forked from tdwojak/Python2018
passed
This commit is contained in:
parent
7a8dadbe3b
commit
49fe26305c
@ -1,14 +1,15 @@
|
|||||||
#!/usr/bin/env python
|
#!/usr/bin/env python
|
||||||
# -*- coding: utf-8 -*-
|
# -*- coding: utf-8 -*-
|
||||||
|
import pandas as pd
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
|
||||||
def wczytaj_dane():
|
def wczytaj_dane():
|
||||||
import pandas as pd
|
dane = pd.read_csv("mieszkania.csv")
|
||||||
dane = pd.read_csv("labs06/mieszkania.csv")
|
print(dane.head())
|
||||||
dane.head()
|
return(dane)
|
||||||
|
|
||||||
|
|
||||||
def most_common_room_number(dane):
|
def most_common_room_number(dane):
|
||||||
dane['Rooms'].value_counts().idxmax()
|
return(dane['Rooms'].value_counts().idxmax())
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
@ -24,20 +25,61 @@ def find_borough(desc):
|
|||||||
'Piątkowo',
|
'Piątkowo',
|
||||||
'Winogrady',
|
'Winogrady',
|
||||||
'Miłostowo',
|
'Miłostowo',
|
||||||
'Dębiec']
|
'Dębiec',
|
||||||
pass
|
'Grunwald',
|
||||||
|
'Nowe Miasto']
|
||||||
|
|
||||||
|
|
||||||
|
check = 0
|
||||||
|
for dzielnica in dzielnice:
|
||||||
|
if dzielnica in desc:
|
||||||
|
check = 1
|
||||||
|
save_dzielnica = dzielnica
|
||||||
|
if check == 1:
|
||||||
|
return(save_dzielnica)
|
||||||
|
else:
|
||||||
|
return("Inne")
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
def add_borough(dane):
|
def add_borough(dane):
|
||||||
pass
|
dzielnice = ['Stare Miasto',
|
||||||
|
'Wilda',
|
||||||
|
'Jeżyce',
|
||||||
|
'Rataje',
|
||||||
|
'Piątkowo',
|
||||||
|
'Winogrady',
|
||||||
|
'Miłostowo',
|
||||||
|
'Dębiec',
|
||||||
|
'Grunwald',
|
||||||
|
'Nowe Miasto']
|
||||||
|
Borough = []
|
||||||
|
column = dane['Location']
|
||||||
|
for item in column:
|
||||||
|
check = 0
|
||||||
|
for dzielnica in dzielnice:
|
||||||
|
if dzielnica in item:
|
||||||
|
check = 1
|
||||||
|
save_dzielnica = dzielnica
|
||||||
|
if check == 1:
|
||||||
|
Borough.append(save_dzielnica)
|
||||||
|
else:
|
||||||
|
Borough.append("Inne")
|
||||||
|
|
||||||
|
Borough = pd.DataFrame(Borough)
|
||||||
|
|
||||||
|
dane = pd.concat([dane.reset_index(drop=True), Borough], axis=1)
|
||||||
|
print(dane)
|
||||||
|
|
||||||
def write_plot(dane, filename):
|
def write_plot(dane, filename):
|
||||||
pass
|
dane.groupby('Borough')['Id'].nunique().plot(kind='bar')
|
||||||
|
plt.show()
|
||||||
|
plt.savefig('output.png')
|
||||||
|
|
||||||
def mean_price(dane, room_number):
|
def mean_price(dane, room_number):
|
||||||
p1 = dane[dane['Rooms'] == 2]
|
p1 = dane[dane['Rooms'] == room_number]
|
||||||
p2 = p1['Expected']
|
p2 = p1['Expected']
|
||||||
p2.mean()
|
return(p2.mean())
|
||||||
|
|
||||||
def find_13(dane):
|
def find_13(dane):
|
||||||
p1 = dane[dane['Floor'] == 13]
|
p1 = dane[dane['Floor'] == 13]
|
||||||
@ -46,17 +88,18 @@ def find_13(dane):
|
|||||||
def find_best_flats(dane):
|
def find_best_flats(dane):
|
||||||
p_index = dane['Location'].str.contains('Winogrady')
|
p_index = dane['Location'].str.contains('Winogrady')
|
||||||
p = dane[p_index]
|
p = dane[p_index]
|
||||||
p[(p['Rooms'] == 3) & (p['Floor'] == 1)]
|
best_flats = p[(p['Rooms'] == 3) & (p['Floor'] == 1)]
|
||||||
|
print(best_flats)
|
||||||
|
|
||||||
def main():
|
def main():
|
||||||
dane = wczytaj_dane()
|
dane = wczytaj_dane()
|
||||||
print(dane[:5])
|
|
||||||
|
|
||||||
print("Najpopularniejsza liczba pokoi w mieszkaniu to: {}"
|
print("Najpopularniejsza liczba pokoi w mieszkaniu to: {}"
|
||||||
.format(most_common_room_number(dane)))
|
.format(most_common_room_number(dane)))
|
||||||
|
|
||||||
print("{} to najłądniejsza dzielnica w Poznaniu."
|
print("{} to najładniejsza dzielnica w Poznaniu."
|
||||||
.format(find_borough("Grunwald i Jeżyce"))))
|
.format(find_borough("Grunwald i Jeżyce")))
|
||||||
|
|
||||||
print("Średnia cena mieszkania 3-pokojowego, to: {}"
|
print("Średnia cena mieszkania 3-pokojowego, to: {}"
|
||||||
.format(mean_price(dane, 3)))
|
.format(mean_price(dane, 3)))
|
||||||
|
Loading…
Reference in New Issue
Block a user