upd d + scritp5_3
This commit is contained in:
parent
46430423d7
commit
0d0ee8bf90
@ -7,7 +7,9 @@ RUN apt-get update && \
|
||||
RUN pip3 install kaggle
|
||||
RUN pip3 install pandas
|
||||
RUN pip3 install scikit-learn
|
||||
RUN pip3 install tensorflow==2.12.*
|
||||
#RUN pip3 install tensorflow==2.12.*
|
||||
RUN pip3 install torch torchvision
|
||||
RUN pip install torch==1.8.0+cpu torchvision==0.9.0+cpu torchaudio==0.8.0 -f https://download.pytorch.org/whl/torch_stable.html
|
||||
RUN pip3 install pickle5
|
||||
|
||||
#RUN apt install python3.10-venv -y
|
||||
|
91
script5_3.py
Normal file
91
script5_3.py
Normal file
@ -0,0 +1,91 @@
|
||||
import pandas as pd
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.optim as optim
|
||||
from torch.utils.data import DataLoader, Dataset
|
||||
from sklearn.model_selection import train_test_split
|
||||
from sklearn.preprocessing import LabelEncoder
|
||||
import pickle
|
||||
|
||||
# Define the neural network model
|
||||
class Model(nn.Module):
|
||||
def __init__(self):
|
||||
super(Model, self).__init__()
|
||||
self.fc1 = nn.Linear(1, 64)
|
||||
self.fc2 = nn.Linear(64, 1)
|
||||
self.relu = nn.ReLU()
|
||||
|
||||
def forward(self, x):
|
||||
x = self.fc1(x)
|
||||
x = self.relu(x)
|
||||
x = self.fc2(x)
|
||||
return x
|
||||
|
||||
# Define a custom dataset
|
||||
class CustomDataset(Dataset):
|
||||
def __init__(self, X, y):
|
||||
self.X = torch.FloatTensor(X.values.reshape(-1, 1))
|
||||
self.y = torch.FloatTensor(y.values.reshape(-1, 1))
|
||||
|
||||
def __len__(self):
|
||||
return len(self.X)
|
||||
|
||||
def __getitem__(self, idx):
|
||||
return self.X[idx], self.y[idx]
|
||||
|
||||
# Load the dataset
|
||||
df = pd.read_csv('data.csv')
|
||||
|
||||
# Select the relevant columns (e.g., 'Rating' and 'Writer')
|
||||
data = df[['Rating', 'Writer']]
|
||||
|
||||
# Drop rows with missing values
|
||||
data = data.dropna()
|
||||
|
||||
# Convert the 'Writer' column to numeric using label encoding
|
||||
encoder = LabelEncoder()
|
||||
data['Writer'] = encoder.fit_transform(data['Writer'])
|
||||
|
||||
# Split the data into training and testing sets
|
||||
X = data['Writer']
|
||||
y = data['Rating']
|
||||
|
||||
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
||||
|
||||
# Create the model instance
|
||||
model = Model()
|
||||
|
||||
# Define the loss function and optimizer
|
||||
criterion = nn.MSELoss()
|
||||
optimizer = optim.Adam(model.parameters())
|
||||
|
||||
# Create dataloaders for training and testing
|
||||
train_dataset = CustomDataset(X_train, y_train)
|
||||
test_dataset = CustomDataset(X_test, y_test)
|
||||
train_dataloader = DataLoader(train_dataset, batch_size=64, shuffle=True)
|
||||
test_dataloader = DataLoader(test_dataset, batch_size=64)
|
||||
|
||||
# Train the model
|
||||
for epoch in range(10):
|
||||
model.train()
|
||||
for inputs, targets in train_dataloader:
|
||||
optimizer.zero_grad()
|
||||
outputs = model(inputs)
|
||||
loss = criterion(outputs, targets)
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
|
||||
# Save the model to a file
|
||||
torch.save(model.state_dict(), 'model.pth')
|
||||
|
||||
# Save the encoder to a file
|
||||
with open('encoder.pkl', 'wb') as f:
|
||||
pickle.dump(encoder, f)
|
||||
|
||||
# Make predictions on new data
|
||||
new_writer = 'Jim Cash'
|
||||
new_writer_encoded = torch.tensor(encoder.transform([new_writer])).float()
|
||||
|
||||
model.eval()
|
||||
rating_prediction = model(new_writer_encoded)
|
||||
print("Predicted rating for the writer 'Jim Cash':", rating_prediction.item())
|
Loading…
Reference in New Issue
Block a user