%%Tema para beamer "Imunam", versión 1.0 \documentclass{beamer} \usepackage[utf8]{inputenc} \usepackage[T1]{fontenc} \usepackage[spanish]{babel} \graphicspath{ {images/} } \usepackage{mathtools} \usepackage{tikz} %% Logos de restaurantes: \newcommand{\logomanekin}{images/logomanekin} %%Se define el "environment" teorema %% The "environment" theorem is defined \newtheorem{Formula}{Formula} %%Tema de beamer "Imunam" %% Theme of beamer "Imunam" \usetheme[cuernavaca]{Imunam} %\usetheme{Imunam} %%Si se omite "[cuernavaca]" en éste comando, el logotipo se imprime sin la %%leyenda "Unidad Cuernavaca" en la parte inferior. %% If "[cuernavaca]" is omitted in this command, the logo is printed without the %% legend "Cuernavaca Unit" in the lower part. \title{Proof of the Pythagoras theorem.} \author{Enrique Andrade Gonzalez %Nombre del autor % Author's name \texttt{e.andrade@udc.es}} %email \date{Computer tools in mathematican's work} %subject %\institute{Instituto de Matemáticas, unidad Cuernavaca} %%Instituto del ponenete, dado que el texto "Intituto de matemáticas" aparece %%en el logo, parece redundante incluirlo además con éste comando. \begin{document} \begin{frame} \titlepage %Necesario para generar la portada \end{frame} %%La siguiente diapositiva es opcional, si se quiere la tabla de contenidos %%Se sebe compilar dos veces el documento para que funcione %-------------------------------------------------------------------------- \begin{frame} \tableofcontents %Imprime la tabla de contenido \end{frame} %-------------------------------------------------------------------------- \section{Introduction} %%Título de la sección (Opcional) \begin{frame} \frametitle{Introduction} \framesubtitle{objective} %%Subtítulo de la diapositiva (opcional) In this presentation we try to show a proof of the Pythagorean theorem. There are many demonstrations, but this one is one of the simplest. \end{frame} \section{Proof of the Pythagorean theorem} %%Otra sección \begin{frame} \frametitle{Concept} Suppose we have a square of side \textbf{r} and on each of its sides we place a right triangle of legs \textbf{x} and \textbf{y}. As in this situation the hypotenuse of each of the triangles is \textbf{r} we want to prove that: \\\ \begin{Formula} %%Uso del "environment" definido al inicio del documento. \[x^{2}+y^{2}=r^{2}\] \end{Formula} \end{frame} \begin{frame} \frametitle{The figure} The figure that is obtained is the following: \begin{center} \begin{tikzpicture}[scale=0.8] %\begin{tikzpicture} %\draw (0,0) circle (1cm); \draw [fill=green] (-2,-2) rectangle (2,2); \draw [fill=red] (-2,0) -- (0,2) -- (2,0) -- (0,-2) -- cycle; % r \draw [dotted] (0.75,1) node[black] {r} (0.75,-1) node[black] {r} (-0.75,1) node[black] {r} (-0.75,-1) node[black] {r}; % x y \draw [dotted] (1,-2.2) node[black] {y} (1,2.2) node[black] {x} (-1,2.2) node[black] {y} (-1,-2.2) node[black] {x} (2.2,1) node[black] {y} (2.2,-1) node[black] {x} (-2.2,1) node[black] {x} (-2.2,-1) node[black] {y}; \end{tikzpicture} \[x^{2}+y^{2}=r^{2}\] \end{center} \end{frame} %\section{Restaurants} %%Otra sección \begin{frame} \frametitle{Conclusions} \begin{itemize} \item Each side of the \textbf{green square} is the sum of \textbf{x} and \textbf{y}. Therefore, the area of the square is: \[(x+y)^{2}\] \item For the same reason, the area of the \textbf{red square} is: \[r^{2}\] \item The area of each of the \textbf{green triangles} (y, x and r) is:\[\frac{x+y}{2}\] \end{itemize} \end{frame} \section{Demonstration} %%Otra sección \begin{frame} \frametitle{Demonstration} \begin{itemize} \item The green square is formed by the red square and the four green triangles, so the sum of all the areas is: \[(x+y)^{2}=r^{2} + 4 (\frac{x+y}{2})\] \item We develop the left part of equality: \[(x+y)^{2}=x^{2} + 2xy + y^{2}\] \item We substitute in the first formula: \[x^{2} + 2xy + y^{2} = r^{2} + 2xy\] \item \textbf{2xy} is eliminated on both sides of the equality, and we obtain the desired result: \[x^{2} + y^{2} = r^{2}\] \end{itemize} \end{frame} \end{document}