Poprawiony drugi rozdział. Dodany skrypt dla beeminder'a.

This commit is contained in:
siulkilulki 2018-03-04 18:37:44 +01:00
parent 3339af9f87
commit f1eaaaa2c3
7 changed files with 846 additions and 116 deletions

11
beeminder.sh Executable file
View File

@ -0,0 +1,11 @@
#!/usr/bin/env bash
(cat master.tex
cat strona_tytulowa.tex
cat oswiadczenie.tex
cat pakiety.tex
cat ustawienia.tex
cat rozdzial_*.tex
cat streszczenie.tex
cat abstract.tex
cat wstep.tex
cat bibliografia.bib) > beeminder.txt

557
beeminder.txt Normal file
View File

@ -0,0 +1,557 @@
\thispagestyle{empty}
\begin{figure}[h!]
\centering
\includegraphics[width=0.25\hsize]{uam_logo.jpg}
\end{figure}
\begin{center}
\Large{Uniwersytet im. A. Mickiewicza w Poznaniu} \\
\large{Wydział Matematyki i Informatyki}\\
%\vskip0.2in
\large{Praca magisterska}\\
\large{\textbf{Ekstrakcja informacji o godzinach rozpoczęcia mszy świętych}}\\
\normalsize{\textbf{Extracting information about church services start times}}\\
%\normalsize{\textbf{}}
\end{center}
%\vskip0.1in
\begin{center}
\Large{Dawid Jurkiewicz}\\
\normalsize{Numer albumu: 396341 }\\
\normalsize{Kierunek: Informatyka}\\
\normalsize{Specjalność: Przetwarzanie języka naturalnego}
%\Large{Imię Nazwisko}\\
%\normalsize{Numer albumu: xxxxxx}\\
%\normalsize{Kierunek: Informatyka, Specjalność: xxxxxxxxxxxxxxxxxx}
\end{center}
%\vskip1.5in
\begin{flushright}
Promotor: \\
prof. UAM, dr hab. Krzysztof Jassem \\
\end{flushright}
\vfill
\begin{center}
\rm Poznań, 2018
\end{center}
\newpage
\thispagestyle{empty}
\newgeometry{bottom=0pt}
\begin{flushright}
Poznań, dnia \today
\end{flushright}
\vskip0.7in
\begin{center}
\large \textbf{Oświadczenie}
\end{center}
\begin{small}
Ja, niżej podpisany Dawid Jurkiewicz, student Wydziału Matematyki i Informatyki Uniwersytetu im. Adama Mickiewicza w Poznaniu oświadczam, że przedkładaną pracę dyplomową pt.
\begin{center}
\textit{„Ekstrakcja informacji o godzinach rozpoczęcia mszyświętych”,}
\end{center}
%rozdziały:
%\begin{center}
%\textit{od 1 do 5}
%\end{center}
napisałem samodzielnie. Oznacza to, że przy pisaniu pracy, poza niezbędnymi konsultacjami, nie korzystałem z pomocy innych osób, a w szczególności nie zlecałem opracowania rozprawy lub jej części innym osobom, ani nie odpisywałem tej rozprawy lub jej części od innych osób.
Oświadczam również, że egzemplarz pracy dyplomowej w wersji drukowanej jest całkowicie zgodny z egzemplarzem pracy dyplomowej w wersji elektronicznej.
Jednocześnie przyjmuję do wiadomości, że przypisanie sobie, w pracy dyplomowej, autorstwa istotnego fragmentu lub innych elementów cudzego utworu lub ustalenia naukowego stanowi podstawę stwierdzenia nieważności postępowania w sprawie nadania tytułu zawodowego.
[\qquad]* - wyrażam zgodę na udostępnianie mojej pracy w czytelni Archiwum UAM
[\qquad]* - wyrażam zgodę na udostępnianie mojej pracy w zakresie koniecznym do ochrony mojego prawa do autorstwa lub praw osób trzecich
\end{small}
\begin{scriptsize}
*Należy wpisać TAK w przypadku wyrażenia zgody na udostępnianie pracy w czytelni Archiwum UAM, NIE w przypadku braku zgody. Niewypełnienie pola oznacza brak zgody na udostępnianie pracy.
