1
0
forked from tdwojak/Python2018
Python2018/labs06/task02.py
wagner.agnieszka 325549ab4a passed
2018-06-23 01:00:53 +02:00

164 lines
4.1 KiB
Python
Executable File

#!/usr/bin/env python
# -*- coding: utf-8 -*-
import pandas as pd
import matplotlib.pyplot as plt
def wczytaj_dane():
dane = pd.read_csv("mieszkania.csv")
print(dane.head())
return(dane)
def most_common_room_number(dane):
return(dane['Rooms'].value_counts().idxmax())
def cheapest_flats(dane, n):
p = dane.sort_values(['Expected'], ascending=[0])
p.head(7)
def find_borough(desc):
dzielnice = ['Stare Miasto',
'Wilda',
'Jeżyce',
'Rataje',
'Piątkowo',
'Winogrady',
'Miłostowo',
'Dębiec',
'Grunwald',
'Nowe Miasto']
check = 0
for dzielnica in dzielnice:
if dzielnica in desc:
check = 1
save_dzielnica = dzielnica
if check == 1:
return(save_dzielnica)
else:
return("Inne")
def add_borough(dane):
dzielnice = ['Stare Miasto',
'Wilda',
'Jeżyce',
'Rataje',
'Piątkowo',
'Winogrady',
'Miłostowo',
'Dębiec',
'Grunwald',
'Nowe Miasto']
Borough = []
column = dane['Location']
for item in column:
check = 0
for dzielnica in dzielnice:
if dzielnica in item:
check = 1
save_dzielnica = dzielnica
if check == 1:
Borough.append(save_dzielnica)
else:
Borough.append("Inne")
Borough = pd.DataFrame(Borough)
dane = pd.concat([dane.reset_index(drop=True), Borough], axis=1)
print(dane)
def write_plot(dane, filename):
dane.groupby('Borough')['Id'].nunique().plot(kind='bar')
plt.show()
plt.savefig('output.png')
def mean_price(dane, room_number):
p1 = dane[dane['Rooms'] == room_number]
p2 = p1['Expected']
return(p2.mean())
def find_13(dane):
p1 = dane[dane['Floor'] == 13]
p1.Location.unique()
def find_best_flats(dane):
p_index = dane['Location'].str.contains('Winogrady')
p = dane[p_index]
best_flats = p[(p['Rooms'] == 3) & (p['Floor'] == 1)]
print(best_flats)
def main():
dane = wczytaj_dane()
print("Najpopularniejsza liczba pokoi w mieszkaniu to: {}"
.format(most_common_room_number(dane)))
print("{} to najładniejsza dzielnica w Poznaniu."
.format(find_borough("Grunwald i Jeżyce")))
print("Średnia cena mieszkania 3-pokojowego, to: {}"
.format(mean_price(dane, 3)))
if __name__ == "__main__":
main()
# zadanie dodatkowe
import sklearn
import pandas as pd
import numpy as np
dane = pd.read_csv("mieszkania.csv")
print(dane.head())
print(dane.columns)
# check data for outliers
from matplotlib import pyplot as plt
plt.scatter(dane['SqrMeters'], dane['Expected'], color='g')
plt.show()
# remove all data points that have expected price <= 500.000 and living area <= 200 sqrt meters
plt.scatter(dane['Rooms'], dane['Expected'], color='g')
plt.show()
# remove all data points that represent flats with more than 8 rooms
flats = dane[(dane['Rooms'] < 10) & (dane['SqrMeters'] <= 200) & (dane['Expected'] <= 500000)]
print(flats.head(20))
y = flats['Expected']
X = flats.drop(['Id', 'Expected', 'Floor', 'Location',
'Description', 'Unnamed: 7', 'Unnamed: 8', 'Unnamed: 9', 'Unnamed: 10', 'Unnamed: 11'], axis=1)
print(y.head())
print(X.head())
from sklearn.model_selection import train_test_split
train_X, test_X, train_y, test_y = train_test_split(X, y, test_size=0.3, random_state=38, shuffle=True)
from sklearn.linear_model import LinearRegression
model = LinearRegression()
model.fit(X,y)
predicted = model.predict(test_X)
print("Predictions:", predicted[:5])
for p in zip(train_X.columns, model.coef_):
print("Intercept for {}: {:.3}".format(p[0], p[1]))
from sklearn.metrics import mean_squared_error
rmse = np.sqrt(mean_squared_error(predicted, test_y))
print("RMSE:", rmse)
r2 = model.score(test_X, test_y)
print("R squared:", r2) # 0.54 comparing to 0.02 before cleaning the data