1
0
forked from tdwojak/Python2018
Python2018/labs06/task02.py
2018-06-21 18:40:20 +02:00

67 lines
1.6 KiB
Python

#!/usr/bin/env python
# -*- coding: utf-8 -*-
import pandas as pd
import matplotlib.pyplot as plt
def wczytaj_dane():
df = pd.read_csv("./mieszkania.csv", sep=',', header=0)
return df
def most_common_room_number(dane):
return dane['Rooms'].value_counts().idxmax()
def cheapest_flats(dane, n):
return dane.sort_values(by='Expected').head(n)
def find_borough(desc):
dzielnice = ['Stare Miasto',
'Wilda',
'Jeżyce',
'Rataje',
'Piątkowo',
'Winogrady',
'Miłostowo',
'Dębiec']
return next((desc for i in dzielnice if desc in i), 'Inne')
def add_borough(dane):
dane['Borough'] = dane['Location'].apply(find_borough)
def write_plot(dane, filename):
dane['Borough'].value_counts().plot(x='Borough', y='Quantity of adwerts', kind='bar')
plt.savefig('./'+filename)
def mean_price(dane, room_number):
return dane[dane["Rooms"] == room_number]["Expected"].mean()
def find_13(dane):
return dane[dane["Floor"] == 13]["Borough"].unique()
def find_best_flats(dane):
return dane[(dane["Borough"] == "Winogrady") & (dane["Floor"] == 1) & (dane["Rooms"] == 3)]
def main():
dane = wczytaj_dane()
print(dane[:5])
print("Najpopularniejsza liczba pokoi w mieszkaniu to: {}".format(most_common_room_number(dane)))
print("{} to najłądniejsza dzielnica w Poznaniu.".format(find_borough("Grunwald i Jeżyce")))
print("Średnia cena mieszkania 3-pokojowego, to: {}".format(mean_price(dane, 3)))
if __name__ == "__main__":
main()