"""`functools.lru_cache` compatible memoizing function decorators.""" from __future__ import absolute_import import collections import functools import random import time try: from threading import RLock except ImportError: # pragma: no cover from dummy_threading import RLock from . import keys from .lfu import LFUCache from .lru import LRUCache from .rr import RRCache from .ttl import TTLCache __all__ = ('lfu_cache', 'lru_cache', 'rr_cache', 'ttl_cache') _CacheInfo = collections.namedtuple('CacheInfo', [ 'hits', 'misses', 'maxsize', 'currsize' ]) class _UnboundCache(dict): maxsize = None @property def currsize(self): return len(self) class _UnboundTTLCache(TTLCache): def __init__(self, ttl, timer): TTLCache.__init__(self, float('inf'), ttl, timer) @property def maxsize(self): return None def _cache(cache, typed=False): def decorator(func): key = keys.typedkey if typed else keys.hashkey lock = RLock() stats = [0, 0] def cache_info(): with lock: hits, misses = stats maxsize = cache.maxsize currsize = cache.currsize return _CacheInfo(hits, misses, maxsize, currsize) def cache_clear(): with lock: try: cache.clear() finally: stats[:] = [0, 0] def wrapper(*args, **kwargs): k = key(*args, **kwargs) with lock: try: v = cache[k] stats[0] += 1 return v except KeyError: stats[1] += 1 v = func(*args, **kwargs) try: with lock: cache[k] = v except ValueError: pass # value too large return v functools.update_wrapper(wrapper, func) if not hasattr(wrapper, '__wrapped__'): wrapper.__wrapped__ = func # Python 2.7 wrapper.cache_info = cache_info wrapper.cache_clear = cache_clear return wrapper return decorator def lfu_cache(maxsize=128, typed=False): """Decorator to wrap a function with a memoizing callable that saves up to `maxsize` results based on a Least Frequently Used (LFU) algorithm. """ if maxsize is None: return _cache(_UnboundCache(), typed) else: return _cache(LFUCache(maxsize), typed) def lru_cache(maxsize=128, typed=False): """Decorator to wrap a function with a memoizing callable that saves up to `maxsize` results based on a Least Recently Used (LRU) algorithm. """ if maxsize is None: return _cache(_UnboundCache(), typed) else: return _cache(LRUCache(maxsize), typed) def rr_cache(maxsize=128, choice=random.choice, typed=False): """Decorator to wrap a function with a memoizing callable that saves up to `maxsize` results based on a Random Replacement (RR) algorithm. """ if maxsize is None: return _cache(_UnboundCache(), typed) else: return _cache(RRCache(maxsize, choice), typed) def ttl_cache(maxsize=128, ttl=600, timer=time.time, typed=False): """Decorator to wrap a function with a memoizing callable that saves up to `maxsize` results based on a Least Recently Used (LRU) algorithm with a per-item time-to-live (TTL) value. """ if maxsize is None: return _cache(_UnboundTTLCache(ttl, timer), typed) else: return _cache(TTLCache(maxsize, ttl, timer), typed)