246 lines
8.0 KiB
Python
246 lines
8.0 KiB
Python
import json
|
|
import random
|
|
import jsgf
|
|
from pathlib import Path
|
|
import os
|
|
from collections import defaultdict
|
|
from convlab.policy.policy import Policy
|
|
|
|
__location__ = Path().resolve()
|
|
|
|
book_grammar = jsgf.parse_grammar_file(os.path.join(__location__, "grammar3.jsgf"))
|
|
|
|
class DST():
|
|
def __init__(self):
|
|
self.state = json.load(open('dictionary.json'))
|
|
|
|
def update(self, user_act=None):
|
|
for intent, domain, slot, value in user_act:
|
|
domain = domain.lower()
|
|
intent = intent.lower()
|
|
slot = slot.lower()
|
|
|
|
if domain not in self.state['belief_state']:
|
|
continue
|
|
|
|
if intent == 'inform':
|
|
if slot == 'none' or slot == '':
|
|
continue
|
|
|
|
domain_dic = self.state['belief_state'][domain]
|
|
|
|
if slot in domain_dic:
|
|
self.state['belief_state'][domain][slot] = value
|
|
|
|
elif intent == 'request':
|
|
if domain not in self.state['request_state']:
|
|
self.state['request_state'][domain] = {}
|
|
if slot not in self.state['request_state'][domain]:
|
|
self.state['request_state'][domain][slot] = 0
|
|
|
|
elif intent == 'hello':
|
|
pass
|
|
|
|
self.state['user_act'] = user_act
|
|
return self.state
|
|
|
|
def init_session(self):
|
|
self.state = json.load(open('dictionary.json'))
|
|
|
|
|
|
class SimpleRulePolicy(Policy):
|
|
def __init__(self):
|
|
Policy.__init__(self)
|
|
self.db = json.load(open('product_db.json'))
|
|
|
|
def predict(self, state):
|
|
self.results = []
|
|
system_action = defaultdict(list)
|
|
user_action = defaultdict(list)
|
|
system_acts = []
|
|
for intent, domain, slot, value in state['user_act']:
|
|
user_action[(domain.lower(), intent.lower())].append((slot.lower(), value))
|
|
for user_act in user_action:
|
|
self.update_system_action(user_act, user_action, state, system_action)
|
|
system_acts = [[intent, domain, slot, value] for (domain, intent), slots in system_action.items() for slot, value in slots]
|
|
state['system_act'] = system_acts
|
|
return system_acts
|
|
|
|
def update_system_action(self, user_act, user_action, state, system_action):
|
|
domain, intent = user_act
|
|
constraints = [(slot, value) for slot, value in state['belief_state'][domain.lower()].items() if value != '']
|
|
self.results = self.db['database'][domain]
|
|
|
|
# Reguła 1
|
|
if intent == 'request':
|
|
if len(self.results) == 0:
|
|
system_action[(domain, 'NoOffer')] = []
|
|
else:
|
|
for slot in user_action[user_act]:
|
|
if self.results and slot[0] in self.results[0]:
|
|
system_action[(domain, 'Inform')].append([slot[0], self.results[0].get(slot[0], 'unknown')])
|
|
|
|
# Reguła 2
|
|
elif intent == 'inform':
|
|
if len(self.results) == 0:
|
|
system_action[(domain, 'NoOffer')] = []
|
|
else:
|
|
system_action[(domain, 'Inform')].append(['Choice', str(len(self.results))])
|
|
for product in self.results:
|
|
if all(product.get(slot, '').lower() == value.lower() for slot, value in constraints):
|
|
system_action[(domain, 'Recommend')].append(['Name', product['name']])
|
|
break
|
|
|
|
|
|
def nlg(system_act):
|
|
domain, intent, slot, value = system_act
|
|
|
|
if intent == 'Affirm':
|
|
r = random.randint(1, 3)
|
|
|
|
if r == 1:
|
|
return 'Tak'
|
|
elif r == 2:
|
|
return 'Zgadza się'
|
|
else:
|
|
return 'Potwierdzam'
|
|
|
|
if intent == 'Deny':
|
|
r = random.randint(1, 3)
|
|
|
|
if r == 1:
|
|
return 'Nie'
|
|
elif r == 2:
|
|
return 'Nie zgadza się'
|
|
else:
|
|
return 'Nie potwierdzam'
|
|
|
|
if intent == 'Canthelp':
|
|
r = random.randint(1, 3)
|
|
|
|
if r == 1:
|
|
return 'Przepraszam, ale obawiam się, że nie mogę tego zrobić'
|
|
elif r == 2:
|
|
return 'Wystąpił błąd, proszę się skontaktować z obsługą'
|
|
else:
|
|
return 'ERR://23¤Y%/'
|
|
|
|
if intent == 'Hellomsg':
|
|
r = random.randint(1, 3)
|
|
|
|
if r == 1:
|
|
return 'Witaj'
|
|
elif r == 2:
|
|
return 'Cześć'
|
|
else:
|
|
return 'Dzień dobry'
|
|
|
|
if intent == 'Bye':
|
|
r = random.randint(1, 3)
|
|
|
|
if r == 1:
|
|
return 'Do zobaczenia'
|
|
elif r == 2:
|
|
return 'Żegnaj'
|
|
else:
|
|
return 'Buk zapłać'
|
|
|
|
if domain == 'Product':
|
|
if intent == 'Inform':
|
|
if slot == 'Quantity':
|
|
if value == 0:
|
|
return f'Nie znalazłem produktów spełniających podane kryteria.'
