GenericAI_Sweeper/astar2.py
eugenep 9429d93da9 genetic
Co-authored-by: Sebastian Piotrowski <sebpio@st.amu.edu.pl>
Co-authored-by: Marcin Matoga <marmat35@st.amu.edu.pl>
Co-authored-by: Ladislaus3III <Ladislaus3III@users.noreply.github.com>
2021-06-19 23:55:47 +02:00

600 lines
18 KiB
Python

from os import path
import heapq
import copy
from settings import *
from sprites import Direction
class PlanRoute():
""" The problem of moving the Agent from one place to other """
def __init__(self, initial, goal, allowed, puddles=None, dimrow=None):
""" Define goal state and initialize a problem """
self.initial = initial
self.goal = goal
self.dimrow = dimrow
self.goal = goal
self.allowed = allowed
self.puddles = puddles
def actions(self, state):
possible_actions = ['Forward', 'Left', 'Right']
x, y = state.get_location()
orientation = state.get_orientation()
# Prevent Bumps
if y == 0 and orientation == 'LEFT':
if 'Forward' in possible_actions:
possible_actions.remove('Forward')
if x == 0 and orientation == 'DOWN':
if 'Forward' in possible_actions:
possible_actions.remove('Forward')
if y == self.dimrow and orientation == 'RIGHT':
if 'Forward' in possible_actions:
possible_actions.remove('Forward')
if x == self.dimrow and orientation == 'UP':
if 'Forward' in possible_actions:
possible_actions.remove('Forward')
return possible_actions
def result(self, state, action):
""" Given state and action, return a new state that is the result of the action.
Action is assumed to be a valid action in the state """
x, y = state.get_location()
proposed_loc = list()
#proposed_loc = []
# Move Forward
if action == 'Forward':
if state.get_orientation() == 'UP':
proposed_loc = [x + 1, y]
elif state.get_orientation() == 'DOWN':
proposed_loc = [x - 1, y]
elif state.get_orientation() == 'LEFT':
proposed_loc = [x, y - 1]
elif state.get_orientation() == 'RIGHT':
proposed_loc = [x, y + 1]
else:
raise Exception('InvalidOrientation')
# Rotate counter-clockwise
elif action == 'Right':
if state.get_orientation() == 'UP':
state.set_orientation('LEFT')
elif state.get_orientation() == 'DOWN':
state.set_orientation('RIGHT')
elif state.get_orientation() == 'LEFT':
state.set_orientation('DOWN')
elif state.get_orientation() == 'RIGHT':
state.set_orientation('UP')
else:
raise Exception('InvalidOrientation')
# Rotate clockwise
elif action == 'Left':
if state.get_orientation() == 'UP':
state.set_orientation('RIGHT')
elif state.get_orientation() == 'DOWN':
state.set_orientation('LEFT')
elif state.get_orientation() == 'LEFT':
state.set_orientation('UP')
elif state.get_orientation() == 'RIGHT':
state.set_orientation('DOWN')
else:
raise Exception('InvalidOrientation')
if(proposed_loc):
tupled_proposed_loc = tuple([proposed_loc[0], proposed_loc[1]])
if tupled_proposed_loc in self.allowed:
state.set_location(proposed_loc[0], proposed_loc[1])
return state
def goal_test(self, state):
""" Given a state, return True if state is a goal state or False, otherwise """
return state.get_location() == self.goal.get_location()
def path_cost(self, c, state1, action, state2):
if action == "Forward" or action == "Left" or action == "Right":
x1, y1 = state1.get_location()
location1 = tuple([x1, y1])
x2, y2 = state2.get_location()
location2 = tuple([x1, y1])
if location2 in self.puddles:
return c + 2
if location1 == location2 and state1 in self.puddles:
return c + 2
return c+1
def h(self, node):
""" Return the heuristic value for a given state."""
