import pandas as pd import numpy as np from sklearn.model_selection import train_test_split from sklearn.preprocessing import MultiLabelBinarizer from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense from tensorflow.keras.optimizers import Adam # Load the dataset from the CSV file data = pd.read_csv('data.csv') # Prepare the data X = data[['movie title', 'User Rating', 'Director', 'Top 5 Casts', 'Writer']] #y = data['Rating'].apply(lambda x: float(x) if isinstance(x, (int, float)) else np.nan) # Convert 'Rating' column to float data type #y = pd.Series(data['Rating'], dtype=float) y = data['Rating'].astype('float64') #y = y.fillna(y.mean()) #y = np.array(y) print("Unique values in 'Rating' column:", data['Rating'].unique()) print("Data type of 'Rating' column:", y.dtype) mean_rating = data['Rating'].mean() data['Rating'].fillna(mean_rating, inplace=True) # Preprocess the data # Convert the categorical columns into numerical representations mlb_genres = MultiLabelBinarizer() X_genres = pd.DataFrame(mlb_genres.fit_transform(data['Generes']), columns=mlb_genres.classes_) mlb_keywords = MultiLabelBinarizer() X_keywords = pd.DataFrame(mlb_keywords.fit_transform(data['Plot Kyeword']), columns=mlb_keywords.classes_) mlb_casts = MultiLabelBinarizer() X_casts = pd.DataFrame(mlb_casts.fit_transform(data['Top 5 Casts'].astype(str)), columns=mlb_casts.classes_) # Concatenate the transformed columns with the remaining columns X = pd.concat([X, X_genres, X_keywords, X_casts], axis=1) # Split the data into training and testing sets X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # Convert the modified 'Rating' column to a numpy array y_train_updated = data['Rating'].to_numpy() y_train_updated = pd.Series(y_train_updated[:len(X_train)]) # Update the 'y_train' array with the modified values y_train.loc[X_train.index] = y_train_updated # Fill NaN values with the mean of non-missing values y_train.fillna(y_train.mean(), inplace=True) # Convert the 'y_train' series to a NumPy array y_train = y_train.values # Filter out non-numeric and NaN values from y_train y_train = y_train.astype(float) y_train = y_train[np.isfinite(y_train)] non_numeric_values = [value for value in y_train if not np.issubdtype(type(value), np.number)] print("Non-numeric values in y_train:", non_numeric_values) # Create the neural network model model = Sequential() model.add(Dense(32, activation='relu', input_dim=X.shape[1])) model.add(Dense(16, activation='relu')) model.add(Dense(1)) # Compile the model model.compile(optimizer=Adam(), loss='mse') print("Data type of 'Rating' column:", y_train.dtype) print("First few rows of 'y_train':", y_train[:10]) print("Data type of 'X_train':", X_train.dtypes) print("Shape of 'X_train':", X_train.shape) print("Data type of 'y_train':", y_train.dtypes) print("Shape of 'y_train':", y_train.shape) # Train the model model.fit(X_train, y_train, batch_size=64, epochs=10, validation_data=(X_test, y_test)) # Evaluate the model mse = model.evaluate(X_test, y_test) print("Mean Squared Error:", mse)