2018-06-03 10:04:16 +02:00
|
|
|
#!/usr/bin/env python
|
|
|
|
# -*- coding: utf-8 -*-
|
|
|
|
|
|
|
|
def wczytaj_dane():
|
2018-06-03 12:34:25 +02:00
|
|
|
import pandas as pd
|
|
|
|
dane = pd.read_csv("labs06/mieszkania.csv")
|
|
|
|
dane.head()
|
|
|
|
|
2018-06-03 10:04:16 +02:00
|
|
|
|
|
|
|
def most_common_room_number(dane):
|
2018-06-03 12:34:25 +02:00
|
|
|
dane['Rooms'].value_counts().idxmax()
|
|
|
|
|
|
|
|
|
2018-06-03 10:04:16 +02:00
|
|
|
|
|
|
|
def cheapest_flats(dane, n):
|
2018-06-03 12:34:25 +02:00
|
|
|
|
2018-06-03 10:04:16 +02:00
|
|
|
|
|
|
|
def find_borough(desc):
|
|
|
|
dzielnice = ['Stare Miasto',
|
|
|
|
'Wilda',
|
|
|
|
'Jeżyce',
|
|
|
|
'Rataje',
|
|
|
|
'Piątkowo',
|
|
|
|
'Winogrady',
|
|
|
|
'Miłostowo',
|
|
|
|
'Dębiec']
|
|
|
|
pass
|
|
|
|
|
|
|
|
|
|
|
|
def add_borough(dane):
|
|
|
|
pass
|
|
|
|
|
|
|
|
def write_plot(dane, filename):
|
|
|
|
pass
|
|
|
|
|
|
|
|
def mean_price(dane, room_number):
|
|
|
|
pass
|
|
|
|
|
|
|
|
def find_13(dane):
|
|
|
|
pass
|
|
|
|
|
|
|
|
def find_best_flats(dane):
|
|
|
|
pass
|
|
|
|
|
|
|
|
def main():
|
|
|
|
dane = wczytaj_dane()
|
|
|
|
print(dane[:5])
|
|
|
|
|
|
|
|
print("Najpopularniejsza liczba pokoi w mieszkaniu to: {}"
|
|
|
|
.format(most_common_room_number(dane)))
|
|
|
|
|
|
|
|
print("{} to najłądniejsza dzielnica w Poznaniu."
|
|
|
|
.format(find_borough("Grunwald i Jeżyce"))))
|
|
|
|
|
|
|
|
print("Średnia cena mieszkania 3-pokojowego, to: {}"
|
|
|
|
.format(mean_price(dane, 3)))
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
main()
|