# Manhattan Heuristic Function
x1, y1 = node.state.get_location()
x2, y2 = self.goal.get_location()
return abs(x2 - x1) + abs(y2 - y1)
class Node:
def __init__(self, state, parent=None, action=None, path_cost=0):
"""Create a search tree Node, derived from a parent by an action."""
self.state = state #AgentPosition?
self.parent = parent
self.action = action
self.path_cost = path_cost
def __repr__(self):
return "<Node {}>".format(self.state)
def solution(self):
"""Return the sequence of actions to go from the root to this node."""
return [node.action for node in self.path()[1:]]
def expand(self, problem):
"""List the nodes reachable in one step from this node."""
test_node_list = [self.child_node(problem, action)
for action in problem.actions(self.state)]
return [self.child_node(problem, action)
for action in problem.actions(self.state)]
def child_node(self, problem, action):
next_state = problem.result(copy.deepcopy(self.state), action)
next_node = Node(next_state, self, action, problem.path_cost(
self.path_cost, self.state, action, next_state))
#print(problem.path_cost(
# self.path_cost, self.state, action, next_state))
return next_node
def __eq__(self, other):
return isinstance(other, Node) and self.state == other.state
def __lt__(self, other):
return isinstance(other, Node) and self.state == other.state
def __hash__(self):
# We use the hash value of the state
# stored in the node instead of the node
# object itself to quickly search a node
# with the same state in a Hash Table
return hash(self.state)
def path(self):
"""Return a list of nodes forming the path from the root to this node."""
node, path_back = self, []
while node:
path_back.append(node)
node = node.parent
return list(reversed(path_back))
class AgentPosition:
def __init__(self, x, y, orientation):
self.X = x
self.Y = y
self.orientation = orientation
def get_location(self):
return self.X, self.Y
def set_location(self, x, y):
self.X = x
self.Y = y
def get_orientation(self):
return self.orientation
def set_orientation(self, orientation):
self.orientation = orientation
def __eq__(self, other):
if (other.get_location() == self.get_location() and
other.get_orientation() == self.get_orientation()):
return True
else:
return False
def __hash__(self):
return hash((self.X, self.Y, self.orientation))
class SweeperAgent:
def __init__(self, dimensions=None):
self.dimrow = dimensions
self.current_position = None
self.orientation = ""
self.initial = set()
self.goal = set()
self.allowed_points = set()
self.puddle_points = set()
def where_am_i(self):
temp_map = [list(item) for item in SweeperAgent.loadMap("map.txt")]
for row in range(MAP_SIZE):
for column, pos in enumerate(temp_map[row]):
if pos == ">" or pos == "<" or pos == "^" or pos == "v":
self.row = row
self.column = column
return row, column
# add orientation
def where_to_go(self):
temp_map = [list(item) for item in SweeperAgent.loadMap("goal_map.txt")]
for row in range(MAP_SIZE):
for column, pos in enumerate(temp_map[row]):
if pos == ">" or pos == "<" or pos == "^" or pos == "v":
self.row = row
self.column = column
return row, column
@staticmethod
def set_allowed(allowed_points):
temp_map = [list(item) for item in SweeperAgent.loadMap('map.txt')]
a_row = 0
a_column = 0
for row in range(MAP_SIZE):
for column, pos in enumerate(temp_map[row]):
if pos == "." or pos == 'p' or pos == '>' or pos == '<' or pos == 'v' or pos == '^':
a_row = row
a_column = column
location = tuple([a_row, a_column])
allowed_points.add(location)
@staticmethod
def set_allowed_for_genetic(allowed_points, map_location):
temp_map = [list(item) for item in SweeperAgent.loadMap(map_location)]
a_row = 0
a_column = 0
for row in range(MAP_SIZE):
for column, pos in enumerate(temp_map[row]):
if pos == "." or pos == 'x':
a_row = row
