1
0
forked from tdwojak/Python2019

add labs05

This commit is contained in:
Tomasz Dwojak 2019-02-10 08:39:58 +01:00
parent e6ab48cc18
commit 5b75c30384
12 changed files with 119806 additions and 0 deletions

Binary file not shown.

After

Width:  |  Height:  |  Size: 6.1 KiB

111070
labs05/311.csv Normal file

File diff suppressed because it is too large Load Diff

177
labs05/gapminder.csv Normal file
View File

@ -0,0 +1,177 @@
,female_BMI,male_BMI,gdp,population,under5mortality,life_expectancy,fertility
Afghanistan,21.07402,20.62058,1311.0,26528741.0,110.4,52.8,6.2
Albania,25.65726,26.44657,8644.0,2968026.0,17.9,76.8,1.76
Algeria,26.368409999999997,24.5962,12314.0,34811059.0,29.5,75.5,2.73
Angola,23.48431,22.25083,7103.0,19842251.0,192.0,56.7,6.43
Antigua and Barbuda,27.50545,25.76602,25736.0,85350.0,10.9,75.5,2.16
Argentina,27.46523,27.5017,14646.0,40381860.0,15.4,75.4,2.24
Armenia,27.1342,25.355420000000002,7383.0,2975029.0,20.0,72.3,1.4
Australia,26.87777,27.56373,41312.0,21370348.0,5.2,81.6,1.96
Austria,25.09414,26.467409999999997,43952.0,8331465.0,4.6,80.4,1.41
Azerbaijan,27.50879,25.65117,14365.0,8868713.0,43.3,69.2,1.99
Bahamas,29.13948,27.24594,24373.0,348587.0,14.5,72.2,1.89
Bahrain,28.790940000000003,27.83721,42507.0,1115777.0,9.4,77.6,2.23
Bangladesh,20.54531,20.39742,2265.0,148252473.0,55.9,68.3,2.38
Barbados,29.221690000000002,26.384390000000003,16075.0,277315.0,15.4,75.3,1.83
Belarus,26.641859999999998,26.16443,14488.0,9526453.0,7.2,70.0,1.42
Belgium,25.1446,26.75915,41641.0,10779155.0,4.7,79.6,1.82
Belize,29.81663,27.02255,8293.0,306165.0,20.1,70.7,2.91
Benin,23.74026,22.41835,1646.0,8973525.0,116.3,59.7,5.27
Bhutan,22.88243,22.8218,5663.0,694990.0,48.1,70.7,2.51
Bolivia,26.8633,24.43335,5066.0,9599916.0,52.0,71.2,3.48
Bosnia and Herzegovina,26.35874,26.611629999999998,9316.0,3839749.0,8.1,77.5,1.22
Botswana,26.09156,22.129839999999998,13858.0,1967866.0,63.8,53.2,2.86
Brazil,25.99113,25.78623,13906.0,194769696.0,18.6,73.2,1.9
Brunei,22.892310000000002,24.18179,72351.0,380786.0,9.0,76.9,2.1
Bulgaria,25.51574,26.542859999999997,15368.0,7513646.0,13.7,73.2,1.43
Burkina Faso,21.63031,21.27157,1358.0,14709011.0,130.4,58.0,6.04
Burundi,21.27927,21.50291,723.0,8821795.0,108.6,59.1,6.48
Cambodia,21.69608,20.80496,2442.0,13933660.0,51.5,66.1,3.05
Cameroon,24.9527,23.681729999999998,2571.0,19570418.0,113.8,56.6,5.17
Canada,26.698290000000004,27.4521,41468.0,33363256.0,5.8,80.8,1.68
Cape Verde,24.96136,23.515220000000003,6031.0,483824.0,28.4,70.4,2.57
Chad,21.95424,21.485689999999998,1753.0,11139740.0,168.0,54.3,6.81
Chile,27.92807,27.015420000000002,18698.0,16645940.0,8.9,78.5,1.89
China,22.91041,22.92176,7880.0,1326690636.0,18.5,73.4,1.53
Colombia,26.22529,24.94041,10489.0,44901660.0,19.7,76.2,2.43
Comoros,22.444329999999997,22.06131,1440.0,665414.0,91.2,67.1,5.05
"Congo, Dem. Rep.",21.6677,19.86692,607.0,61809278.0,124.5,57.5,6.45
"Congo, Rep.",23.10824,21.87134,5022.0,3832771.0,72.6,58.8,5.1
Costa Rica,27.03497,26.47897,12219.0,4429506.0,10.3,79.8,1.91
Cote d'Ivoire,23.82088,22.56469,2854.0,19261647.0,116.9,55.4,4.91
Croatia,25.17882,26.596290000000003,21873.0,4344151.0,5.9,76.2,1.43
Cuba,26.576140000000002,25.06867,17765.0,11290239.0,6.3,77.6,1.5
Cyprus,25.92587,27.41899,35828.0,1077010.0,4.2,80.0,1.49
Denmark,25.106270000000002,26.13287,45017.0,5495302.0,4.3,78.9,1.89
Djibouti,24.38177,23.38403,2502.0,809639.0,81.0,61.8,3.76
Ecuador,27.062690000000003,25.58841,9244.0,14447600.0,26.8,74.7,2.73
Egypt,30.099970000000003,26.732429999999997,9974.0,78976122.0,31.4,70.2,2.95
El Salvador,27.84092,26.36751,7450.0,6004199.0,21.6,73.7,2.32
Equatorial Guinea,24.528370000000002,23.7664,40143.0,686223.0,118.4,57.5,5.31
Eritrea,21.082320000000003,20.885089999999998,1088.0,4500638.0,60.4,60.1,5.16
Estonia,25.185979999999997,26.264459999999996,24743.0,1339941.0,5.5,74.2,1.62
Ethiopia,20.71463,20.247,931.0,83079608.0,86.9,60.0,5.19
Fiji,29.339409999999997,26.53078,7129.0,843206.0,24.0,64.9,2.74
Finland,25.58418,26.733390000000004,42122.0,5314170.0,3.3,79.6,1.85
France,24.82949,25.853289999999998,37505.0,62309529.0,4.3,81.1,1.97
Gabon,25.95121,24.0762,15800.0,1473741.0,68.0,61.7,4.28
Gambia,24.82101,21.65029,1566.0,1586749.0,87.4,65.7,5.8
Georgia,26.45014,25.54942,5900.0,4343290.0,19.3,71.8,1.79
Germany,25.73903,27.165090000000003,41199.0,80665906.0,4.4,80.0,1.37
Ghana,24.33014,22.842470000000002,2907.0,23115919.0,79.9,62.0,4.19
Greece,24.92026,26.33786,32197.0,11161755.0,4.9,80.2,1.46
Grenada,27.31948,25.179879999999997,12116.0,103934.0,13.5,70.8,2.28
Guatemala,26.84324,25.29947,6960.0,14106687.0,36.9,71.2,4.12
Guinea,22.45206,22.52449,1230.0,10427356.0,121.0,57.1,5.34
Guinea-Bissau,22.92809,21.64338,1326.0,1561293.0,127.6,53.6,5.25
Guyana,26.470190000000002,23.68465,5208.0,748096.0,41.9,65.0,2.74
Haiti,23.27785,23.66302,1600.0,9705130.0,83.3,61.0,3.5
Honduras,26.73191,25.10872,4391.0,7259470.0,26.5,71.8,3.27
"Hong Kong, China",23.71046,25.057470000000002,46635.0,6910384.0,3.06,82.49,1.04
Hungary,25.97839,27.115679999999998,23334.0,10050699.0,7.2,73.9,1.33
Iceland,26.02599,27.206870000000002,42294.0,310033.0,2.7,82.4,2.12
India,21.31478,20.95956,3901.0,1197070109.0,65.6,64.7,2.64
Indonesia,22.986929999999997,21.85576,7856.0,235360765.0,36.2,69.4,2.48
Iran,27.236079999999998,25.310029999999998,15955.0,72530693.0,21.4,73.1,1.88
Iraq,28.411170000000002,26.71017,11616.0,29163327.0,38.3,66.6,4.34
Ireland,26.62176,27.65325,47713.0,4480145.0,4.5,80.1,2.0
Israel,27.301920000000003,27.13151,28562.0,7093808.0,4.9,80.6,2.92
Italy,24.79289,26.4802,37475.0,59319234.0,4.1,81.5,1.39
Jamaica,27.22601,24.00421,8951.0,2717344.0,18.9,75.1,2.39
Japan,21.87088,23.50004,34800.0,127317900.0,3.4,82.5,1.34
Jordan,29.218009999999996,27.47362,10897.0,6010035.0,22.1,76.9,3.59
Kazakhstan,26.65065,26.290779999999998,18797.0,15915966.0,25.9,67.1,2.51
Kenya,23.06181,21.592579999999998,2358.0,38244442.0,71.0,60.8,4.76
Kiribati,31.30769,29.2384,1803.0,98437.0,64.5,61.5,3.13
Kuwait,31.161859999999997,29.172109999999996,91966.0,2705290.0,11.3,77.3,2.68
