upd 5
This commit is contained in:
parent
ca4fe6932b
commit
c3c751076e
@ -39,9 +39,9 @@ pipeline {
|
||||
echo("run data script")
|
||||
//sh "source docker_ium/bin/activate"
|
||||
sh "ls -a"
|
||||
sh "chmod u+x script5.py"
|
||||
sh "chmod u+x script5_1.py"
|
||||
//sh "pip3 show pandas"
|
||||
sh "python3 script5.py"
|
||||
sh "python3 script5_1.py"
|
||||
|
||||
}
|
||||
}
|
||||
|
49
script5_1.py
Normal file
49
script5_1.py
Normal file
@ -0,0 +1,49 @@
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
from sklearn.model_selection import train_test_split
|
||||
from sklearn.preprocessing import MultiLabelBinarizer
|
||||
from tensorflow.keras.models import Sequential
|
||||
from tensorflow.keras.layers import Dense
|
||||
from tensorflow.keras.optimizers import Adam
|
||||
|
||||
# Load the dataset from the CSV file
|
||||
data = pd.read_csv('data.csv', on_bad_lines='skip', engine='python')
|
||||
|
||||
|
||||
|
||||
# Prepare the data
|
||||
X = data[['movie title', 'User Rating', 'Director', 'Top 5 Casts', 'Writer', 'year']]
|
||||
y = data['Rating']
|
||||
|
||||
# Preprocess the data
|
||||
# Convert the categorical columns into numerical representations
|
||||
mlb_genres = MultiLabelBinarizer()
|
||||
X_genres = mlb_genres.fit_transform(data['Generes'])
|
||||
X.loc[:, 'Generes'] = X_genres.tolist()
|
||||
|
||||
mlb_keywords = MultiLabelBinarizer()
|
||||
X_keywords = mlb_keywords.fit_transform(data['Plot Kyeword'])
|
||||
X.loc[:, 'Plot Kyeword'] = X_keywords.tolist()
|
||||
|
||||
mlb_casts = MultiLabelBinarizer()
|
||||
X_casts = mlb_casts.fit_transform(data['Top 5 Casts'].astype(str))
|
||||
X.loc[:, 'Top 5 Casts'] = X_casts.tolist()
|
||||
|
||||
# Split the data into training and testing sets
|
||||
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
||||
|
||||
# Create the neural network model
|
||||
model = Sequential()
|
||||
model.add(Dense(32, activation='relu', input_dim=X.shape[1]))
|
||||
model.add(Dense(16, activation='relu'))
|
||||
model.add(Dense(1))
|
||||
|
||||
# Compile the model
|
||||
model.compile(optimizer=Adam(), loss='mse')
|
||||
|
||||
# Train the model
|
||||
model.fit(X_train, y_train, batch_size=64, epochs=10, validation_data=(X_test, y_test))
|
||||
|
||||
# Evaluate the model
|
||||
mse = model.evaluate(X_test, y_test)
|
||||
print("Mean Squared Error:", mse)
|
Loading…
Reference in New Issue
Block a user