\end{scriptsize}
\begin{flushright}
......................................................
\end{flushright}
\restoregeometry\usepackage[OT4]{polski} % tryb pelnej polonizacji
\usepackage[utf8]{inputenc} % kodowanie
\usepackage{makeidx} % indeks
\usepackage[pdftex]{graphicx} % zalaczanie grafiki
\usepackage{tikz} % grafika wektorowa
\usepackage{setspace} % interlinia
\usepackage{hyperref} % wewnetrzne odnosniki w dokumencie
\usepackage{listings} % kody zrodlowe
\usepackage{fancyhdr} % zywe paginy smierci
\usepackage{tocloft} % format spisu tresci
%\usepackage{array} % ladniejsze tabelki
\usepackage{multirow} % laczenie wierszy w tabelach
\usepackage[tableposition=top,format=hang,labelsep=period,labelfont={bf,small},textfont=small]{caption}
% formatuje podpisy pod rysunkami i tabelami, format=hang powoduje,
% ze kolejne linie podpisu beda wciete az do odleglosci nazwy podpisu np. "Rysunek 1."
\usepackage{floatflt} % ladne oplywanie obrazkow tekstem
\usepackage{url} % url w bibliografii
\usepackage{amsmath}
\usepackage{tabularx} %lepsze tabele nie uzywane
\usepackage{makecell} % do formatowania cell w tabelach
\usepackage{geometry}
% \usepackage{minted} %kolorowanie kodu
\usepackage{subfig}
\usepackage{float} % to use H option in figures
\usepackage[shortlabels]{enumitem} % bold numbers in enumerate
\usepackage{titling}
\usepackage{afterpage}% ------------------------------------------------------------------------
% Kropki po numerach sekcji, podsekcji, itd.
% Np. 1.2. Tytul podrozdzialu
% ------------------------------------------------------------------------
\makeatletter
\def\numberline#1{\hb@xt@\@tempdima{#1.\hfil}} %kropki w spisie tresci
\renewcommand*\@seccntformat[1]{\csname the#1\endcsname.\enspace} %kropki w tresci dokumentu
\makeatother
%numerowanie tabel:
%\renewcommand{\thetable}{\thechapter.\arabic{figure}}
%
%twierdzenia, definicje i lematy
%
\newtheorem{defin}{Definicja}
\newtheorem{twr}{Twierdzenie}
\newtheorem{lem}[twr]{Lemat}
% ------------------------------------------------------------------------
% Inne
% ------------------------------------------------------------------------
\frenchspacing
\setlength{\parskip}{3pt} % odstep pom. akapitamia
\linespread{1.49} % odstep pomiedzy liniami (interlinia)
%\onehalfspacing
\setcounter{tocdepth}{2} % stopien zaglebienia w spisie tresci
\setcounter{secnumdepth}{2} % do jakiego stopnia zaglebienia numeracja
% polskie podpisy
\renewcommand{\figurename}{Rys.}
\renewcommand{\tablename}{Tab.}
%paginy zywe smierci
\pagestyle{fancy}
% zmiana liter w~zywej paginie na ma<6D>e
\renewcommand{\chaptermark}[1]{\markboth{#1}{}}
\renewcommand{\sectionmark}[1]{\markright{\thesection\ #1}}
\fancyhf{} % usun biezace ustawienia pagin
\fancyhead[LE,RO]{\small\bfseries\thepage}
\fancyhead[LO]{\small\bfseries\rightmark}
\fancyhead[RE]{\small\bfseries\leftmark}
\renewcommand{\headrulewidth}{0.5pt}
\renewcommand{\footrulewidth}{0pt}
\addtolength{\headheight}{0.5pt} % pionowy odstep na kreske
\fancypagestyle{plain}{%
\fancyhead{} % usun p. g<>rne na stronach pozbawionych
% numeracji (plain)
\renewcommand{\headrulewidth}{0pt} % pozioma kreska
} \chapter{Podstawowe pojęcia}
\chapter{Metody ekstrakcji informacji}
% w kontekście mojego projektu
W tym rozdziale zaprezentowane są wybrane metody,
które brane były pod uwagę lub zostały zastosowane
w opisywanym tutaj systemie ekstrakcji informacji o godzinach rozpoczęcia mszy świętych.