a_column = column
location = tuple([a_row, a_column])
allowed_points.add(location)
@staticmethod
def set_puddles(puddle_points):
temp_map = [list(item) for item in SweeperAgent.loadMap('map.txt')]
a_row = 0
a_column = 0
for row in range(MAP_SIZE):
for column, pos in enumerate(temp_map[row]):
if pos == "p" :
a_row = row
a_column = column
location = tuple([a_row, a_column])
puddle_points.add(location)
@staticmethod
def get_goal():
temp_map = [list(item) for item in SweeperAgent.loadMap('goal_map.txt')]
a_row = 0
a_column = 0
for row in range(MAP_SIZE):
for column, pos in enumerate(temp_map[row]):
if pos == '>' or pos == '<' or pos == 'v' or pos == '^':
a_row = row
a_column = column
return a_row, a_column
@staticmethod
def set_initial(initial):
temp_map = [list(item) for item in SweeperAgent.loadMap('map.txt')]
a_row = 0
a_column = 0
for row in range(MAP_SIZE):
for column, pos in enumerate(temp_map[row]):
if pos == '>' or pos == '<' or pos == 'v' or pos == '^':
a_row = row
a_column = column
location = tuple([a_row, a_column])
initial.add(location)
@staticmethod
def set_orientation():
temp_map = [list(item) for item in SweeperAgent.loadMap('map.txt')]
orientation = ""
for row in range(MAP_SIZE):
for column, pos in enumerate(temp_map[row]):
if pos == ">":
orientation = "RIGHT"
if pos == "<":
orientation = "LEFT"
if pos == "^":
orientation = "UP"
if pos == "v":
orientation = "DOWN"
return orientation
@staticmethod
def set_goal_orientation():
temp_map = [list(item) for item in SweeperAgent.loadMap('goal_map.txt')]
orientation = ""
for row in range(MAP_SIZE):
for column, pos in enumerate(temp_map[row]):
if pos == ">":
orientation = "RIGHT"
if pos == "<":
orientation = "LEFT"
if pos == "^":
orientation = "UP"
if pos == "v":
orientation = "DOWN"
return orientation
@staticmethod
def run_manual(self,
given_orientation,
given_goal_orientation,
x_my_location,
y_my_location,
x_goal_location,
y_goal_location,
map_location
):
self.orientation = given_orientation
goal_orientation = given_goal_orientation
SweeperAgent.set_allowed(self.set_allowed_for_genetic(map_location))
x = x_my_location
y = y_my_location
x1 = x_goal_location
x2 = y_goal_location
agent_position = AgentPosition(x, y, self.orientation)
goal_position = AgentPosition(x1, x2, goal_orientation)
return len(self.plan_route(agent_position, goal_position, self.allowed_points, self.puddle_points))
@staticmethod
def run(self):
self.orientation = SweeperAgent.set_orientation()
goal_orientation = SweeperAgent.set_goal_orientation()
#SweeperAgent.set_initial(self.initial)
#SweeperAgent.set_goal(self.goal)
SweeperAgent.set_allowed(self.allowed_points)
SweeperAgent.set_puddles(self.puddle_points)
x, y = self.where_am_i()
x1, y1 = SweeperAgent.get_goal()
agent_position = AgentPosition(x, y, self.orientation)
goal_position = AgentPosition(x1, y1, goal_orientation)
return self.plan_route(agent_position, goal_position, self.allowed_points, self.puddle_points)
"""print("allowed: ")
print("(row, column)")
print(sorted(self.allowed_points))
print("puddles:")
print(sorted(self.puddle_points))
print("initial:")
print(self.initial)
print("goal:")
print(self.goal)
print("orientation:")
print(self.orientation)"""
def plan_route(self, current, goals, allowed, puddles):
problem = PlanRoute(current, goals, allowed, puddles, MAP_SIZE-1)
return SweeperAgent.astar_search(problem, problem.h)
#return SweeperAgent.astar_search(problem, problem.h)
"""TODO"""
# liczenie kosztów
#
@staticmethod
def loadMap(map_name=''):
maze = []
map_folder = path.dirname(__file__)
with open(path.join(map_folder, map_name), 'rt') as f:
for line in f:
maze.append(line.rstrip('\n'))
# print(maze)
return maze
@staticmethod
def astar_search(problem, h=None):
"""A* search is best-first graph search with f(n) = g(n)+h(n).