Latvia,25.615129999999997,26.45693,20977.0,2144215.0,10.5,72.4,1.5
Lebanon,27.70471,27.20117,14158.0,4109389.0,11.3,77.8,1.57
Lesotho,26.780520000000003,21.90157,2041.0,1972194.0,114.2,44.5,3.34
Liberia,23.21679,21.89537,588.0,3672782.0,100.9,59.9,5.19
Libya,29.19874,26.54164,29853.0,6123022.0,18.8,75.6,2.64
Lithuania,26.01424,26.86102,23223.0,3219802.0,8.2,72.1,1.42
Luxembourg,26.09326,27.434040000000003,95001.0,485079.0,2.8,81.0,1.63
"Macao, China",24.895039999999998,25.713820000000002,80191.0,507274.0,6.72,79.32,0.94
"Macedonia, FYR",25.37646,26.34473,10872.0,2055266.0,11.8,74.5,1.47
Madagascar,20.73501,21.403470000000002,1528.0,19926798.0,66.7,62.2,4.79
Malawi,22.91455,22.034679999999998,674.0,13904671.0,101.1,52.4,5.78
Malaysia,25.448320000000002,24.73069,19968.0,27197419.0,8.0,74.5,2.05
Maldives,26.4132,23.219910000000002,12029.0,321026.0,16.0,78.5,2.38
Mali,23.07655,21.78881,1602.0,14223403.0,148.3,58.5,6.82
Malta,27.04993,27.683609999999998,27872.0,406392.0,6.6,80.7,1.38
Mauritania,26.26476,22.62295,3356.0,3414552.0,103.0,67.9,4.94
Mauritius,26.09824,25.15669,14615.0,1238013.0,15.8,72.9,1.58
Mexico,28.737509999999997,27.42468,15826.0,114972821.0,17.9,75.4,2.35
"Micronesia, Fed. Sts.",31.28402,28.10315,3197.0,104472.0,43.1,68.0,3.59
Moldova,27.05617,24.2369,3890.0,4111168.0,17.6,70.4,1.49
Mongolia,25.71375,24.88385,7563.0,2629666.0,34.8,64.8,2.37
Montenegro,25.70186,26.55412,14183.0,619740.0,8.1,76.0,1.72
Morocco,26.223090000000003,25.63182,6091.0,31350544.0,35.8,73.3,2.44
Mozambique,23.317339999999998,21.93536,864.0,22994867.0,114.4,54.0,5.54
Myanmar,22.47733,21.44932,2891.0,51030006.0,87.2,59.4,2.05
Namibia,25.14988,22.65008,8169.0,2115703.0,62.2,59.1,3.36
Nepal,20.72814,20.76344,1866.0,26325183.0,50.7,68.4,2.9
Netherlands,25.47269,26.01541,47388.0,16519862.0,4.8,80.3,1.77
New Zealand,27.36642,27.768929999999997,32122.0,4285380.0,6.4,80.3,2.12
Nicaragua,27.57259,25.77291,4060.0,5594524.0,28.1,77.0,2.72
Niger,21.95958,21.21958,843.0,15085130.0,141.3,58.0,7.59
Nigeria,23.674020000000002,23.03322,4684.0,151115683.0,140.9,59.2,6.02
Norway,25.73772,26.934240000000003,65216.0,4771633.0,3.6,80.8,1.96
Oman,26.66535,26.241090000000003,47799.0,2652281.0,11.9,76.2,2.89
Pakistan,23.44986,22.299139999999998,4187.0,163096985.0,95.5,64.1,3.58
Panama,27.67758,26.26959,14033.0,3498679.0,21.0,77.3,2.61
Papua New Guinea,25.77189,25.015060000000002,1982.0,6540267.0,69.7,58.6,4.07
Paraguay,25.90523,25.54223,6684.0,6047131.0,25.7,74.0,3.06
Peru,25.98511,24.770410000000002,9249.0,28642048.0,23.2,78.2,2.58
Philippines,23.4671,22.872629999999997,5332.0,90297115.0,33.4,69.8,3.26
Poland,25.918870000000002,26.6738,19996.0,38525752.0,6.7,75.4,1.33
Portugal,26.183020000000003,26.68445,27747.0,10577458.0,4.1,79.4,1.36
Puerto Rico,30.2212,28.378040000000002,35855.0,3728126.0,8.78,77.0,1.69
Qatar,28.912509999999997,28.13138,126076.0,1388962.0,9.5,77.9,2.2
Romania,25.22425,25.41069,18032.0,20741669.0,16.1,73.2,1.34
Russia,27.21272,26.01131,22506.0,143123163.0,13.5,67.9,1.49
Rwanda,22.07156,22.55453,1173.0,9750314.0,78.3,64.1,5.06
Samoa,33.659079999999996,30.42475,5731.0,183440.0,18.8,72.3,4.43
Sao Tome and Principe,24.88216,23.51233,2673.0,163595.0,61.0,66.0,4.41
Saudi Arabia,29.598779999999998,27.884320000000002,44189.0,26742842.0,18.1,78.3,2.97
Senegal,24.30968,21.927429999999998,2162.0,12229703.0,75.8,63.5,5.11
Serbia,25.669970000000003,26.51495,12522.0,9109535.0,8.0,74.3,1.41
Seychelles,27.973740000000003,25.56236,20065.0,91634.0,14.2,72.9,2.28
Sierra Leone,23.93364,22.53139,1289.0,5521838.0,179.1,53.6,5.13
Singapore,22.86642,23.83996,65991.0,4849641.0,2.8,80.6,1.28
Slovak Republic,26.323729999999998,26.92717,24670.0,5396710.0,8.8,74.9,1.31
Slovenia,26.582140000000003,27.43983,30816.0,2030599.0,3.7,78.7,1.43
Solomon Islands,28.8762,27.159879999999998,1835.0,503410.0,33.1,62.3,4.36
Somalia,22.66607,21.969170000000002,615.0,9132589.0,168.5,52.6,7.06
South Africa,29.4803,26.85538,12263.0,50348811.0,66.1,53.4,2.54
Spain,26.30554,27.49975,34676.0,45817016.0,5.0,81.1,1.42
Sri Lanka,23.11717,21.96671,6907.0,19949553.0,11.7,74.0,2.32
Sudan,23.16132,22.40484,3246.0,34470138.0,84.7,65.5,4.79
Suriname,27.749859999999998,25.49887,13470.0,506657.0,26.4,70.2,2.41
Swaziland,28.448859999999996,23.16969,5887.0,1153750.0,112.2,45.1,3.7
Sweden,25.1466,26.37629,43421.0,9226333.0,3.2,81.1,1.92
Switzerland,24.07242,26.20195,55020.0,7646542.0,4.7,82.0,1.47
Syria,28.87418,26.919690000000003,6246.0,20097057.0,16.5,76.1,3.17
Tajikistan,23.84799,23.77966,2001.0,7254072.0,56.2,69.6,3.7
Tanzania,23.0843,22.47792,2030.0,42844744.0,72.4,60.4,5.54
Thailand,24.38577,23.008029999999998,12216.0,66453255.0,15.6,73.9,1.48
Timor-Leste,21.50694,20.59082,1486.0,1030915.0,70.2,69.9,6.48
Togo,22.73858,21.87875,1219.0,6052937.0,96.4,57.5,4.88
Tonga,34.25969,30.99563,4748.0,102816.0,17.0,70.3,4.01
Trinidad and Tobago,28.27587,26.396690000000003,30875.0,1315372.0,24.9,71.7,1.8
Tunisia,27.93706,25.15699,9938.0,10408091.0,19.4,76.8,2.04
Turkey,28.247490000000003,26.703709999999997,16454.0,70344357.0,22.2,77.8,2.15
Turkmenistan,24.66154,25.24796,8877.0,4917541.0,63.9,67.2,2.48
Uganda,22.48126,22.35833,1437.0,31014427.0,89.3,56.0,6.34
Ukraine,26.23317,25.42379,8762.0,46028476.0,12.9,67.8,1.38
United Arab Emirates,29.614009999999997,28.053590000000003,73029.0,6900142.0,9.1,75.6,1.95
United Kingdom,26.944490000000002,27.392490000000002,37739.0,61689620.0,5.6,79.7,1.87
United States,28.343590000000003,28.456979999999998,50384.0,304473143.0,7.7,78.3,2.07
Uruguay,26.593040000000002,26.39123,15317.0,3350832.0,13.0,76.0,2.11
Uzbekistan,25.43432,25.32054,3733.0,26952719.0,49.2,69.6,2.46
Vanuatu,28.458759999999998,26.78926,2944.0,225335.0,28.2,63.4,3.61
Venezuela,28.134079999999997,27.445,17911.0,28116716.0,17.1,74.2,2.53
Vietnam,21.065,20.9163,4085.0,86589342.0,26.2,74.1,1.86
West Bank and Gaza,29.026429999999998,26.5775,3564.0,3854667.0,24.7,74.1,4.38
Zambia,23.05436,20.68321,3039.0,13114579.0,94.9,51.1,5.88
Zimbabwe,24.645220000000002,22.0266,1286.0,13495462.0,98.3,47.3,3.85
1 female_BMI male_BMI gdp population under5mortality life_expectancy fertility
