diff --git a/script5_1.py b/script5_1.py index 7756243..2d46019 100644 --- a/script5_1.py +++ b/script5_1.py @@ -7,27 +7,28 @@ from tensorflow.keras.layers import Dense from tensorflow.keras.optimizers import Adam # Load the dataset from the CSV file -data = pd.read_csv('data.csv', on_bad_lines='skip', engine='python') - +data = pd.read_csv('data.csv') +# Drop a specific row +data = data.drop(index=5059) # Prepare the data -X = data[['movie title', 'User Rating', 'Director', 'Top 5 Casts', 'Writer', 'year']] +X = data[['movie title', 'User Rating', 'Director', 'Top 5 Casts', 'Writer']] y = data['Rating'] # Preprocess the data # Convert the categorical columns into numerical representations mlb_genres = MultiLabelBinarizer() -X_genres = mlb_genres.fit_transform(data['Generes']) -X.loc[:, 'Generes'] = X_genres.tolist() +X_genres = pd.DataFrame(mlb_genres.fit_transform(data['Generes']), columns=mlb_genres.classes_) mlb_keywords = MultiLabelBinarizer() -X_keywords = mlb_keywords.fit_transform(data['Plot Kyeword']) -X.loc[:, 'Plot Kyeword'] = X_keywords.tolist() +X_keywords = pd.DataFrame(mlb_keywords.fit_transform(data['Plot Kyeword']), columns=mlb_keywords.classes_) mlb_casts = MultiLabelBinarizer() -X_casts = mlb_casts.fit_transform(data['Top 5 Casts'].astype(str)) -X.loc[:, 'Top 5 Casts'] = X_casts.tolist() +X_casts = pd.DataFrame(mlb_casts.fit_transform(data['Top 5 Casts'].astype(str)), columns=mlb_casts.classes_) + +# Concatenate the transformed columns with the remaining columns +X = pd.concat([X, X_genres, X_keywords, X_casts], axis=1) # Split the data into training and testing sets X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) @@ -37,7 +38,7 @@ model = Sequential() model.add(Dense(32, activation='relu', input_dim=X.shape[1])) model.add(Dense(16, activation='relu')) model.add(Dense(1)) - + # Compile the model model.compile(optimizer=Adam(), loss='mse')