Proof of the Pythagoras theorem.

Enrique Andrade Gonzalez
e.andrade@udc.es

Computer tools in mathematican's work

1 Introduction

2 Proof of the Pythagorean theorem

3 Demonstration

Introduction objective

In this presentation we try to show a proof of the Pythagorean theorem. There are many demonstrations, but this one is one of the simplest.

Concept

Suppose we have a square of side \mathbf{r} and on each of its sides we place a right triangle of legs x and y. As in this situation the hypotenuse of each of the triangles is r we want to prove that:

Formula

$$
x^{2}+y^{2}=r^{2}
$$

Proof of the Pythagorean theorem

The figure

The figure that is obtained is the following:

Conclusions

- Each side of the green square is the sum of x and y. Therefore, the area of the square is:

$$
(x+y)^{2}
$$

- For the same reason, the area of the red square is:

$$
r^{2}
$$

- The area of each of the green triangles (y, x and r) is:

$$
\frac{x+y}{2}
$$

Demonstration

- The green square is formed by the red square and the four green triangles, so the sum of all the areas is:

$$
(x+y)^{2}=r^{2}+4\left(\frac{x+y}{2}\right)
$$

- We develop the left part of equality:

$$
(x+y)^{2}=x^{2}+2 x y+y^{2}
$$

- We substitute in the first formula:

$$
x^{2}+2 x y+y^{2}=r^{2}+2 x y
$$

- $2 x y$ is eliminated on both sides of the equality, and we obtain the desired result:

$$
x^{2}+y^{2}=r^{2}
$$