2 Afghanistan 21.07402 20.62058 1311.0 26528741.0 110.4 52.8 6.2
3 Albania 25.65726 26.44657 8644.0 2968026.0 17.9 76.8 1.76
4 Algeria 26.368409999999997 24.5962 12314.0 34811059.0 29.5 75.5 2.73
5 Angola 23.48431 22.25083 7103.0 19842251.0 192.0 56.7 6.43
6 Antigua and Barbuda 27.50545 25.76602 25736.0 85350.0 10.9 75.5 2.16
7 Argentina 27.46523 27.5017 14646.0 40381860.0 15.4 75.4 2.24
8 Armenia 27.1342 25.355420000000002 7383.0 2975029.0 20.0 72.3 1.4
9 Australia 26.87777 27.56373 41312.0 21370348.0 5.2 81.6 1.96
10 Austria 25.09414 26.467409999999997 43952.0 8331465.0 4.6 80.4 1.41
11 Azerbaijan 27.50879 25.65117 14365.0 8868713.0 43.3 69.2 1.99
12 Bahamas 29.13948 27.24594 24373.0 348587.0 14.5 72.2 1.89
13 Bahrain 28.790940000000003 27.83721 42507.0 1115777.0 9.4 77.6 2.23
14 Bangladesh 20.54531 20.39742 2265.0 148252473.0 55.9 68.3 2.38
15 Barbados 29.221690000000002 26.384390000000003 16075.0 277315.0 15.4 75.3 1.83
16 Belarus 26.641859999999998 26.16443 14488.0 9526453.0 7.2 70.0 1.42
17 Belgium 25.1446 26.75915 41641.0 10779155.0 4.7 79.6 1.82
18 Belize 29.81663 27.02255 8293.0 306165.0 20.1 70.7 2.91
19 Benin 23.74026 22.41835 1646.0 8973525.0 116.3 59.7 5.27
20 Bhutan 22.88243 22.8218 5663.0 694990.0 48.1 70.7 2.51
21 Bolivia 26.8633 24.43335 5066.0 9599916.0 52.0 71.2 3.48
22 Bosnia and Herzegovina 26.35874 26.611629999999998 9316.0 3839749.0 8.1 77.5 1.22
23 Botswana 26.09156 22.129839999999998 13858.0 1967866.0 63.8 53.2 2.86
24 Brazil 25.99113 25.78623 13906.0 194769696.0 18.6 73.2 1.9
25 Brunei 22.892310000000002 24.18179 72351.0 380786.0 9.0 76.9 2.1
26 Bulgaria 25.51574 26.542859999999997 15368.0 7513646.0 13.7 73.2 1.43
27 Burkina Faso 21.63031 21.27157 1358.0 14709011.0 130.4 58.0 6.04
28 Burundi 21.27927 21.50291 723.0 8821795.0 108.6 59.1 6.48
29 Cambodia 21.69608 20.80496 2442.0 13933660.0 51.5 66.1 3.05
30 Cameroon 24.9527 23.681729999999998 2571.0 19570418.0 113.8 56.6 5.17
31 Canada 26.698290000000004 27.4521 41468.0 33363256.0 5.8 80.8 1.68
32 Cape Verde 24.96136 23.515220000000003 6031.0 483824.0 28.4 70.4 2.57
33 Chad 21.95424 21.485689999999998 1753.0 11139740.0 168.0 54.3 6.81
34 Chile 27.92807 27.015420000000002 18698.0 16645940.0 8.9 78.5 1.89
35 China 22.91041 22.92176 7880.0 1326690636.0 18.5 73.4 1.53
36 Colombia 26.22529 24.94041 10489.0 44901660.0 19.7 76.2 2.43
37 Comoros 22.444329999999997 22.06131 1440.0 665414.0 91.2 67.1 5.05
38 Congo, Dem. Rep. 21.6677 19.86692 607.0 61809278.0 124.5 57.5 6.45
39 Congo, Rep. 23.10824 21.87134 5022.0 3832771.0 72.6 58.8 5.1
40 Costa Rica 27.03497 26.47897 12219.0 4429506.0 10.3 79.8 1.91
41 Cote d'Ivoire 23.82088 22.56469 2854.0 19261647.0 116.9 55.4 4.91
42 Croatia 25.17882 26.596290000000003 21873.0 4344151.0 5.9 76.2 1.43
43 Cuba 26.576140000000002 25.06867 17765.0 11290239.0 6.3 77.6 1.5
44 Cyprus 25.92587 27.41899 35828.0 1077010.0 4.2 80.0 1.49
45 Denmark 25.106270000000002 26.13287 45017.0 5495302.0 4.3 78.9 1.89
46 Djibouti 24.38177 23.38403 2502.0 809639.0 81.0 61.8 3.76
47 Ecuador 27.062690000000003 25.58841 9244.0 14447600.0 26.8 74.7 2.73
48 Egypt 30.099970000000003 26.732429999999997 9974.0 78976122.0 31.4 70.2 2.95
49 El Salvador 27.84092 26.36751 7450.0 6004199.0 21.6 73.7 2.32
50 Equatorial Guinea 24.528370000000002 23.7664 40143.0 686223.0 118.4 57.5 5.31
51 Eritrea 21.082320000000003 20.885089999999998 1088.0 4500638.0 60.4 60.1 5.16
52 Estonia 25.185979999999997 26.264459999999996 24743.0 1339941.0 5.5 74.2 1.62
53 Ethiopia 20.71463 20.247 931.0 83079608.0 86.9 60.0 5.19
54 Fiji 29.339409999999997 26.53078 7129.0 843206.0 24.0 64.9 2.74
55 Finland 25.58418 26.733390000000004 42122.0 5314170.0 3.3 79.6 1.85
56 France 24.82949 25.853289999999998 37505.0 62309529.0 4.3 81.1 1.97
57 Gabon 25.95121 24.0762 15800.0 1473741.0 68.0 61.7 4.28
58 Gambia 24.82101 21.65029 1566.0 1586749.0 87.4 65.7 5.8
59 Georgia 26.45014 25.54942 5900.0 4343290.0 19.3 71.8 1.79
60 Germany 25.73903 27.165090000000003 41199.0 80665906.0 4.4 80.0 1.37
61 Ghana 24.33014 22.842470000000002 2907.0 23115919.0 79.9 62.0 4.19
62 Greece 24.92026 26.33786 32197.0 11161755.0 4.9 80.2 1.46
63 Grenada 27.31948 25.179879999999997 12116.0 103934.0 13.5 70.8 2.28
64 Guatemala 26.84324 25.29947 6960.0 14106687.0 36.9 71.2 4.12
65 Guinea 22.45206 22.52449 1230.0 10427356.0 121.0 57.1 5.34
66 Guinea-Bissau 22.92809 21.64338 1326.0 1561293.0 127.6 53.6 5.25
67 Guyana 26.470190000000002 23.68465 5208.0 748096.0 41.9 65.0 2.74
68 Haiti 23.27785 23.66302 1600.0 9705130.0 83.3 61.0 3.5
69 Honduras 26.73191 25.10872 4391.0 7259470.0 26.5 71.8 3.27
70 Hong Kong, China 23.71046 25.057470000000002 46635.0 6910384.0 3.06 82.49 1.04
71 Hungary 25.97839 27.115679999999998 23334.0 10050699.0 7.2 73.9 1.33
72 Iceland 26.02599 27.206870000000002 42294.0 310033.0 2.7 82.4 2.12
73 India 21.31478 20.95956 3901.0 1197070109.0 65.6 64.7 2.64
74 Indonesia 22.986929999999997 21.85576 7856.0 235360765.0 36.2 69.4 2.48
75 Iran 27.236079999999998 25.310029999999998 15955.0 72530693.0 21.4 73.1 1.88
76 Iraq 28.411170000000002 26.71017 11616.0 29163327.0 38.3 66.6 4.34
77 Ireland 26.62176 27.65325 47713.0 4480145.0 4.5 80.1 2.0
78 Israel 27.301920000000003 27.13151 28562.0 7093808.0 4.9 80.6 2.92
79 Italy 24.79289 26.4802 37475.0 59319234.0 4.1 81.5 1.39
80 Jamaica 27.22601 24.00421 8951.0 2717344.0 18.9 75.1 2.39
81 Japan 21.87088 23.50004 34800.0 127317900.0 3.4 82.5 1.34
82 Jordan 29.218009999999996 27.47362 10897.0 6010035.0 22.1 76.9 3.59
83 Kazakhstan 26.65065 26.290779999999998 18797.0 15915966.0 25.9 67.1 2.51
84 Kenya 23.06181 21.592579999999998 2358.0 38244442.0 71.0 60.8 4.76
85 Kiribati 31.30769 29.2384 1803.0 98437.0 64.5 61.5 3.13
86 Kuwait 31.161859999999997 29.172109999999996 91966.0 2705290.0 11.3 77.3 2.68
87 Latvia 25.615129999999997 26.45693 20977.0 2144215.0 10.5 72.4 1.5
88 Lebanon 27.70471 27.20117 14158.0 4109389.0 11.3 77.8 1.57
89 Lesotho 26.780520000000003 21.90157 2041.0 1972194.0 114.2 44.5 3.34
90 Liberia 23.21679 21.89537 588.0 3672782.0 100.9 59.9 5.19
91 Libya 29.19874 26.54164 29853.0 6123022.0 18.8 75.6 2.64
