Usuń 'predict_lr.py'
This commit is contained in:
parent
ec806efdf6
commit
b94b71a4a4
@ -1,36 +0,0 @@
|
|||||||
import pickle
|
|
||||||
import sys
|
|
||||||
import math
|
|
||||||
import fileinput
|
|
||||||
|
|
||||||
model = pickle.load(open("model.pkl", "rb"))
|
|
||||||
word_index, vocabulary, weights, words_count = model
|
|
||||||
|
|
||||||
def predict():
|
|
||||||
output = []
|
|
||||||
for line in fileinput.input(openhook=fileinput.hook_encoded("utf-8")):
|
|
||||||
line = line.rstrip()
|
|
||||||
fields = line.split('\t')
|
|
||||||
label = fields[0].strip()
|
|
||||||
document = fields[0]
|
|
||||||
terms = document.split(' ')
|
|
||||||
for term in terms:
|
|
||||||
if term in words_count:
|
|
||||||
words_count[term] += 1
|
|
||||||
else:
|
|
||||||
words_count[term] = 1
|
|
||||||
expected = weights[0]
|
|
||||||
for t in terms:
|
|
||||||
if t in vocabulary:
|
|
||||||
expected +=(words_count[t]/len(words_count)*(weights[word_index[t]]))
|
|
||||||
if expected > 0.9:
|
|
||||||
output.append(1)
|
|
||||||
else:
|
|
||||||
output.append(0)
|
|
||||||
|
|
||||||
with open("out.tsv", "w") as out:
|
|
||||||
for val in output:
|
|
||||||
out.write(str(val)+"\n")
|
|
||||||
|
|
||||||
predict()
|
|
||||||
|
|
Loading…
Reference in New Issue
Block a user