GenericAI_Sweeper/astar.py
eugenep 520efb84ea Try to implement to A*
Co-authored-by: Sebastian Piotrowski <sebpio@st.amu.edu.pl>
Co-authored-by: Marcin Matoga <marmat35@st.amu.edu.pl>
Co-authored-by: Ladislaus3III <Ladislaus3III@users.noreply.github.com>
2021-04-24 01:44:57 +02:00

336 lines
11 KiB
Python

import heapq
from os import path
from settings import *
class Problem:
def __init__(self, initial, goal):
self.initial = initial
self.goal = goal
def actions(self, state):
moves = []
if self.turn_left(state):
moves.append('Left')
if self.turn_right(state):
moves.append('Right')
if self.move_forward(state):
moves.append('Forward')
# print(moves)
return moves
def turn_left(self, state):
return True
def turn_right(self, state):
return True
def move_forward(self, state):
a_row = 0
a_column = 0
for row in range(MAP_SIZE):
for column, pos in enumerate(state[row]):
if pos == ">":
a_row = row
a_column = column
if a_column == MAP_SIZE-1:
return False
elif state[a_row][a_column+1] == '.':
return True
elif state[a_row][a_column+1] == 'p':
return True
return False
if pos == "<":
a_row = row
a_column = column
if a_column == 0:
return False
elif state[a_row][a_column-1] == '.':
return True
return False
if pos == "v":
a_row = row
a_column = column
if a_row == MAP_SIZE-1:
return False
elif state[a_row+1][a_column] == '.':
return True
return False
if pos == "^":
a_row = row
a_column = column
if row == 0:
return False
elif state[a_row-1][a_column] == '.':
return True
return False
def turn_me_or_move(self, state, do_it):
temp_map = [list(item) for item in state]
# print(temp_map)
#a_row = 0
#a_column = 0
for row in range(MAP_SIZE):
for column, pos in enumerate(temp_map[row]):
if pos == ">":
a_row = row
a_column = column
#print("a_row:" + str(a_row))
#print("a_column" + str(a_column))
if(do_it == 'Left'):
temp_map[a_row][a_column] = "^"
if(do_it == 'Right'):
temp_map[a_row][a_column] = 'v'
if(do_it == 'Forward'):
temp_map[a_row][a_column] = '.'
temp_map[a_row][a_column+1] = '>'
return temp_map
if pos == "<":
a_row = row
a_column = column
if(do_it == 'Left'):
temp_map[a_row][a_column] = 'v'
if(do_it == 'Right'):
temp_map[a_row][a_column] = '^'
if(do_it == 'Forward'):
temp_map[a_row][a_column] = '.'
temp_map[a_row][a_column-1] = '<'
return temp_map
if pos == "v":
a_row = row
a_column = column
if(do_it == 'Left'):
temp_map[a_row][a_column] = '>'
if(do_it == 'Right'):
temp_map[a_row][a_column] = '<'
if(do_it == 'Forward'):
temp_map[a_row][a_column] = '.'
temp_map[a_row+1][a_column] = 'v'
return temp_map
if pos == "^":
a_row = row
a_column = column
if(do_it == 'Left'):
temp_map[a_row][a_column] = '<'
if(do_it == 'Right'):
temp_map[a_row][a_column] = '>'
if(do_it == 'Forward'):
temp_map[a_row][a_column] = '.'
temp_map[a_row-1][a_column] = '^'
return temp_map
return temp_map
def result(self, state, action):
new_state = []
if action == 'Left':
new_state = self.turn_me_or_move(state, 'Left')
elif action == 'Right':
new_state = self.turn_me_or_move(state, 'Right')
elif action == 'Forward':
new_state = self.turn_me_or_move(state, 'Forward')
super_new_state = tuple(map(tuple, new_state))
return super_new_state
def goal_test(self, state):
if self.goal == state:
return True
return False
def path_cost(self, c, state1, action, state2, in_puddle1, in_puddle2):
return c+1
# funkcja heurystyki
def h(self, node):
node_row = node.row
node_column = node.column
class Node:
def __init__(self, state, parent=None, action=None, path_cost=0):
"""Create a search tree Node, derived from a parent by an action."""
self.state = state
self.parent = parent
self.action = action
self.path_cost = path_cost
self.in_puddle = False
#self.row = row
#self.column = column
def __repr__(self):
return "<Node {}>".format(self.state)
def expand(self, problem):
"""List the nodes reachable in one step from this node."""
