42 lines
1.4 KiB
Python
42 lines
1.4 KiB
Python
import pandas as pd
|
|
import numpy as np
|
|
from sklearn.model_selection import train_test_split
|
|
from sklearn.preprocessing import MultiLabelBinarizer
|
|
from tensorflow.keras.models import Sequential
|
|
from tensorflow.keras.layers import Dense, Embedding, Flatten
|
|
from tensorflow.keras.optimizers import Adam
|
|
|
|
# Load the dataset from the CSV file
|
|
data = pd.read_csv('data.csv', on_bad_lines='skip', engine='python')
|
|
|
|
|
|
# Prepare the data
|
|
X = data[['movie title', 'User Rating', 'Generes', 'Plot Kyeword', 'Director', 'Top 5 Casts', 'Writer', 'year']]
|
|
y = data['Rating']
|
|
|
|
# Preprocess the data
|
|
# Convert the categorical columns into numerical representations
|
|
mlb = MultiLabelBinarizer()
|
|
X['Genres'] = mlb.fit_transform(X['Generes'])
|
|
X['Plot Keyword'] = mlb.fit_transform(X['Plot Kyeword'])
|
|
X['Top 5 Casts'] = mlb.fit_transform(X['Top 5 Casts'])
|
|
|
|
# Split the data into training and testing sets
|
|
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
|
|
|
# Create the neural network model
|
|
model = Sequential()
|
|
model.add(Embedding(input_dim=len(mlb.classes_), output_dim=10, input_length=X.shape[1]))
|
|
model.add(Flatten())
|
|
model.add(Dense(32, activation='relu'))
|
|
model.add(Dense(1))
|
|
|
|
# Compile the model
|
|
model.compile(optimizer=Adam(), loss='mse')
|
|
|
|
# Train the model
|
|
model.fit(X_train, y_train, batch_size=64, epochs=10, validation_data=(X_test, y_test))
|
|
|
|
# Evaluate the model
|
|
mse = model.evaluate(X_test, y_test)
|
|
print("Mean Squared Error:", mse) |