (VPC)

 a logically isolated section of the AWS Cloud where you can launch AWS resources in a
 virtual network that you define
- Be prepared for security incidents!

AWS Identity and Access Management (IAM)

AWS Key Management Service



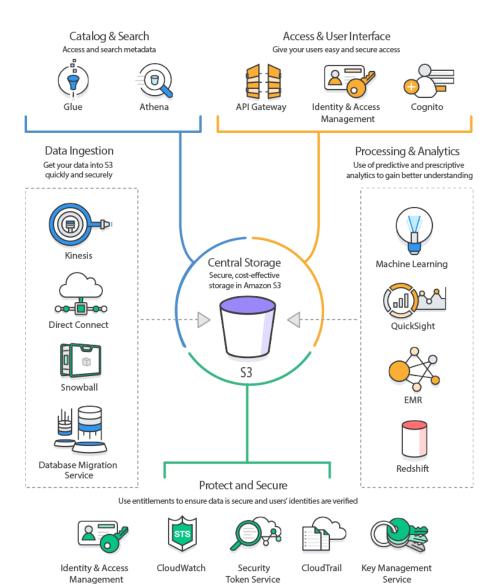
Al, GENAl and the other **ML USE CASES**

Sagemaker (ML/AI)

Fully integrated development environment (IDE) for machine learning. Train, tune your ML models, hyperparametrization

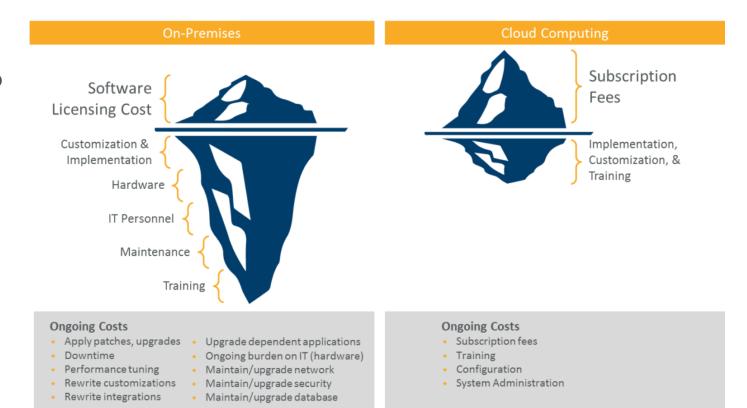
- AWS Bedrock (GenAl models)
 The easiest way to build and scale generative AI applications with foundation models
- Rekognition

DATA IN THE CLOUDS **BIG DATA USE CASES**


Data Lake

Infinite (almost) storage, linear scalability, constant delays, HA, good integration with other services

IoT data processing


Can support billions of devices and trillions of messages, and can process and route those messages to endpoints and to other devices reliably and securely

▶ AI/ML

MIGRATION TO THE CLOUD COSTS

- Migration to clouds it's not about moving your infrastructure to the cloud provider 1:1
- Cloud services are new paradigms, new products, new types of services, support, constant development, patching, versioning
- Initial costs are usually higher when you compare them to the classical on-premise data centers

25

Questions?

1.00

LINKS AND RESOURCES

- GFT project example MOX Bank <u>https://mox.com/features/</u>
- AWS Outpost <u>https://aws.amazon.com/outposts/</u>
- ▶ AWS compliance programs <u>https://aws.amazon.com/compliance/programs/</u>
- Shared responsibility model <u>https://aws.amazon.com/compliance/shared-responsibility-model/</u>
- Netflix Simian Army <u>https://netflixtechblog.com/the-netflix-simian-army-16e57fbab116</u>
- Design principles <u>https://aws.amazon.com/architecture/</u>
- Azure design principles <u>https://docs.microsoft.com/en-us/azure/architecture/guide/design-principles/</u>