92 Lithuania 26.01424 26.86102 23223.0 3219802.0 8.2 72.1 1.42
93 Luxembourg 26.09326 27.434040000000003 95001.0 485079.0 2.8 81.0 1.63
94 Macao, China 24.895039999999998 25.713820000000002 80191.0 507274.0 6.72 79.32 0.94
95 Macedonia, FYR 25.37646 26.34473 10872.0 2055266.0 11.8 74.5 1.47
96 Madagascar 20.73501 21.403470000000002 1528.0 19926798.0 66.7 62.2 4.79
97 Malawi 22.91455 22.034679999999998 674.0 13904671.0 101.1 52.4 5.78
98 Malaysia 25.448320000000002 24.73069 19968.0 27197419.0 8.0 74.5 2.05
99 Maldives 26.4132 23.219910000000002 12029.0 321026.0 16.0 78.5 2.38
100 Mali 23.07655 21.78881 1602.0 14223403.0 148.3 58.5 6.82
101 Malta 27.04993 27.683609999999998 27872.0 406392.0 6.6 80.7 1.38
102 Mauritania 26.26476 22.62295 3356.0 3414552.0 103.0 67.9 4.94
103 Mauritius 26.09824 25.15669 14615.0 1238013.0 15.8 72.9 1.58
104 Mexico 28.737509999999997 27.42468 15826.0 114972821.0 17.9 75.4 2.35
105 Micronesia, Fed. Sts. 31.28402 28.10315 3197.0 104472.0 43.1 68.0 3.59
106 Moldova 27.05617 24.2369 3890.0 4111168.0 17.6 70.4 1.49
107 Mongolia 25.71375 24.88385 7563.0 2629666.0 34.8 64.8 2.37
108 Montenegro 25.70186 26.55412 14183.0 619740.0 8.1 76.0 1.72
109 Morocco 26.223090000000003 25.63182 6091.0 31350544.0 35.8 73.3 2.44
110 Mozambique 23.317339999999998 21.93536 864.0 22994867.0 114.4 54.0 5.54
111 Myanmar 22.47733 21.44932 2891.0 51030006.0 87.2 59.4 2.05
112 Namibia 25.14988 22.65008 8169.0 2115703.0 62.2 59.1 3.36
113 Nepal 20.72814 20.76344 1866.0 26325183.0 50.7 68.4 2.9
114 Netherlands 25.47269 26.01541 47388.0 16519862.0 4.8 80.3 1.77
115 New Zealand 27.36642 27.768929999999997 32122.0 4285380.0 6.4 80.3 2.12
116 Nicaragua 27.57259 25.77291 4060.0 5594524.0 28.1 77.0 2.72
117 Niger 21.95958 21.21958 843.0 15085130.0 141.3 58.0 7.59
118 Nigeria 23.674020000000002 23.03322 4684.0 151115683.0 140.9 59.2 6.02
119 Norway 25.73772 26.934240000000003 65216.0 4771633.0 3.6 80.8 1.96
120 Oman 26.66535 26.241090000000003 47799.0 2652281.0 11.9 76.2 2.89
121 Pakistan 23.44986 22.299139999999998 4187.0 163096985.0 95.5 64.1 3.58
122 Panama 27.67758 26.26959 14033.0 3498679.0 21.0 77.3 2.61
123 Papua New Guinea 25.77189 25.015060000000002 1982.0 6540267.0 69.7 58.6 4.07
124 Paraguay 25.90523 25.54223 6684.0 6047131.0 25.7 74.0 3.06
125 Peru 25.98511 24.770410000000002 9249.0 28642048.0 23.2 78.2 2.58
126 Philippines 23.4671 22.872629999999997 5332.0 90297115.0 33.4 69.8 3.26
127 Poland 25.918870000000002 26.6738 19996.0 38525752.0 6.7 75.4 1.33
128 Portugal 26.183020000000003 26.68445 27747.0 10577458.0 4.1 79.4 1.36
129 Puerto Rico 30.2212 28.378040000000002 35855.0 3728126.0 8.78 77.0 1.69
130 Qatar 28.912509999999997 28.13138 126076.0 1388962.0 9.5 77.9 2.2
131 Romania 25.22425 25.41069 18032.0 20741669.0 16.1 73.2 1.34
132 Russia 27.21272 26.01131 22506.0 143123163.0 13.5 67.9 1.49
133 Rwanda 22.07156 22.55453 1173.0 9750314.0 78.3 64.1 5.06
134 Samoa 33.659079999999996 30.42475 5731.0 183440.0 18.8 72.3 4.43
135 Sao Tome and Principe 24.88216 23.51233 2673.0 163595.0 61.0 66.0 4.41
136 Saudi Arabia 29.598779999999998 27.884320000000002 44189.0 26742842.0 18.1 78.3 2.97
137 Senegal 24.30968 21.927429999999998 2162.0 12229703.0 75.8 63.5 5.11
138 Serbia 25.669970000000003 26.51495 12522.0 9109535.0 8.0 74.3 1.41
139 Seychelles 27.973740000000003 25.56236 20065.0 91634.0 14.2 72.9 2.28
140 Sierra Leone 23.93364 22.53139 1289.0 5521838.0 179.1 53.6 5.13
141 Singapore 22.86642 23.83996 65991.0 4849641.0 2.8 80.6 1.28
142 Slovak Republic 26.323729999999998 26.92717 24670.0 5396710.0 8.8 74.9 1.31
143 Slovenia 26.582140000000003 27.43983 30816.0 2030599.0 3.7 78.7 1.43
144 Solomon Islands 28.8762 27.159879999999998 1835.0 503410.0 33.1 62.3 4.36
145 Somalia 22.66607 21.969170000000002 615.0 9132589.0 168.5 52.6 7.06
146 South Africa 29.4803 26.85538 12263.0 50348811.0 66.1 53.4 2.54
147 Spain 26.30554 27.49975 34676.0 45817016.0 5.0 81.1 1.42
148 Sri Lanka 23.11717 21.96671 6907.0 19949553.0 11.7 74.0 2.32
149 Sudan 23.16132 22.40484 3246.0 34470138.0 84.7 65.5 4.79
150 Suriname 27.749859999999998 25.49887 13470.0 506657.0 26.4 70.2 2.41
151 Swaziland 28.448859999999996 23.16969 5887.0 1153750.0 112.2 45.1 3.7
152 Sweden 25.1466 26.37629 43421.0 9226333.0 3.2 81.1 1.92
153 Switzerland 24.07242 26.20195 55020.0 7646542.0 4.7 82.0 1.47
154 Syria 28.87418 26.919690000000003 6246.0 20097057.0 16.5 76.1 3.17
155 Tajikistan 23.84799 23.77966 2001.0 7254072.0 56.2 69.6 3.7
156 Tanzania 23.0843 22.47792 2030.0 42844744.0 72.4 60.4 5.54
157 Thailand 24.38577 23.008029999999998 12216.0 66453255.0 15.6 73.9 1.48
158 Timor-Leste 21.50694 20.59082 1486.0 1030915.0 70.2 69.9 6.48
159 Togo 22.73858 21.87875 1219.0 6052937.0 96.4 57.5 4.88
160 Tonga 34.25969 30.99563 4748.0 102816.0 17.0 70.3 4.01
161 Trinidad and Tobago 28.27587 26.396690000000003 30875.0 1315372.0 24.9 71.7 1.8
162 Tunisia 27.93706 25.15699 9938.0 10408091.0 19.4 76.8 2.04
163 Turkey 28.247490000000003 26.703709999999997 16454.0 70344357.0 22.2 77.8 2.15
164 Turkmenistan 24.66154 25.24796 8877.0 4917541.0 63.9 67.2 2.48
165 Uganda 22.48126 22.35833 1437.0 31014427.0 89.3 56.0 6.34
166 Ukraine 26.23317 25.42379 8762.0 46028476.0 12.9 67.8 1.38
167 United Arab Emirates 29.614009999999997 28.053590000000003 73029.0 6900142.0 9.1 75.6 1.95
168 United Kingdom 26.944490000000002 27.392490000000002 37739.0 61689620.0 5.6 79.7 1.87
169 United States 28.343590000000003 28.456979999999998 50384.0 304473143.0 7.7 78.3 2.07
170 Uruguay 26.593040000000002 26.39123 15317.0 3350832.0 13.0 76.0 2.11
171 Uzbekistan 25.43432 25.32054 3733.0 26952719.0 49.2 69.6 2.46
172 Vanuatu 28.458759999999998 26.78926 2944.0 225335.0 28.2 63.4 3.61
173 Venezuela 28.134079999999997 27.445 17911.0 28116716.0 17.1 74.2 2.53
174 Vietnam 21.065 20.9163 4085.0 86589342.0 26.2 74.1 1.86
175 West Bank and Gaza 29.026429999999998 26.5775 3564.0 3854667.0 24.7 74.1 4.38
176 Zambia 23.05436 20.68321 3039.0 13114579.0 94.9 51.1 5.88
177 Zimbabwe 24.645220000000002 22.0266 1286.0 13495462.0 98.3 47.3 3.85