|
|
elif value == 1:
|
|
return f'Znalazłem jeden produkt spełniający podane kryteria.'
|
|
elif value <= 4:
|
|
return f'Znalazłem {value} produkty spełniające podane kryteria.'
|
|
elif value <= 9:
|
|
return f'Znalazłem {value} produktów spełniających podane kryteria.'
|
|
else:
|
|
return f'Znalazłem wiele produktów spełniających podane kryteria.'
|
|
elif slot == 'Quality':
|
|
return f'Znalazłem produkt(y) jakości {value}'
|
|
elif slot == 'Price_range':
|
|
return f'Znalazłem produkt(y) w przedziale cenowym {value}'
|
|
elif slot == 'Type':
|
|
return f'Znalazłem produkt(y) typu {value}'
|
|
elif slot == 'Brand':
|
|
return f'Znalazłem produkt(y) marki {value}'
|
|
elif slot == 'Price':
|
|
return f'Znalazlem produkt(y) w cenie {value}'
|
|
if intent == 'Request':
|
|
if slot == 'CreditCardNo':
|
|
return 'Podaj nuber karty płatniczej'
|
|
if slot == 'Quantity':
|
|
return 'Podaj liczbę artykułów'
|
|
if slot == 'Type':
|
|
return 'Podaj typ produktu'
|
|
if intent == 'Recommend':
|
|
if slot == "Name":
|
|
r = random.randint(1, 3)
|
|
|
|
if r == 1:
|
|
return f'Kochany użytkowniku, z całego serduszka polecam Ci {value}'
|
|
elif r == 2:
|
|
return f'Polecam {value}'
|
|
else:
|
|
return f'Mogę polecić {value}'
|
|
|
|
def get_dialog_act(rule):
|
|
slots = []
|
|
get_slots(rule.expansion, slots)
|
|
return {'act': rule.grammar.name, 'slots': slots}
|
|
|
|
def get_slots(expansion, slots):
|
|
if expansion.tag != '':
|
|
slots.append((expansion.tag, expansion.current_match))
|
|
return
|
|
|
|
for child in expansion.children:
|
|
get_slots(child, slots)
|
|
|
|
if not expansion.children and isinstance(expansion, jsgf.NamedRuleRef):
|
|
get_slots(expansion.referenced_rule.expansion, slots)
|
|
|
|
def nlu(utterance):
|
|
matched = book_grammar.find_matching_rules(utterance)
|
|
|
|
if matched:
|
|
return get_dialog_act(matched[0])
|
|
else:
|
|
return {'act': 'null', 'slots': []}
|
|
|
|
def predict(utterance):
|
|
utterance = utterance.lower()
|
|
punctuation = '''!;:/?,.*'''
|
|
|
|
for i in utterance:
|
|
if i in punctuation:
|
|
utterance = utterance.replace(i, "")
|
|
|
|
matched = book_grammar.find_matching_rules(utterance)
|
|
nlu(utterance)
|
|
|
|
try:
|
|
print(get_dialog_act(matched[0]))
|
|
get_dialog_act(matched[0])
|
|
except:
|
|
pass
|
|
|
|
return get_dialog_act(matched[0])
|
|
|
|
|
|
|
|
dst = DST()
|
|
policy = SimpleRulePolicy()
|
|
|
|
utterance = input("Podaj wypowiedź użytkownika: ")
|
|
|
|
dialog_act = predict(utterance)
|
|
state = dst.update(dialog_act)
|
|
system_act = policy.predict(state)
|
|
|
|
for act in system_act:
|
|
response = nlg(act)
|
|
print("Odpowiedź systemu:", response)
|