projekt_PP/main.py

200 lines
8.4 KiB
Python
Raw Normal View History

2020-02-13 12:54:14 +01:00
import cv2
import numpy as np
import vehicles
import time
2020-02-13 12:54:14 +01:00
counter_up=0 #licznik pojazdow jadacych w gore
counter_down=0 #licznik pojazdow jadacych w dol
while True:
user_choice = input("Wybierz nagranie:\n1. video_1.mp4\n2. video_2.avi\n")
if user_choice == "1":
input_video = 'data/video_1.avi'
vid_name = 'video_1'
kernelSize = 6
break
elif user_choice == "2":
input_video = 'data/video_2.mp4'
vid_name = 'video_2'
kernelSize = 3
break
2020-02-13 12:54:14 +01:00
cap = cv2.VideoCapture(input_video)
height, width, frames_count, fps = cap.get(cv2.CAP_PROP_FRAME_HEIGHT), cap.get(
cv2.CAP_PROP_FRAME_WIDTH), cap.get(cv2.CAP_PROP_FRAME_COUNT), cap.get(cv2.CAP_PROP_FPS),
height = int(height)
width = int(width)
frameArea = height*width
print("Wysokosc", height, "szerokosc", width, "liczba klatek", frames_count, "fps",fps)
font = cv2.FONT_HERSHEY_SIMPLEX
"""
#Polozenie linii "mety" (na srodku kadru)
lineUpper = int(4*(height/10))
lineLower = int(6*(height/10))
upLimit = int(2*(height/10))
downLimit = int(8*(height/10))
"""
#Polozenie linii "mety" (w dolnej czesci kadru)
lineUpper = int(7*(height/10))
lineLower = int(8*(height/10))
upLimit = int(4*(height/10))
downLimit = int(10*(height/10))
print("Zielona linia y:",str(lineLower))
print("Czerwona linia y:",str(lineUpper))
lineLower_color = (0,255,0)
lineUpper_color = (0,0,255)
point1 = [0, lineLower]
point2 = [width, lineLower]
points_lineLower = np.array([point1,point2], np.int32)
# Przekształcenie tablicy do 1x2, polecane w dokumentacji OpenCV ale chyba zbedne w tym przypadku
#points_lineLower = points_lineLower.reshape((-1,1,2))
point3 = [0, lineUpper]
point4 = [width, lineUpper]
points_LineUpper = np.array([point3,point4], np.int32)
#points_LineUpper = points_LineUpper.reshape((-1,1,2))
point5 = [0, upLimit]
point6 = [width, upLimit]
points_upLimit = np.array([point5,point6], np.int32)
#points_upLimit = points_upLimit.reshape((-1,1,2))
point7 = [0, downLimit]
point8 = [width, downLimit]
points_downLimit= np.array([point7,point8], np.int32)
#points_downLimit = points_downLimit.reshape((-1,1,2))
sub=cv2.createBackgroundSubtractorMOG2() # utworz background subtractor
2020-02-15 00:24:35 +01:00
size = 2.0 #wielkosc obrazu
cars = []
maxAllowedAge = 3 #przez ile klatek "zgubiony" pojazd bedzie pozostawal na liscie do "sledzenia"
id = 1
while(cap.isOpened()):
2020-02-13 12:54:14 +01:00
ret, frame = cap.read()
for i in cars:
i.age_one()
if ret == True: #przetwarzanie kadru
#cv2.imshow("bez zmian", frame) # wyswietlanie filmu wejsciowego bez zmian
#gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
#cv2.imshow("czarnobialy", gray) # wyswietlanie filmu w skali szarosci
fgMask = sub.apply(frame) # uzycie background subtraction
2020-02-15 00:24:35 +01:00
#fgMask2 = sub.apply(frame)
#cv2.imshow("fgMask", fgMask)
# operacje morfologiczne. Wg tutoriala na docs.opencv.org. Opening, closing - usuwanie szumów
#Binarization
ret,imBinary = cv2.threshold(fgMask,200,255,cv2.THRESH_BINARY)
#cv2.imshow("binarny", imBinary)
kernelOpening = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (kernelSize, kernelSize)) # kernels to apply to the morphology
kernelClosing = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (11, 11))
#Opening is just another name of erosion followed by dilation.
#It is useful in removing noise
mask = cv2.morphologyEx(imBinary,cv2.MORPH_OPEN,kernelOpening)
#cv2.imshow("opening", mask)
#Closing is reverse of Opening, Dilation followed by Erosion.