151
labs05/iris.data Normal file
View File

@ -0,0 +1,151 @@
sepal_length,sepal_width,petal_length,petal_width,class
5.1,3.5,1.4,0.2,Iris-setosa
4.9,3.0,1.4,0.2,Iris-setosa
4.7,3.2,1.3,0.2,Iris-setosa
4.6,3.1,1.5,0.2,Iris-setosa
5.0,3.6,1.4,0.2,Iris-setosa
5.4,3.9,1.7,0.4,Iris-setosa
4.6,3.4,1.4,0.3,Iris-setosa
5.0,3.4,1.5,0.2,Iris-setosa
4.4,2.9,1.4,0.2,Iris-setosa
4.9,3.1,1.5,0.1,Iris-setosa
5.4,3.7,1.5,0.2,Iris-setosa
4.8,3.4,1.6,0.2,Iris-setosa
4.8,3.0,1.4,0.1,Iris-setosa
4.3,3.0,1.1,0.1,Iris-setosa
5.8,4.0,1.2,0.2,Iris-setosa
5.7,4.4,1.5,0.4,Iris-setosa
5.4,3.9,1.3,0.4,Iris-setosa
5.1,3.5,1.4,0.3,Iris-setosa
5.7,3.8,1.7,0.3,Iris-setosa
5.1,3.8,1.5,0.3,Iris-setosa
5.4,3.4,1.7,0.2,Iris-setosa
5.1,3.7,1.5,0.4,Iris-setosa
4.6,3.6,1.0,0.2,Iris-setosa
5.1,3.3,1.7,0.5,Iris-setosa
4.8,3.4,1.9,0.2,Iris-setosa
5.0,3.0,1.6,0.2,Iris-setosa
5.0,3.4,1.6,0.4,Iris-setosa
5.2,3.5,1.5,0.2,Iris-setosa
5.2,3.4,1.4,0.2,Iris-setosa
4.7,3.2,1.6,0.2,Iris-setosa
4.8,3.1,1.6,0.2,Iris-setosa
5.4,3.4,1.5,0.4,Iris-setosa
5.2,4.1,1.5,0.1,Iris-setosa
5.5,4.2,1.4,0.2,Iris-setosa
4.9,3.1,1.5,0.1,Iris-setosa
5.0,3.2,1.2,0.2,Iris-setosa
5.5,3.5,1.3,0.2,Iris-setosa
4.9,3.1,1.5,0.1,Iris-setosa
4.4,3.0,1.3,0.2,Iris-setosa
5.1,3.4,1.5,0.2,Iris-setosa
5.0,3.5,1.3,0.3,Iris-setosa
4.5,2.3,1.3,0.3,Iris-setosa
4.4,3.2,1.3,0.2,Iris-setosa
5.0,3.5,1.6,0.6,Iris-setosa
5.1,3.8,1.9,0.4,Iris-setosa
4.8,3.0,1.4,0.3,Iris-setosa
5.1,3.8,1.6,0.2,Iris-setosa
4.6,3.2,1.4,0.2,Iris-setosa
5.3,3.7,1.5,0.2,Iris-setosa
5.0,3.3,1.4,0.2,Iris-setosa
7.0,3.2,4.7,1.4,Iris-versicolor
6.4,3.2,4.5,1.5,Iris-versicolor
6.9,3.1,4.9,1.5,Iris-versicolor
5.5,2.3,4.0,1.3,Iris-versicolor
6.5,2.8,4.6,1.5,Iris-versicolor
5.7,2.8,4.5,1.3,Iris-versicolor
6.3,3.3,4.7,1.6,Iris-versicolor
4.9,2.4,3.3,1.0,Iris-versicolor
6.6,2.9,4.6,1.3,Iris-versicolor
5.2,2.7,3.9,1.4,Iris-versicolor
5.0,2.0,3.5,1.0,Iris-versicolor
5.9,3.0,4.2,1.5,Iris-versicolor
6.0,2.2,4.0,1.0,Iris-versicolor
6.1,2.9,4.7,1.4,Iris-versicolor
5.6,2.9,3.6,1.3,Iris-versicolor
6.7,3.1,4.4,1.4,Iris-versicolor
5.6,3.0,4.5,1.5,Iris-versicolor
5.8,2.7,4.1,1.0,Iris-versicolor
6.2,2.2,4.5,1.5,Iris-versicolor
5.6,2.5,3.9,1.1,Iris-versicolor
5.9,3.2,4.8,1.8,Iris-versicolor
6.1,2.8,4.0,1.3,Iris-versicolor
6.3,2.5,4.9,1.5,Iris-versicolor
6.1,2.8,4.7,1.2,Iris-versicolor
6.4,2.9,4.3,1.3,Iris-versicolor
6.6,3.0,4.4,1.4,Iris-versicolor
6.8,2.8,4.8,1.4,Iris-versicolor
6.7,3.0,5.0,1.7,Iris-versicolor
6.0,2.9,4.5,1.5,Iris-versicolor
5.7,2.6,3.5,1.0,Iris-versicolor
5.5,2.4,3.8,1.1,Iris-versicolor
5.5,2.4,3.7,1.0,Iris-versicolor
5.8,2.7,3.9,1.2,Iris-versicolor
6.0,2.7,5.1,1.6,Iris-versicolor
5.4,3.0,4.5,1.5,Iris-versicolor
6.0,3.4,4.5,1.6,Iris-versicolor
6.7,3.1,4.7,1.5,Iris-versicolor
6.3,2.3,4.4,1.3,Iris-versicolor
5.6,3.0,4.1,1.3,Iris-versicolor
5.5,2.5,4.0,1.3,Iris-versicolor
5.5,2.6,4.4,1.2,Iris-versicolor
6.1,3.0,4.6,1.4,Iris-versicolor
5.8,2.6,4.0,1.2,Iris-versicolor
5.0,2.3,3.3,1.0,Iris-versicolor
5.6,2.7,4.2,1.3,Iris-versicolor
5.7,3.0,4.2,1.2,Iris-versicolor
5.7,2.9,4.2,1.3,Iris-versicolor
6.2,2.9,4.3,1.3,Iris-versicolor
5.1,2.5,3.0,1.1,Iris-versicolor
5.7,2.8,4.1,1.3,Iris-versicolor
6.3,3.3,6.0,2.5,Iris-virginica
5.8,2.7,5.1,1.9,Iris-virginica
7.1,3.0,5.9,2.1,Iris-virginica
6.3,2.9,5.6,1.8,Iris-virginica
6.5,3.0,5.8,2.2,Iris-virginica
7.6,3.0,6.6,2.1,Iris-virginica
4.9,2.5,4.5,1.7,Iris-virginica
7.3,2.9,6.3,1.8,Iris-virginica
6.7,2.5,5.8,1.8,Iris-virginica
7.2,3.6,6.1,2.5,Iris-virginica
6.5,3.2,5.1,2.0,Iris-virginica
6.4,2.7,5.3,1.9,Iris-virginica
6.8,3.0,5.5,2.1,Iris-virginica
5.7,2.5,5.0,2.0,Iris-virginica
5.8,2.8,5.1,2.4,Iris-virginica
6.4,3.2,5.3,2.3,Iris-virginica
6.5,3.0,5.5,1.8,Iris-virginica
7.7,3.8,6.7,2.2,Iris-virginica
7.7,2.6,6.9,2.3,Iris-virginica
6.0,2.2,5.0,1.5,Iris-virginica
6.9,3.2,5.7,2.3,Iris-virginica
5.6,2.8,4.9,2.0,Iris-virginica
7.7,2.8,6.7,2.0,Iris-virginica
6.3,2.7,4.9,1.8,Iris-virginica
6.7,3.3,5.7,2.1,Iris-virginica
7.2,3.2,6.0,1.8,Iris-virginica
6.2,2.8,4.8,1.8,Iris-virginica
6.1,3.0,4.9,1.8,Iris-virginica
6.4,2.8,5.6,2.1,Iris-virginica
7.2,3.0,5.8,1.6,Iris-virginica
7.4,2.8,6.1,1.9,Iris-virginica
7.9,3.8,6.4,2.0,Iris-virginica
6.4,2.8,5.6,2.2,Iris-virginica
6.3,2.8,5.1,1.5,Iris-virginica
6.1,2.6,5.6,1.4,Iris-virginica
7.7,3.0,6.1,2.3,Iris-virginica
6.3,3.4,5.6,2.4,Iris-virginica
6.4,3.1,5.5,1.8,Iris-virginica
6.0,3.0,4.8,1.8,Iris-virginica
6.9,3.1,5.4,2.1,Iris-virginica
6.7,3.1,5.6,2.4,Iris-virginica
6.9,3.1,5.1,2.3,Iris-virginica
5.8,2.7,5.1,1.9,Iris-virginica
6.8,3.2,5.9,2.3,Iris-virginica
6.7,3.3,5.7,2.5,Iris-virginica
6.7,3.0,5.2,2.3,Iris-virginica
6.3,2.5,5.0,1.9,Iris-virginica
6.5,3.0,5.2,2.0,Iris-virginica
6.2,3.4,5.4,2.3,Iris-virginica
5.9,3.0,5.1,1.8,Iris-virginica

