Solution
Solution
This commit is contained in:
parent
40c455a11d
commit
737a043642
57
03/solutions #3/exercise-03-plik.tex
Normal file
57
03/solutions #3/exercise-03-plik.tex
Normal file
@ -0,0 +1,57 @@
|
||||
\documentclass{article}
|
||||
\usepackage[utf8]{inputenc}
|
||||
\usepackage{polski}
|
||||
\usepackage{amsmath}
|
||||
\begin{document}
|
||||
|
||||
|
||||
|
||||
\begin{enumerate}
|
||||
\item Properly typeset the following command and properly refere to it in the text
|
||||
\[
|
||||
(\sum_{i_1,\dots,i_m} a_{i_1,\dots,i_m} ^{2m}{m+1} ^{\frac{m+1}{2m}} \leq C \sup\{ |\sum_{i_1,\dots, i_m} a_{i_1,\dots,i_m} x^1_{i_1}\dots x^m_{i_m}|: \|(x_i^k)_{i=1}^n \|_\infty\leq1,\ 1\leq k\leq m\},
|
||||
\]
|
||||
|
||||
\item Properly typset the expression: $Re z$.
|
||||
|
||||
\item Properly typeset indexes in the following sum:
|
||||
\[
|
||||
f(x)=\sum_{n=0, k=2}^\infty a_n^k
|
||||
\]
|
||||
|
||||
\item Properly typeset the following theorem
|
||||
|
||||
\noindent\textbf{Theorem 1} (Cauchy--Hadamard) \emph{The radius of convergence $R$ of the power series
|
||||
\[
|
||||
\sum_{n=0}^\infty a_n(z-z_0)^n\ \ \ \ \ |z-z_0|<R
|
||||
\]
|
||||
can by calculated via the following formula
|
||||
\[
|
||||
\frac{1}{R}=limsup_{n\to\infty} \sqrt[n]{|a_n|}.
|
||||
\]}
|
||||
|
||||
\noindent\textbf{Definition 2.} (Prime numbers) A number is called prime, if it is not compound.
|
||||
|
||||
\item Typeset the follwing matrix (display-style):
|
||||
\[
|
||||
\left\{\begin{array}{cc}
|
||||
a_{11} & a_{12}\\
|
||||
a_{21} & a_{22}
|
||||
\end{array}
|
||||
\right\}
|
||||
\]
|
||||
and in the text \[\left\{\begin{array}{cc}
|
||||
a_{11} & a_{12}\\
|
||||
a_{21} & a_{22}
|
||||
\end{array}
|
||||
\right\}\]
|
||||
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do
|
||||
eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut
|
||||
enim ad minim veniam, quis nostrud exercitation ullamco laboris
|
||||
nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in
|
||||
reprehenderit in voluptate velit esse cillum dolore eu fugiat
|
||||
nulla pariatur. Excepteur sint occaecat cupidatat non proident,
|
||||
sunt in culpa qui officia deserunt mollit anim id est laborum.
|
||||
|
||||
\end{enumerate}
|
||||
\end{document}
|
Loading…
Reference in New Issue
Block a user