Usuń 'program_lr.py'
This commit is contained in:
parent
b94b71a4a4
commit
2f46e045b1
@ -1,98 +0,0 @@
|
||||
#!/usr/bin/env python3
|
||||
import pickle
|
||||
import fileinput
|
||||
import random
|
||||
import math
|
||||
import random
|
||||
import re
|
||||
from _collections import defaultdict
|
||||
|
||||
def define_vocabulary(file_to_learn_new_words):
|
||||
word_counts = {'count': defaultdict(int)}
|
||||
with open(file_to_learn_new_words, encoding='utf-8') as in_file:
|
||||
for line in in_file:
|
||||
text, timestamp = line.rstrip('\n').split('\t')
|
||||
tokens = text.lower().split(' ')
|
||||
for token in tokens:
|
||||
word_counts['count'][token] += 1
|
||||
in_file.close()
|
||||
return word_counts
|
||||
|
||||
def tokenize_list(string_input):
|
||||
words=[]
|
||||
string=string_input.replace('\\n',' ')
|
||||
text=re.sub(r'\w+:\/{2}[\d\w-]+(\.[\d\w-]+)*(?:(?:\/[^\s/]*))*', '', string)
|
||||
string=''
|
||||
for word in text:
|
||||
string+=word
|
||||
words=re.split(';+|,+|\*+|\n+| +|\_+|\%+|\t+|\[+|\]+|\.+|\(+|\)+|\++|\\+|\/+|[0-9]+|\#+|\'+|\"+|\-+|\=+|\&+|\:+|\?+|\!+|\^+|\·+',string)
|
||||
regex=re.compile(r'http|^[a-zA-Z]$|org')
|
||||
filtered_values=[
|
||||
word
|
||||
for word in words if not regex.match(word)
|
||||
]
|
||||
filtered_values[:] = (
|
||||
value.lower()
|
||||
for value in filtered_values if len(value)!=0
|
||||
)
|
||||
return filtered_values
|
||||
|
||||
def train(vocabulary,input_train,expected_train):
|
||||
learning_rate=0.001
|
||||
learning_precision=0.00001
|
||||
words_vocabulary={}
|
||||
with open(input_train,encoding='utf-8') as input_file, open(expected_train,encoding='utf-8') as expected_file:
|
||||
for line, exp in zip(input_file,expected_file):
|
||||
words_vocabulary[line]=int(exp)
|
||||
weights={}
|
||||
weight={}
|
||||
delta=1
|
||||
iteration=0
|
||||
loss_sum=0.0
|
||||
error=10.0
|
||||
max_iteration=len(vocabulary)
|
||||
for i in vocabulary['count'].keys():
|
||||
weights[i]=random.uniform(-0.01,0.01)
|
||||
while delta>learning_precision and iteration<max_iteration:
|
||||
d,y = random.choice(list(words_vocabulary.items()))
|
||||
y_hat=0
|
||||
tokens=tokenize_list(d)
|
||||
for token in tokens:
|
||||
if token in vocabulary['count'].keys():
|
||||
y_hat += weights[token] * tokens.count(token)
|
||||
delta=(y_hat-y) * learning_rate
|
||||
for word in tokens:
|
||||
if word in words_vocabulary:
|
||||
weights[word] -= (tokens.count(word)) * delta
|
||||
loss = (y_hat - y)**2.0
|
||||
loss_sum += loss
|
||||
if iteration%1000 == 0:
|
||||
if (error>(loss_sum/1000)):
|
||||
weight=weights
|
||||
error=loss_sum/1000
|
||||
loss_sum=0.0
|
||||
iteration += 1
|
||||
input_file.close()
|
||||
expected_file.close()
|
||||
return weight, vocabulary
|
||||
|
||||
def prediction(input,output,weights,vocabulary):
|
||||
with open(input,encoding='utf-8') as input_file, open(output,'w+',encoding='utf-8') as output:
|
||||
for line in input_file:
|
||||
y_hat=0
|
||||
tokens=tokenize_list(line)
|
||||
for token in tokens:
|
||||
if token in vocabulary['count'].keys():
|
||||
y_hat += weights[token] * (token.count(token))
|
||||
if y_hat>0.0:
|
||||
output.write('1\n')
|
||||
else:
|
||||
output.write('0\n')
|
||||
output.close()
|
||||
input_file.close()
|
||||
|
||||
vocabulary=define_vocabulary('train/in.tsv');
|
||||
weights, words = train(vocabulary,'train/in.tsv','train/expected.tsv')
|
||||
prediction('dev-0/in.tsv','dev-0/out.tsv',weights,words)
|
||||
prediction('test-A/in.tsv','test-A/out.tsv',weights,words)
|
||||
|
Loading…
Reference in New Issue
Block a user