5001
labs05/mieszkania.csv Normal file

File diff suppressed because it is too large Load Diff

1200
labs05/points.csv Normal file

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,210 @@
3.312,5.763
3.333,5.554
3.337,5.291
3.379,5.324
3.562,5.658
3.312,5.386
3.259,5.563
3.302,5.42
3.465,6.053
3.505,5.884
3.242,5.714
3.201,5.438
3.199,5.439
3.156,5.479
3.114,5.482
3.333,5.351
3.383,5.119
3.514,5.527
3.466,5.205
3.049,5.226
3.129,5.658
3.168,5.52
3.507,5.618
2.936,5.099
3.245,5.789
3.421,5.833
3.026,5.395
2.956,5.395
3.221,5.541
3.065,5.516
2.975,5.454
3.371,5.757
3.186,5.717
3.15,5.585
3.328,5.712
3.485,5.709
3.464,5.826
3.683,5.832
3.288,5.656
3.298,5.397
3.156,5.348
3.158,5.351
3.201,5.138
3.396,5.877
3.462,5.579
3.155,5.376
3.393,5.701
3.377,5.57
3.291,5.545
3.258,5.678
3.272,5.585
3.434,5.674
3.113,5.715
3.199,5.504
3.113,5.741
3.212,5.702
3.377,5.388
3.412,5.384
3.419,5.662
3.032,5.159
2.85,5.008
2.879,4.902
3.042,5.076
3.07,5.395
3.026,5.262
3.119,5.139
3.19,5.63
3.158,5.609
3.153,5.569
2.882,5.412
3.561,6.191
3.484,5.998
3.594,5.978
3.93,6.154
3.486,6.017
3.438,5.927
3.403,6.064
3.814,6.579
3.639,6.445
3.566,5.85
3.467,5.875
3.857,6.006
3.864,6.285
3.772,6.384
3.801,6.366
3.651,6.173
3.764,6.084
3.67,6.549
4.033,6.573
4.032,6.45
3.785,6.581
3.796,6.172
3.693,6.272
3.86,6.037
3.485,6.666
3.463,6.139
3.81,6.341
3.552,6.449
3.512,6.271
3.684,6.219
3.525,5.718
3.694,5.89
3.892,6.113
3.681,6.369
3.755,6.248
3.786,6.037
3.806,6.152
3.573,6.033
3.763,6.675
3.674,6.153
3.769,6.107
3.791,6.303
3.902,6.183
3.737,6.259
3.991,6.563
3.719,6.416
3.897,6.051
3.815,6.245
3.769,6.227
3.857,6.493
3.962,6.315
3.563,6.059
3.387,5.762
3.771,5.98
3.582,5.363
3.869,6.111
3.594,6.285
3.687,5.979
3.773,6.513
3.69,5.791
3.755,5.979
3.825,6.144
3.268,5.884
3.395,5.845
3.408,5.776
3.465,5.477
3.574,6.145
3.231,5.92
3.286,5.832
3.472,5.872
2.994,5.472
3.073,5.541
3.074,5.389
2.967,5.224
2.777,5.314
2.687,5.279
2.719,5.176
2.967,5.267
2.911,5.386
2.648,5.317
2.84,5.263
2.776,5.405
2.833,5.408
2.693,5.22
2.755,5.175
2.675,5.25
2.849,5.053
2.745,5.394
2.678,5.444
2.695,5.304
2.879,5.451
2.81,5.35
2.847,5.267
2.968,5.333
2.794,5.011
2.941,5.105
2.897,5.319
2.837,5.417
2.668,5.176
2.715,5.09
2.701,5.325
2.845,5.167
2.763,5.088
2.763,5.136
2.641,5.278
2.821,4.981
2.71,5.186
2.642,5.145
2.758,5.18
2.893,5.357
2.775,5.09
3.017,5.236
2.909,5.24
2.85,5.108
3.026,5.495
2.683,5.363
2.716,5.413
2.675,5.088
2.821,5.089
2.787,4.899
2.717,5.046
2.804,5.091
2.953,5.132
2.63,5.18
2.975,5.236
3.126,5.16
3.054,5.224
3.128,5.32
2.911,5.41
3.155,5.073
2.989,5.219
3.135,4.984
2.81,5.009
3.091,5.183
2.96,5.204
2.981,5.137
2.795,5.14
3.232,5.236
2.836,5.175
2.974,5.243
1 3.312 5.763
2 3.333 5.554
3 3.337 5.291
4 3.379 5.324
5 3.562 5.658
6 3.312 5.386
7 3.259 5.563
8 3.302 5.42
9 3.465 6.053
10 3.505 5.884
11 3.242 5.714
12 3.201 5.438
13 3.199 5.439
14 3.156 5.479
15 3.114 5.482
16 3.333 5.351
17 3.383 5.119
18 3.514 5.527
19 3.466 5.205
20 3.049 5.226
21 3.129 5.658
22 3.168 5.52
23 3.507 5.618
24 2.936 5.099
25 3.245 5.789
26 3.421 5.833
27 3.026 5.395
28 2.956 5.395
29 3.221 5.541
30 3.065 5.516
31 2.975 5.454
32 3.371 5.757
33 3.186 5.717
34 3.15 5.585
35 3.328 5.712
36 3.485 5.709
37 3.464 5.826
38 3.683 5.832
39 3.288 5.656
40 3.298 5.397
41 3.156 5.348
42 3.158 5.351
43 3.201 5.138
44 3.396 5.877
45 3.462 5.579
46 3.155 5.376
47 3.393 5.701
48 3.377 5.57
49 3.291 5.545
50 3.258 5.678
51 3.272 5.585
52 3.434 5.674
53 3.113 5.715
54 3.199 5.504
55 3.113 5.741
56 3.212 5.702
57 3.377 5.388
58 3.412 5.384
59 3.419 5.662
60 3.032 5.159
61 2.85 5.008
62 2.879 4.902
63 3.042 5.076
64 3.07 5.395
65 3.026 5.262
66 3.119 5.139
67 3.19 5.63
68 3.158 5.609
69 3.153 5.569
70 2.882 5.412
71 3.561 6.191
72 3.484 5.998
73 3.594 5.978
74 3.93 6.154
75 3.486 6.017
76 3.438 5.927
77 3.403 6.064
78 3.814 6.579
79 3.639 6.445
80 3.566 5.85
81 3.467 5.875
82 3.857 6.006
83 3.864 6.285
84 3.772 6.384
85 3.801 6.366
86 3.651 6.173
87 3.764 6.084
88 3.67 6.549
89 4.033 6.573
90 4.032 6.45
91 3.785 6.581
92 3.796 6.172
93 3.693 6.272
94 3.86 6.037
95 3.485 6.666
96 3.463 6.139
97 3.81 6.341
98 3.552 6.449
99 3.512 6.271
100 3.684 6.219
101 3.525 5.718
102 3.694 5.89
103 3.892 6.113
104 3.681 6.369
105 3.755 6.248
106 3.786 6.037
107 3.806 6.152
108 3.573 6.033
109 3.763 6.675
110 3.674 6.153
111 3.769 6.107
112 3.791 6.303
113 3.902 6.183
114 3.737 6.259
115 3.991 6.563
116 3.719 6.416
117 3.897 6.051
118 3.815 6.245
119 3.769 6.227
120 3.857 6.493
121 3.962 6.315
122 3.563 6.059
123 3.387 5.762
124 3.771 5.98
125 3.582 5.363
126 3.869 6.111
127 3.594 6.285
128 3.687 5.979
129 3.773 6.513
130 3.69 5.791
131 3.755 5.979
132 3.825 6.144
133 3.268 5.884
134 3.395 5.845
135 3.408 5.776
136 3.465 5.477
137 3.574 6.145
138 3.231 5.92
139 3.286 5.832
140 3.472 5.872
141 2.994 5.472
142 3.073 5.541
143 3.074 5.389
144 2.967 5.224
145 2.777 5.314
146 2.687 5.279
147 2.719 5.176
148 2.967 5.267
149 2.911 5.386
150 2.648 5.317
151 2.84 5.263
152 2.776 5.405
153 2.833 5.408
154 2.693 5.22
155 2.755 5.175
156 2.675 5.25
157 2.849 5.053
158 2.745 5.394
159 2.678 5.444
160 2.695 5.304
161 2.879 5.451
162 2.81 5.35
163 2.847 5.267
164 2.968 5.333
165 2.794 5.011
166 2.941 5.105
167 2.897 5.319
168 2.837 5.417
169 2.668 5.176
170 2.715 5.09
171 2.701 5.325
172 2.845 5.167
173 2.763 5.088
174 2.763 5.136
175 2.641 5.278
176 2.821 4.981
177 2.71 5.186
178 2.642 5.145
179 2.758 5.18
180 2.893 5.357
181 2.775 5.09
182 3.017 5.236
183 2.909 5.24
184 2.85 5.108
185 3.026 5.495
186 2.683 5.363
187 2.716 5.413
188 2.675 5.088
189 2.821 5.089
190 2.787 4.899
191 2.717 5.046
192 2.804 5.091
193 2.953 5.132
194 2.63 5.18
195 2.975 5.236
196 3.126 5.16
197 3.054 5.224
198 3.128 5.32
199 2.911 5.41
200 3.155 5.073
201 2.989 5.219
202 3.135 4.984
203 2.81 5.009
204 3.091 5.183
205 2.96 5.204
206 2.981 5.137
207 2.795 5.14
208 3.232 5.236
209 2.836 5.175
210 2.974 5.243

