diff --git a/raportowanie.r b/raportowanie.r index e1dd5df..6e17a92 100644 --- a/raportowanie.r +++ b/raportowanie.r @@ -11,6 +11,19 @@ con <- DBI::dbConnect( countries <- tbl(con, "dim_countries") drugs <- tbl(con, "dim_drugs") time <- tbl(con, "dim_time") +status <- tbl(con, "dim_claim_statuses") + +tbl(con, "FT_Refund") %>% + inner_join(time, by = c("response_time_fk" = "time_sk")) %>% + inner_join(status, by = c("claim_status_fk" = "claim_status_sk")) %>% + filter(year >= 2008 && year <= 2016) %>% + group_by(year, status_description) %>% + summarize(how_many = sum(cnt)) %>% + ungroup() %>% + ggplot(aes(year, how_many, fill = status_description)) + + geom_bar(stat = "identity") + + scale_x_continuous(breaks = 2009:2016) + + facet_grid(. ~ status_description) tbl(con, "FT_Refund") %>% inner_join(countries, by = c("country_fk" = "country_sk")) %>% @@ -20,11 +33,26 @@ tbl(con, "FT_Refund") %>% geom_point() + xlab("Cena") + ylab("% zniki") - tbl(con, "FT_Refund") %>% inner_join(time, by = c("response_time_fk" = "time_sk")) %>% - filter(year == 2009) %>% - head(n = 500) %>% - select(year, month, day, price) - + inner_join(drugs, by = c("drug_fk" = "drug_sk")) %>% + filter(year %in% c(2009, 2010)) %>% + mutate(sale = ifelse(reimbursement_amountPercent > 30, "on sale", "not on sale")) %>% + ggplot(aes(month, price, fill = drug_product_family_name)) + + geom_bar(stat = "identity") + + scale_x_continuous("month", breaks = 1:12) + + facet_grid(sale ~ year) + +tbl(con, "FT_Registration") %>% + inner_join(time, by = c("response_time_fk" = "time_sk")) %>% + group_by(year) %>% + summarize(how_many = sum(cnt)) %>% + filter(how_many > 0) %>% + mutate(decade = floor(year / 10) * 10) %>% + ggplot(aes(year, how_many)) + + geom_area() + + + +