\section {Algorytmy \textit{bootstraping}}
Niech $J$ będzie dowolną reprezentacją języka (wyraz, fraza, wyrażenie
regularne itp.).
W dziedzinie przetwarzania języka naturalnego \textit{bootstraping} to technika
wyszukiwania niezanotowanych (nieprzypisanych do badanej klasy) $J$ przy użyciu małego zbioru specjalnie
wyselekcjonowanych zanotowanych $J$.
Implementacji algorytmu \textit{bootstraping} jest wiele, wszystkie jednak
oparte są na następującym schemacie \cite{Bootstrap}:
\enlargethispage{4\baselineskip}
\begin{enumerate}
\item Stwórz pustą listę reprezentacji języka $J$. % pusta lista $J$, pusta lista wyrazów, pusta
% lista fraz
\item Zainicjalizuj listę starannie dobranymi $J$.
\item Wykorzystaj elementy listy do znalezienia nowych $J$ z korpusu treningowego.
\item Oceń nowe $J$; najlepsze $J$ dodaj do listy.
\item Wróć do 3. i powtarzaj aż do osiągnięcia z góry określonej liczby iteracji
\newline lub
spełnienia innego warunku stopu.
\end{enumerate}
% \textit{Bootstraping} jest szczególnie przydatny w przypadku, gdy mamy mały
% zbiór treningowy, ponieważ z jego pomocą jesteśmy w stanie powiększyć zbiór
% treningowy. %todo poprawić
\subsection{Wzorce Hearst}
Jednymi z pierwszych implementacji algorytmu \textit{bootstraping} w dziedzinie
ekstrakcji informacji
są wzorce Hearst \textit{(ang. Hearst patterns)} \cite{Hearst}.
\smallskip
\noindent Znajdowanie nowych przykładów uczących za pomocą wzorców Hearst przedstawia się
następująco:
\begin{enumerate}
\item Wybierz relację leksykalną $R$.
\item Utwórz początkowy zbiór $S$ par $(x, y)\in R$, gdzie $x$ i $y$ to słowa lub frazy.
\item Znajdź zdania, które zawierają pary ze zbioru $S$.
\item Przyjrzyj się kontekstowi, w jakim występują te pary. Załóż, że często powtarzające się wzorce reprezentują relację R.
\item Wykorzystaj nowo odkryte wzorce do znalezienia kolejnych par $(x, y)\in R$.
\item Dodaj nowo znalezione pary do zbioru $S$, wróć do 3. i powtarzaj aż do osiągnięcia z góry określonej liczby iteracji.
\end{enumerate}
\enlargethispage{4\baselineskip}
\subsubsection{Przykład}
Rozważmy relację R taką, że $(x, y) \in R$ wtedy, gdy $x$ został pochowany w
$y$.
Załóżmy, że zaczynamy z parą \texttt{('Józef Piłsudski', 'Kraków')}$\in R$.
W korpusie treningowym szukamy zdań zawierających w sobie parę \texttt{('Józef
Piłsudski', 'Kraków')} i otrzymujemy zdania takie jak:
\centerline{„Józef Piłsudski został pochowany w Krakowie.”}
\centerline{„Miejsce pochówku Józefa Piłsudskiego to Kraków.”}
\centerline{„Grób Józefa Piłsudskiego znajduje się w Krakowie.”}
\noindent Ze znalezionych zdań tworzymy następujące wzorce:
\centerline{$x$ został pochowany w $y$.}
\centerline{Miejsce pochówku $x$ to $y$.}
\centerline{Grób $x$ znajduje się w $y$.}
\noindent Wykorzystujemy powyższe wzorce do znalezienia nowych par będących w relacji $R$, przykładowo:
% i otrzymujemy:
\centerline{\texttt{('Witold Doroszweski, 'Warszawa')}}
\centerline{\texttt{('Jana Długosz', 'Zakopane')}}
\noindent Następnie szukamy zdań w których występują powyższe pary, na przykład:
\centerline{„Witold Doroszewski spoczywa w Warszawie.”}
\centerline{„Na cmentarzu w Zakopanem mieści
się grób Jana Długosza.”}
\noindent Z nowo otrzymanych zdań tworzymy poniższe wzorce:
\centerline{$x$ spoczywa w $y$.}
\centerline{Na cmentarzu w $y$ mieści się grób $x$.}
\noindent Powtarzamy powyższy algorytm aż do osiągnięcia określonej liczby iteracji.