606
labs05/sklearn cz. 1.ipynb Normal file

File diff suppressed because one or more lines are too long

394
labs05/sklearn cz. 2.ipynb Normal file
View File

@ -0,0 +1,394 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Klasyfikacja w Pythonie"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**zad. 1** Które z poniższych problemów jest problemem regresji, a które klasyfikacji?\n",
" 1. Sprawdzenie, czy wiadomość jest spamem.\n",
" 1. Przewidzenie oceny (od 1 do 5 gwiazdek) na podstawie komentarza.\n",
" 1. OCR cyfr: rozpoznanie cyfry z obrazka.\n",
" \n",
" Jeżeli problem jest klasyfikacyjny, to jakie mamy klasy?"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Miary dla klasyfikacji"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Istnieje wieje miar (metryk), na podstawie których możemy ocenić jakość modelu. Podobnie jak w przypadku regresji liniowej potrzebne są dwie listy: lista poprawnych klas i lista predykcji z modelu. Najpopularniejszą z metryk jest trafność, którą definiuje się w następujący sposób:\n",
" $$ACC = \\frac{k}{N}$$ \n",
" \n",
" gdzie: \n",
" * $k$ to liczba poprawnie zaklasyfikowanych przypadków,\n",
" * $N$ liczebność zbioru testującego."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**zadanie** Napisz funkcję, która jako parametry przyjmnie dwie listy (lista poprawnych klas i wyjście z klasyfikatora) i zwróci trafność."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def accuracy_measure(true, predicted):\n",
" pass\n",
"\n",
"true_label = [1, 1, 1, 0, 0]\n",
"predicted = [0, 1, 0, 1, 0]\n",
"print(\"ACC:\", accuracy_measure(true_label, predicted))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Klasyfikator $k$ najbliższych sąsiadów *(ang. k-nearest neighbors, KNN)*"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Klasyfikator [KNN](https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm), który został wprowadzony na ostatnim wykładzie, jest bardzo intuicyjny. Pomysł, który stoi za tym klasyfikatorem jest bardzo prosty: Jeżeli mamy nowy obiekt do zaklasyfikowania, to szukamy wśród danych trenujących $k$ najbardziej podobnych do niego przykładów i na ich podstawie decydujemy (np. biorąc większość) do jakie klasy powinien należeć dany obiekt."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"** Przykład 1** Mamy za zadanie przydzielenie obiektów do dwóch klas: trójkątów lub kwadratów. Rozpatrywany obiekt jest zaznaczony zielonym kółkiem. Przyjmując $k=3$, mamy wśród sąsiadów 2 trójkąty i 1 kwadrat. Stąd obiekt powinienm zostać zaklasyfikowany jako trójkąt. Jak zmienia się sytuacja, gdy przyjmiemy $k=5$?\n",
"\n",
"![Przykład 1](./220px-KnnClassification.svg.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Herbal Iris"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"*Herbal Iris* jest klasycznym zbiorem danych w uczeniu maszynowym, który powstał w 1936 roku. Zawiera on informacje na 150 egzemplarzy roślin, które należą do jednej z 3 odmian."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**zad. 2** Wczytaj do zmiennej ``data`` zbiór *Herbal Iris*, który znajduje się w pliku ``iris.data``. Jest to plik csv."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**zad. 3** Odpowiedz na poniższe pytania:\n",
" 1. Które atrybuty są wejściowe, a w której kolumnie znajduje się klasa wyjściowa?\n",
" 1. Ile jest różnych klas? Wypisz je ekran.\n",
" 1. Jaka jest średnia wartość w kolumnie ``sepal_length``? Jak zachowuje się średnia, jeżeli policzymy ją dla każdej z klas osobno?"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Wytrenujmy klasyfikator *KNN*, ale najpierw przygotujmy dane. Fukcja ``train_test_split`` dzieli zadany zbiór danych na dwie części. My wykorzystamy ją do podziału na zbiór treningowy (66%) i testowy (33%), służy do tego parametr ``test_size``."
]
},
{
"cell_type": "code",
"execution_count": 95,
"metadata": {},
"outputs": [],
"source": [
"from sklearn.model_selection import train_test_split\n",
"\n",
"X = data.loc[:, 'sepal_length':'petal_width']\n",
"Y = data['class']\n",
"\n",
"(train_X, test_X, train_Y, test_Y) = train_test_split(X, Y, test_size=0.33, random_state=42)\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Trenowanie klasyfikatora wygląda bardzo podobnie do treningi modelu regresji liniowej:"
]
},
{
"cell_type": "code",
"execution_count": 96,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',\n",
" metric_params=None, n_jobs=1, n_neighbors=3, p=2,\n",
" weights='uniform')"
]
},
"execution_count": 96,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from sklearn.neighbors import KNeighborsClassifier\n",
"\n",
"model = KNeighborsClassifier(n_neighbors=3)\n",
"model.fit(train_X, train_Y)\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Mając wytrenowany model możemy wykorzystać go do predykcji na zbiorze testowym."
]
},
{
"cell_type": "code",
"execution_count": 97,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Zaklasyfikowane: Iris-versicolor, Orginalne: Iris-versicolor\n",
"Zaklasyfikowane: Iris-setosa, Orginalne: Iris-setosa\n",
"Zaklasyfikowane: Iris-virginica, Orginalne: Iris-virginica\n",
"Zaklasyfikowane: Iris-versicolor, Orginalne: Iris-versicolor\n",
"Zaklasyfikowane: Iris-versicolor, Orginalne: Iris-versicolor\n",
"Zaklasyfikowane: Iris-setosa, Orginalne: Iris-setosa\n",
"Zaklasyfikowane: Iris-versicolor, Orginalne: Iris-versicolor\n",
"Zaklasyfikowane: Iris-virginica, Orginalne: Iris-virginica\n",
"Zaklasyfikowane: Iris-versicolor, Orginalne: Iris-versicolor\n",
"Zaklasyfikowane: Iris-versicolor, Orginalne: Iris-versicolor\n"
]
}
],
"source": [
"predicted = model.predict(test_X)\n",
"\n",
"for i in range(10):\n",
" print(\"Zaklasyfikowane: {}, Orginalne: {}\".format(predicted[i], test_Y.reset_index()['class'][i]))\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Możemy obliczyć *accuracy*:"
]
},
{
"cell_type": "code",
"execution_count": 98,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"0.98\n"
]
}
],
"source": [
"from sklearn.metrics import accuracy_score\n",
"\n",
"print(accuracy_score(test_Y, predicted))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**zad. 4** Wytrenuj nowy model ``model_2`` zmieniając liczbę sąsiadów na 20. Czy zmieniły się wyniki?"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**zad. 5** Wytrenuj model z $k=1$. Przeprowadź walidację na zbiorze trenującym zamiast na zbiorze testowym? Jakie wyniki otrzymałeś? Czy jest to wyjątek? Dlaczego tak się dzieje?"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Walidacja krzyżowa"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Zbiór *herbal Iris* jest bardzo małym zbiorem. Wydzielenie z niego zbioru testowego jest obciążone dużą wariancją wyników, tj. w zależności od sposoby wyboru zbioru testowego wyniki mogą się bardzo różnic. Żeby temu zaradzić, stosuje się algorytm [walidacji krzyżowej](https://en.wikipedia.org/wiki/Cross-validation_(statistics). Algorytm wygląda następująco:\n",