#It is useful in closing small holes inside the foreground objects, or small black points on the object.
mask = cv2.morphologyEx(mask,cv2.MORPH_CLOSE,kernelClosing)
2020-02-15 00:24:35 +01:00
#cv2.imshow("closing", mask)
# kontury (obrysowywanie)
contours,hierarchy=cv2.findContours(mask,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_NONE) # RETR_EXTERNAL - bierz pod uwage najbardziej 'zewnetrzne' kontury
2020-02-13 12:54:14 +01:00
# kontury zajmujace zbyt duza lub mala czesc kadru beda ignorowane
maxContourSize = frameArea / 4
minContourSize = frameArea / 400
for j in range(len(contours)): # przejdz wszystkie kontury w kadrze
area = cv2.contourArea(contours[j])
#print("wielkosc konturu:",area)
if minContourSize < area < maxContourSize: # zbyt duze i male obiekty sa ignorowane
#### Sledzenie konturow ######
centroid = contours[j]
moments = cv2.moments(centroid)
cx = int(moments['m10'] / moments['m00'])
cy = int(moments['m01'] / moments['m00'])
# punkty graniczne (bounding points) konturu. x,y to wspolrzedne lewego gornego rogu, w,h to szerokosc i wysokosc prostokata
x, y, w, h = cv2.boundingRect(centroid)
new = True #przyjmij ze kontur to nowy pojazd
if cy in range(upLimit,downLimit): # sprawdz czy jest wart sledzenia (czyli miedzy szarymi liniami limitujacymi)
for i in cars:
# jesli odnajdziesz sledzony kontur o bardzo zblizonych koordynatach,
#przymij ze to ten sam i zaktualizuj jego polozenie
if abs(x - i.getX()) <= w and abs(y - i.getY()) <= h: #abs function calculates an absolute value of each matrix element.
new = False
i.updateCoords(cx, cy)
#sprawdz czy prekroczyl mete
if i.going_UP(lineLower,lineUpper) == True:
counter_up+=1
print("Pojazd o ID:",i.getId(),'przekroczyl linie mety w gore o czasie:', time.strftime("%c"))
elif i.going_DOWN(lineLower,lineUpper) == True:
counter_down+=1
print("Pojazd o ID:", i.getId(), 'przekroczyl linie mety w dol o czasie:', time.strftime("%c"))
break
#jesli kierunek ruchu jest znany i linia mety zostala przekroczona, przestan sledzic i usun z listy
if i.getState() == '1':
if i.getDir() == 'down'and i.getY() > downLimit:
i.setDone()
elif i.getDir() == 'up'and i.getY() < upLimit:
i.setDone()
if i.timedOut():
index=cars.index(i)
cars.pop(index)
del i
if new == True: #Jesli kontur nie byl dotychczas sledzony, dodaj nowy samochod do listy
newCar=vehicles.Car(id,cx,cy,maxAllowedAge)
cars.append(newCar)
id+=1
cv2.rectangle(frame,(x,y),(x+w,y+h),(255,0,0),2)
#for i in cars:
#cv2.putText(frame, str(i.getId()), (i.getX(), i.getY()), font, 0.3, i.getRGB(), 1, cv2.LINE_AA) #wypisywanie id
str_up='W GORE: '+str(counter_up)
str_down='W DOL: '+str(counter_down)
frame = cv2.polylines(frame,[points_lineLower],False,lineLower_color,thickness=2)
frame = cv2.polylines(frame,[points_LineUpper],False,lineUpper_color,thickness=2)
frame = cv2.polylines(frame,[points_upLimit],False,(255,255,255),thickness=1)
frame = cv2.polylines(frame,[points_downLimit],False,(255,255,255),thickness=1)
2020-02-15 00:24:35 +01:00
cv2.putText(frame, str_up, (10, 40), font, 0.4, (255, 255, 255), 2, cv2.LINE_AA) #biale tlo zeby licznik byl wyrazniejszy
cv2.putText(frame, str_up, (10, 40), font, 0.4, lineUpper_color, 1, cv2.LINE_AA)
cv2.putText(frame, str_down, (10, 90), font, 0.4, (255, 255, 255), 2, cv2.LINE_AA) #biale tlo zeby licznik byl wyrazniejszy
cv2.putText(frame, str_down, (10, 90), font, 0.4, lineLower_color, 1, cv2.LINE_AA)
frame = cv2.resize(frame, (0, 0), None, size, size) # rozmiar obrazu x2
cv2.imshow('Frame',frame)
key = cv2.waitKey(60)
if key == 27: # Wyjdz po nacisnieciu escape
break
else:
break
timestr = time.strftime("%Y_%m_%d-%H_%M_%S")
f = open("traffic logs/"+vid_name+" "+timestr+".txt","w+")
f.write("Natężenie ruchu:\r\nliczba samochodów jadących w górę: %d\rliczba samochodów jadących w dół: %d" %(counter_up, counter_down))
cap.release()
cv2.destroyAllWindows()