return [self.child_node(problem, action)
for action in problem.actions(self.state)]
def child_node(self, problem, action):
next_state = problem.result(self.state, action)
next_node = Node(next_state, self, action, problem.path_cost(self.path_cost, self.state, action, next_state, in_puddle))
return next_node
def where_am_i(self):
temp_map = [list(item) for item in state]
for row in range(MAP_SIZE):
for column, pos in enumerate(temp_map[row]):
if pos == ">" or pos == "<" or pos == "^" or pos == "v":
self.row = row
self.column = column
def __eq__(self, other):
return isinstance(other, Node) and self.state == other.state
def __hash__(self):
# We use the hash value of the state
# stored in the node instead of the node
# object itself to quickly search a node
# with the same state in a Hash Table
return hash(self.state)
class PriorityQueue:
"""A Queue in which the minimum (or maximum) element (as determined by f and
order) is returned first.
If order is 'min', the item with minimum f(x) is
returned first; if order is 'max', then it is the item with maximum f(x).
Also supports dict-like lookup."""
def __init__(self, order='min', f=lambda x: x):
self.heap = []
if order == 'min':
self.f = f
elif order == 'max': # now item with max f(x)
self.f = lambda x: -f(x) # will be popped first
else:
raise ValueError("Order must be either 'min' or 'max'.")
def append(self, item):
"""Insert item at its correct position."""
heapq.heappush(self.heap, (self.f(item), item))
def extend(self, items):
"""Insert each item in items at its correct position."""
for item in items:
self.append(item)
def pop(self):
"""Pop and return the item (with min or max f(x) value)
depending on the order."""
if self.heap:
return heapq.heappop(self.heap)[1]
else:
raise Exception('Trying to pop from empty PriorityQueue.')
def __len__(self):
"""Return current capacity of PriorityQueue."""
return len(self.heap)
def __contains__(self, key):
"""Return True if the key is in PriorityQueue."""
return any([item == key for _, item in self.heap])
def __getitem__(self, key):
"""Returns the first value associated with key in PriorityQueue.
Raises KeyError if key is not present."""
for value, item in self.heap:
if item == key:
return value
raise KeyError(str(key) + " is not in the priority queue")
def __delitem__(self, key):
"""Delete the first occurrence of key."""
try:
del self.heap[[item == key for _, item in self.heap].index(True)]
except ValueError:
raise KeyError(str(key) + " is not in the priority queue")
heapq.heapify(self.heap)
class Astar:
@staticmethod
def best_first_graph_search(problem, f, display=False):
"""Search the nodes with the lowest f scores first.
You specify the function f(node) that you want to minimize; for example,
if f is a heuristic estimate to the goal, then we have greedy best
first search; if f is node.depth then we have breadth-first search.
There is a subtlety: the line "f = memoize(f, 'f')" means that the f
values will be cached on the nodes as they are computed. So after doing
a best first search you can examine the f values of the path returned."""
#f = memoize(f, 'f')
node = Node(problem.initial)
# PriorityQueue ma przechowywac g+h
frontier = PriorityQueue('min', f)
frontier.append(node)
explored = set()
while frontier:
node = frontier.pop()
if problem.goal_test(node.state):
if display:
print(len(explored), "paths have been expanded and",
len(frontier), "paths remain in the frontier")
return node
explored.add(node.state)
for child in node.expand(problem):
if child.state not in explored and child not in frontier:
frontier.append(child)
elif child in frontier:
if f(child) < frontier[child]:
del frontier[child]
frontier.append(child)
return None
@staticmethod
def loadMap(map_name=''):
maze = []
map_folder = path.dirname(__file__)
with open(path.join(map_folder, map_name), 'rt') as f:
for line in f:
maze.append(line.rstrip('\n'))
#print(maze)
return maze
@staticmethod
def run():
initial_map = tuple(map(tuple, Astar.loadMap('map.txt')))
goal_map = tuple(map(tuple, Astar.loadMap('goal_map.txt')))
problem = Problem(initial_map, goal_map)
#BFS.print_node_state(initial_map)
#BFS.print_node_state(goal_map)
result = Astar.breadth_first_graph_search(problem)
print(result)
return result
#print(BFS.print_node_state(result))