" 1. Podziel zbiór danych na $n$ części (losowo).\n",
" 1. Dla każdego i od 1 do $n$ wykonaj:\n",
" 1. Weź $i$-tą część jako zbiór testowy, pozostałe dane jako zbiór trenujący.\n",
" 1. Wytrenuj model na zbiorze trenującym.\n",
" 1. Uruchom model na danych testowych i zapisz wyniki.\n",
" 1. Ostateczne wyniki to średnia z $n$ wyników częściowych. \n",
" \n",
" W Pythonie służy do tego funkcja ``cross_val_score``, która przyjmuje jako parametry (kolejno) model, zbiór X, zbiór Y. Możemy ustawić parametr ``cv``, który określa na ile części mamy podzielić zbiór danych oraz parametr ``scoring`` określający miarę.\n",
" \n",
" W poniższym przykładzie dzielimy zbiór danych na 10 części (10-krotna walidacja krzyżowa) i jako miarę ustawiany celność (ang. accuracy)."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from sklearn.model_selection import cross_val_score\n",
"\n",
"knn = KNeighborsClassifier(n_neighbors=k)\n",
"scores = cross_val_score(knn, X, Y, cv=10, scoring='accuracy')\n",
"print(\"Wynik walidacji krzyżowej:\", scores.mean())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**zad. 6** Klasyfikator $k$ najbliższych sąsiadów posiada jeden parametr: $k$, który określa liczbę sąsiadów podczas klasyfikacji. Jak widzieliśmy, wybór $k$ może mieć duże znaczenie dla jakości klasyfikatora. Wykonaj:\n",
" 1. Stwórz listę ``neighbors`` wszystkich liczb nieparzystych od 1 do 50.\n",
" 1. Dla każdego elementu ``i`` z listy ``neighbors`` zbuduj klasyfikator *KNN* o liczbie sąsiadów równej ``i``. Nastepnie przeprowadz walidację krzyżową (parametry takie same jak powyżej) i zapisz wyniki do tablicy ``cv_scores``.\n",
" 1. Znajdź ``k``, dla którego klasyfikator osiąga najwyższy wynik."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Wykres przedstawiający precent błedów w zależnosci od liczby sąsiadów."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import matplotlib.pyplot as plt\n",
"# changing to misclassification error\n",
"MSE = [1 - x for x in cv_scores]\n",
"\n",
"# plot misclassification error vs k\n",
"plt.plot(neighbors, MSE)\n",
"plt.xlabel('Liczba sąsiadów')\n",
"plt.ylabel('Procent błędów')\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Przejdź teraz do arkusza z zadaniem domowym, gdzie zastosujemy klasyfikator *kNN* na zbiorze danych z pierwszych zajęć."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.2"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

571
labs05/sklearn cz. 3.ipynb Normal file

File diff suppressed because one or more lines are too long

251
labs05/zad_01.ipynb Normal file
View File

@ -0,0 +1,251 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"1. Zaimportuj bibliotkę pandas jako pd."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"2. Wczytaj zbiór danych `311.csv` do zniennej data."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"3. Wyświetl 5 pierwszych wierszy z data."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"4. Wyświetl nazwy kolumn."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"5. Wyświetl ile nasz zbiór danych ma kolumn i wierszy."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"6. Wyświetl kolumnę 'City' z powyższego zbioru danych."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"7. Wyświetl jakie wartoścu przyjmuje kolumna 'City'."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"8. Wyświetl tabelę rozstawną kolumny City."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"9. Wyświetl tylko pierwsze 4 wiersze z wcześniejszego polecenia."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"10. Wyświetl, w ilu przypadkach kolumna City zawiera NaN."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"11. Wyświetl data.info()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"12. Wyświetl tylko kolumny Borough i Agency i tylko 5 ostatnich linii."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"13. Wyświetl tylko te dane, dla których wartość z kolumny Agency jest równa\n",
"NYPD. Zlicz ile jest takich przykładów.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"14. Wyświetl wartość minimalną i maksymalną z kolumny Longitude."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"15. Dodaj kolumne diff, która powstanie przez sumowanie kolumn Longitude i Latitude."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"16. Wyświetl tablę rozstawną dla kolumny 'Descriptor', dla której Agency jest\n",
"równe NYPD."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.2"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

175
labs05/zad_02.ipynb Normal file
View File

@ -0,0 +1,175 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"1. Załaduj bibliotekę `pandas`."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"2. Wczytaj dane z pliku *mieszkania.csv* do zmiennej i wyświetl 5 pierwszych wierczy."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"3. Znajdź informacje ilu pokojowe mieszkania są najpopularniejsze i ile ich jest."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"4. Znajdź 10 najtańszych mieszkań."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"5. Napisz funkcje ``find_borough(desc)``, która przyjmuje 1 argument typu *string* i zwróci jedną z dzielnic zdefiniowaną w liście ``dzielnice``. Funkcja ma zwrócić pierwszą (wzgledem kolejności) nazwę dzielnicy, która jest zawarta w ``desc``. Jeżeli żadna nazwa nie została odnaleziona, zwróć napis *Inne*."
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"def find_borough(desc):\n",
" dzielnice = ['Stare Miasto',\n",
" 'Wilda',\n",
" 'Jeżyce',\n",
" 'Rataje',\n",
" 'Piątkowo',\n",
" 'Winogrady',\n",
" 'Miłostowo',\n",
" 'Dębiec']"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"6. Dodaj kolumnę ``Borough``, która będzie zawierać informacje o dzielnicach i powstanie z kolumny ``Localization``. Wykorzystaj do tego funkcję ``find_borough``."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"7. Wyświetl histogram przedstawiający liczbę ogłoszeń mieszkań z podziałem na dzielnice."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"8. Znajdź średnią cenę mieszkania n-pokojowego."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"9. Znajdź dzielnice, które zawierają oferty mieszkań na 13 piętrze."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"10. Znajdź wszystkie ogłoszenia mieszkań, które znajdują się na Winogradach, mają 3 pokoje i są położone na 1 piętrze."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.2"
}
},
"nbformat": 4,
"nbformat_minor": 2
}