2023-06-07 00:34:30 +02:00
|
|
|
import pandas as pd
|
|
|
|
import torch
|
|
|
|
import torch.nn as nn
|
|
|
|
import torch.optim as optim
|
|
|
|
from torch.utils.data import DataLoader, Dataset
|
|
|
|
from sklearn.model_selection import train_test_split
|
|
|
|
from sklearn.preprocessing import LabelEncoder
|
|
|
|
import pickle
|
|
|
|
from sacred import Experiment
|
|
|
|
from sacred.observers import FileStorageObserver, MongoObserver
|
|
|
|
|
|
|
|
ex = Experiment("s151636", interactive=True, save_git_info=False)
|
|
|
|
ex.observers.append(FileStorageObserver('experiments'))
|
|
|
|
ex.observers.append(MongoObserver(url='mongodb://admin:IUM_2021@172.17.0.1:27017', db_name='sacred'))
|
|
|
|
|
|
|
|
# Define the neural network model
|
|
|
|
class Model(nn.Module):
|
|
|
|
def __init__(self):
|
|
|
|
super(Model, self).__init__()
|
|
|
|
self.fc1 = nn.Linear(1, 64)
|
|
|
|
self.fc2 = nn.Linear(64, 1)
|
|
|
|
self.relu = nn.ReLU()
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
x = self.fc1(x)
|
|
|
|
x = self.relu(x)
|
|
|
|
x = self.fc2(x)
|
|
|
|
return x
|
|
|
|
|
|
|
|
# Define a custom dataset
|
|
|
|
class CustomDataset(Dataset):
|
|
|
|
def __init__(self, X, y):
|
|
|
|
self.X = torch.FloatTensor(X.values.reshape(-1, 1))
|
|
|
|
self.y = torch.FloatTensor(y.values.reshape(-1, 1))
|
|
|
|
|
|
|
|
def __len__(self):
|
|
|
|
return len(self.X)
|
|
|
|
|
|
|
|
def __getitem__(self, idx):
|
|
|
|
return self.X[idx], self.y[idx]
|
|
|
|
|
|
|
|
@ex.main
|
|
|
|
def train_model():
|
|
|
|
# Load the dataset
|
|
|
|
df = pd.read_csv('data.csv')
|
|
|
|
|
|
|
|
# Select the relevant columns (e.g., 'Rating' and 'Writer')
|
|
|
|
data = df[['Rating', 'Writer']]
|
|
|
|
|
|
|
|
# Drop rows with missing values
|
|
|
|
data = data.dropna()
|
|
|
|
|
|
|
|
# Convert the 'Writer' column to numeric using label encoding
|
|
|
|
encoder = LabelEncoder()
|
|
|
|
data['Writer'] = encoder.fit_transform(data['Writer'])
|
|
|
|
|
|
|
|
# Split the data into training and testing sets
|
|
|
|
X = data['Writer']
|
|
|
|
y = data['Rating']
|
|
|
|
|
|
|
|
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
|
|
|
|
|
|
|
# Create the model instance
|
|
|
|
model = Model()
|
|
|
|
|
|
|
|
# Define the loss function and optimizer
|
|
|
|
criterion = nn.MSELoss()
|
|
|
|
optimizer = optim.Adam(model.parameters())
|
|
|
|
|
|
|
|
# Create dataloaders for training and testing
|
|
|
|
train_dataset = CustomDataset(X_train, y_train)
|
|
|
|
test_dataset = CustomDataset(X_test, y_test)
|
|
|
|
train_dataloader = DataLoader(train_dataset, batch_size=64, shuffle=True)
|
|
|
|
test_dataloader = DataLoader(test_dataset, batch_size=64)
|
|
|
|
|
|
|
|
# Train the model
|
|
|
|
for epoch in range(10):
|
|
|
|
model.train()
|
|
|
|
for inputs, targets in train_dataloader:
|
|
|
|
optimizer.zero_grad()
|
|
|
|
outputs = model(inputs)
|
|
|
|
loss = criterion(outputs, targets)
|
|
|
|
loss.backward()
|
|
|
|
optimizer.step()
|
|
|
|
|
|
|
|
# Save the model to a file
|
|
|
|
torch.save(model.state_dict(), 'model.pth')
|
|
|
|
|
|
|
|
# Save the encoder to a file
|
|
|
|
with open('encoder.pkl', 'wb') as f:
|
|
|
|
pickle.dump(encoder, f)
|
|
|
|
|
|
|
|
# Make predictions on new data
|
|
|
|
new_writer = 'Jim Cash'
|
|
|
|
new_writer_encoded = torch.tensor(encoder.transform([new_writer])).float()
|
|
|
|
|
|
|
|
model.eval()
|
|
|
|
rating_prediction = model(new_writer_encoded)
|
|
|
|
print("Predicted rating for the writer 'Jim Cash':", rating_prediction.item())
|
|
|
|
|
2023-06-07 00:44:36 +02:00
|
|
|
# Create dataloaders for evaluation
|
|
|
|
test_dataset = CustomDataset(X_test, y_test)
|
|
|
|
test_dataloader = DataLoader(test_dataset, batch_size=64)
|
|
|
|
|
|
|
|
# Evaluate the model
|
|
|
|
model.eval()
|
|
|
|
predictions = []
|
|
|
|
targets = []
|
|
|
|
for inputs, targets_batch in test_dataloader:
|
|
|
|
outputs = model(inputs)
|
|
|
|
predictions.extend(outputs.tolist())
|
|
|
|
targets.extend(targets_batch.tolist())
|
|
|
|
|
|
|
|
# Calculate evaluation metrics
|
|
|
|
predictions = torch.FloatTensor(predictions).squeeze()
|
|
|
|
targets = torch.FloatTensor(targets).squeeze()
|
|
|
|
|
|
|
|
rmse = mean_squared_error(targets, predictions, squared=False)
|
|
|
|
|
|
|
|
|
2023-06-07 00:34:30 +02:00
|
|
|
ex.run()
|