You need to specify the h function when you call astar_search, or
else in your Problem subclass."""
# h = memoize(h or problem.h, 'h')
return SweeperAgent.best_first_graph_search(problem, lambda n: n.path_cost + h(n))
#return best_first_graph_search(problem)
@staticmethod
#def best_first_graph_search(problem, f, display=False):
def best_first_graph_search(problem, f, display=True):
"""TODO"""
# Zaimplementować klasę Node dla Astar
history = []
node = Node(problem.initial)
frontier = PriorityQueue('min', f)
frontier.append(node)
explored = set()
while frontier:
node = frontier.pop()
if problem.goal_test(node.state):
if display:
print(len(explored), "paths have been expanded and", len(frontier), "paths remain in the frontier")
while(node.parent != None):
history.append(node.action)
node = node.parent
#return child
history.reverse()
print(history)
return history
#return history
#break
#return node
#break
explored.add(copy.deepcopy(node.state))
test_child_chamber = node.expand(problem)
for child in node.expand(problem):
if child.state not in explored and child not in frontier:
frontier.append(copy.deepcopy(child))
elif child in frontier:
if f(child) < frontier[child]:
del frontier[child]
frontier.append(child)
return history
#return None
class PriorityQueue:
"""A Queue in which the minimum (or maximum) element (as determined by f and
order) is returned first.
If order is 'min', the item with minimum f(x) is
returned first; if order is 'max', then it is the item with maximum f(x).
Also supports dict-like lookup."""
def __init__(self, order='min', f=lambda x: x):
self.heap = []
if order == 'min':
self.f = f
elif order == 'max': # now item with max f(x)
self.f = lambda x: -f(x) # will be popped first
else:
raise ValueError("Order must be either 'min' or 'max'.")
def append(self, item):
"""Insert item at its correct position."""
heapq.heappush(self.heap, (self.f(item), item))
def extend(self, items):
"""Insert each item in items at its correct position."""
for item in items:
self.append(item)
def pop(self):
"""Pop and return the item (with min or max f(x) value)
depending on the order."""
if self.heap:
return heapq.heappop(self.heap)[1]
else:
raise Exception('Trying to pop from empty PriorityQueue.')
def __len__(self):
"""Return current capacity of PriorityQueue."""
return len(self.heap)
def __contains__(self, key):
"""Return True if the key is in PriorityQueue."""
return any([item == key for _, item in self.heap])
def __getitem__(self, key):
"""Returns the first value associated with key in PriorityQueue.
Raises KeyError if key is not present."""
for value, item in self.heap:
if item == key:
return value
raise KeyError(str(key) + " is not in the priority queue")
def __delitem__(self, key):
"""Delete the first occurrence of key."""
try:
del self.heap[[item == key for _, item in self.heap].index(True)]
except ValueError:
raise KeyError(str(key) + " is not in the priority queue")
heapq.heapify(self.heap)
class Test:
@staticmethod
def run():
allowed_points = set()
puddle_points = set()
initial = set()
goal = set()
orientation = SweeperAgent.set_orientation()
SweeperAgent.set_initial(initial)
SweeperAgent.set_goal(goal)
SweeperAgent.set_allowed(allowed_points)
SweeperAgent.set_puddles(puddle_points)
print("allowed: ")
print("(row, column)")
print(sorted(allowed_points))
print("puddles:")
print(sorted(puddle_points))
print("initial:")
print(initial)
print("goal:")
print(goal)
print("orientation:")
print(orientation)