update tea
This commit is contained in:
parent
b540948e66
commit
c43a36b693
@ -17,14 +17,15 @@
|
|||||||
\item Properly typeset the following command and properly refere to it in the text
|
\item Properly typeset the following command and properly refere to it in the text
|
||||||
|
|
||||||
\begin{align}
|
\begin{align}
|
||||||
(\sum_{i_1,\dots,i_m} a_{i_1,\dots,i_m} ^{2m}{m+1} ^{\frac{m+1}{2m}} \leq C\le \\
|
(\sum_{i_1,\dots,i_m} a_{i_1,\dots,i_m} ^{2m}(m+1) ^{\frac{m+1}{2m}}) \leq C\le \\
|
||||||
\sup\{ |\sum_{i_1,\dots, i_m} a_{i_1,\dots,i_m} x^1_{i_1}\dots x^m_{i_m}|: \|(x_i^k)_{i=1}^n \|_\infty\leq1,\ 1\leq k\leq m\},
|
\sup \left\{ \left\|\sum_{i_1,\dots, i_m} a_{i_1,\dots,i_m} x^1_{i_1}\dots x^m_{i_m}\right\|: \|(x_i^k)_{i=1}^n \|_\infty\leq1,\ 1\leq k\leq m\right\},
|
||||||
\end{align}
|
\end{align}
|
||||||
|
|
||||||
%----------------------------------------------------------------------------------------------
|
%----------------------------------------------------------------------------------------------
|
||||||
% ¿Es correcto?
|
% ¿Es correcto?
|
||||||
% ¿Is good?
|
% ¿Is good?
|
||||||
\item Properly typset the expression: \[R \in z\]
|
\item Properly typset the expression: \[
|
||||||
|
\operatorname{Re} z\]
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
@ -45,20 +46,20 @@ k=2\end{subarray}}^\infty a_n^k
|
|||||||
%----------------------------------------------------------------------------------------------
|
%----------------------------------------------------------------------------------------------
|
||||||
% ¿Es correcto?
|
% ¿Es correcto?
|
||||||
% ¿Is good?
|
% ¿Is good?
|
||||||
\begin{theorem}
|
\begin{theorem}[Cauchy--Hadamard] The radius of convergence $R$ of the power series
|
||||||
(Cauchy--Hadamard) \emph{The radius of convergence $R$ of the power series
|
|
||||||
\[
|
\[
|
||||||
\sum_{n=0}^\infty a_n(z-z_0)^n\ \ \ \ \ |z-z_0|<R
|
\sum_{n=0}^\infty a_n(z-z_0)^n\quad |z-z_0|<R
|
||||||
\]
|
\]
|
||||||
can by calculated via the following formula
|
can by calculated via the following formula
|
||||||
\[
|
\[
|
||||||
\frac{1}{R}=limsup_{n\to\infty} \sqrt[n]{|a_n|}.
|
\frac{1}{R}=\limsup_{n\to\infty} \sqrt[n]{|a_n|}.
|
||||||
\]}
|
\]
|
||||||
\begin{defn}
|
|
||||||
(Prime numbers) A number is called prime, if it is not compound.
|
|
||||||
\end{defn}
|
|
||||||
\end{theorem}
|
\end{theorem}
|
||||||
|
|
||||||
|
\begin{defn}[Prime numbers]
|
||||||
|
A number is called prime, if it is not compound.
|
||||||
|
\end{defn}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
%----------------------------------------------------------------------------------------------
|
%----------------------------------------------------------------------------------------------
|
||||||
@ -67,15 +68,14 @@ can by calculated via the following formula
|
|||||||
|
|
||||||
\item Typeset the follwing matrix (display-style):
|
\item Typeset the follwing matrix (display-style):
|
||||||
\[
|
\[
|
||||||
\left\{\begin{array}{cc}
|
\begin{pmatrix}
|
||||||
a_{11} & a_{12}\\
|
a_{11} & a_{12}\\
|
||||||
a_{21} & a_{22}
|
a_{21} & a_{22}
|
||||||
\end{array}
|
\end{pmatrix}
|
||||||
\right\}
|
\]
|
||||||
\]
|
|
||||||
and in the text
|
and in the text
|
||||||
$
|
$
|
||||||
\left(\begin{smallmatrix}{cc}
|
\left(\begin{smallmatrix}
|
||||||
a_{11} & a_{12}\\
|
a_{11} & a_{12}\\
|
||||||
a_{21} & a_{22}
|
a_{21} & a_{22}
|
||||||
\end{smallmatrix}\right)
|
\end{smallmatrix}\right)
|
||||||
@ -89,4 +89,3 @@ $ Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do
|
|||||||
|
|
||||||
\end{enumerate}
|
\end{enumerate}
|
||||||
\end{document}
|
\end{document}
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user