upd 5
This commit is contained in:
parent
ca4fe6932b
commit
c3c751076e
@ -39,9 +39,9 @@ pipeline {
|
|||||||
echo("run data script")
|
echo("run data script")
|
||||||
//sh "source docker_ium/bin/activate"
|
//sh "source docker_ium/bin/activate"
|
||||||
sh "ls -a"
|
sh "ls -a"
|
||||||
sh "chmod u+x script5.py"
|
sh "chmod u+x script5_1.py"
|
||||||
//sh "pip3 show pandas"
|
//sh "pip3 show pandas"
|
||||||
sh "python3 script5.py"
|
sh "python3 script5_1.py"
|
||||||
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
49
script5_1.py
Normal file
49
script5_1.py
Normal file
@ -0,0 +1,49 @@
|
|||||||
|
import pandas as pd
|
||||||
|
import numpy as np
|
||||||
|
from sklearn.model_selection import train_test_split
|
||||||
|
from sklearn.preprocessing import MultiLabelBinarizer
|
||||||
|
from tensorflow.keras.models import Sequential
|
||||||
|
from tensorflow.keras.layers import Dense
|
||||||
|
from tensorflow.keras.optimizers import Adam
|
||||||
|
|
||||||
|
# Load the dataset from the CSV file
|
||||||
|
data = pd.read_csv('data.csv', on_bad_lines='skip', engine='python')
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
# Prepare the data
|
||||||
|
X = data[['movie title', 'User Rating', 'Director', 'Top 5 Casts', 'Writer', 'year']]
|
||||||
|
y = data['Rating']
|
||||||
|
|
||||||
|
# Preprocess the data
|
||||||
|
# Convert the categorical columns into numerical representations
|
||||||
|
mlb_genres = MultiLabelBinarizer()
|
||||||
|
X_genres = mlb_genres.fit_transform(data['Generes'])
|
||||||
|
X.loc[:, 'Generes'] = X_genres.tolist()
|
||||||
|
|
||||||
|
mlb_keywords = MultiLabelBinarizer()
|
||||||
|
X_keywords = mlb_keywords.fit_transform(data['Plot Kyeword'])
|
||||||
|
X.loc[:, 'Plot Kyeword'] = X_keywords.tolist()
|
||||||
|
|
||||||
|
mlb_casts = MultiLabelBinarizer()
|
||||||
|
X_casts = mlb_casts.fit_transform(data['Top 5 Casts'].astype(str))
|
||||||
|
X.loc[:, 'Top 5 Casts'] = X_casts.tolist()
|
||||||
|
|
||||||
|
# Split the data into training and testing sets
|
||||||
|
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
||||||
|
|
||||||
|
# Create the neural network model
|
||||||
|
model = Sequential()
|
||||||
|
model.add(Dense(32, activation='relu', input_dim=X.shape[1]))
|
||||||
|
model.add(Dense(16, activation='relu'))
|
||||||
|
model.add(Dense(1))
|
||||||
|
|
||||||
|
# Compile the model
|
||||||
|
model.compile(optimizer=Adam(), loss='mse')
|
||||||
|
|
||||||
|
# Train the model
|
||||||
|
model.fit(X_train, y_train, batch_size=64, epochs=10, validation_data=(X_test, y_test))
|
||||||
|
|
||||||
|
# Evaluate the model
|
||||||
|
mse = model.evaluate(X_test, y_test)
|
||||||
|
print("Mean Squared Error:", mse)
|
Loading…
Reference in New Issue
Block a user