#!/usr/bin/python3 import pandas as pd import csv import pickle import numpy as np def predict(): dev0 = pd.read_csv("dev-0/in.tsv", delimiter="\t", header=None, names=["document","date"], quoting=csv.QUOTE_NONE)["document"] testA = pd.read_csv("test-A/in.tsv", delimiter="\t", header=None, names=["document","date"], quoting=csv.QUOTE_NONE)["document"] clf = pickle.load(open("clf.model", "rb")) vectorizer = pickle.load(open("vectorizer.model", "rb")) dev0_vectorizer = vectorizer.transform(dev0) testA_vectorizer = vectorizer.transform(testA) y_dev = clf.predict_proba(dev0_vectorizer)[:, 1] y_test = clf.predict_proba(testA_vectorizer)[:, 1] np.savetxt('test-A/out.tsv', y_dev, '%f') np.savetxt('dev-0/out.tsv', y_test, '%f') predict()