#!/usr/bin/python3 import pandas as pd import csv import pickle def predict(): dev0 = pd.read_csv("dev-0/in.tsv", delimiter="\t", header=None, names=["document","date"], quoting=csv.QUOTE_NONE) testA = pd.read_csv("test-A/in.tsv", delimiter="\t", header=None, names=["document","date"], quoting=csv.QUOTE_NONE) devdoc = dev["document"] testdoc = testA["document"] clf = pickle.load(open("clf.model", "rb")) vectorizer = pickle.load(open("vectorizer.model", "rb")) dev0_vectorizer = vectorizer.transform(devdoc) testA_vectorizer = vectorizer.transform(testdoc) y_dev = clf.predict(dev0_vectorizer) y_test = clf.predict(testA_vectorizer) with open("dev-0/out.tsv", "w") as devout: for line in y_dev: devout.write(line+"\n") with open("test-A/out.tsv", "w") as testaout: for line in y_test: testaout.write(line+"\n") predict()