% \subsection{Miejsce na opis bardziej skomplikowanej metody implementującej
% algorytm \textit{bootstraping}}
\section{Automatyczne generowanie wyrażeń regularnych za pomocą algorytmów genetycznych}
W 2015 roku Bartoli i in. zaprezentowali efektywny algorytm genetyczny do generowania
wzorców zapisanch w
postaci wyrażeń regularnych przy użyciu niewielkiego zbioru zanotowanych
przykładów (fraz oznaczonych jako pasujące do wyrażeń regularnych) \cite{genetic}. Nowością było zastosowanie metody „dziel i zwyciężaj”.
Zamiast uczyć się jednego wyrażenia regularnego, które znajdowałoby wszystkie
przykłady, system uczy się wielu różnych wzorców, które dopiero po połączeniu
alternatywą tworzą
ostateczne wyrażenie regularne.
% Problem automatycznego generowania wyrażeń regularnych jest złożony. Warto zauważyć, że % bardzo łatwo wytrenować na zbiorze treningowym system, który znajdzie wzorzec o bardzo wysokiej precyzji i niskiej % czułości (np. wystarczy alternatywa, której składnikami są wszystkie zanotowane przykłady), ale szczególnie trudno wytrenować system tak, aby generalizował się na przypadki poza % zbiorem treningowym (innymi słowy taki system łatwo przetrenować). %(otrzymali wyniki bardzo zadowalające wyniki ) tabela wyników
\subsection{Opis problemu}
Niech $x_s$ będzie spójnym podciągiem ciągu znaków $s$ reprezentowanym przez
indeks początkowy i końcowy w $s$. Dla ułatwienia, w przykładach $x_s$ będziemy
reprezentować przez zawartość i indeks początkowy.
\enlargethispage{1\baselineskip}
Na przykład $x_s=\texttt{ku}_0$, $x'_s=\texttt{ku}_2$, $x''_s=\texttt{kuku}_0$, $x'''_s=\texttt{łka}_4$ to spójne podciągi ciągu znaków $s=\texttt{kukułka}$.
$x_s$ nazywa się nadłańcuchem $x'_s$ (a $x'_s$ jest podłańcuchem $x_s$),
jeśli (i) $x'_s$ jest krótszy niż $x_s$, (ii) indeks początkowy $x'_s$ jest
nie mniejszy niż indeks początkowy $x_s$ oraz (iii) indeks końcowy $x'_s$
jest nie większy niż indeks końcowy $x_s$. Na przykład $\texttt{ku}_0$
jest podłańcuchem $\texttt{kuku}_0$.
Mówi się, że $x_s$ nachodzi na $x'_s$ (lub $x'_s$ nachodzi na $x_s$), jeśli (i) indeks początkowy $x_s$ jest
nie większy niż indeks końcowy $x'_s$ oraz (ii) indeks końcowy $x_s$ jest nie
mniejszy niż indeks początkowy $x'_s$.
Niech $(s,X)$ będzie przykładem uczącym, w którym $X$ to zbiór
nienachodzących na siebie $x_s$.
Jako $e(s,P)$ oznacza się zbiór wszystkich ciągów $x_s$
wyekstrahowanych poprzez zbiór wyrażeń regularnych $P$, taki że (i)
$x_s$
pasuje do jakiegokolwiek wyrażenia regularnego $p\in P$, (ii) każdy nadłańcuch
$x'_s$ ciągu $x_s$ nie pasuje do żadnego wyrażenia regularnego $p\in P$
oraz (iii) dla każdego ciągu $x''_s\neq x_s$, który nachodzi na
$x_s$, indeks początkowy $x''_s$ jest większy od indeksu początkowego $x_s$
albo $x''_s$ nie pasuje do żadnego $p\in P$.
Między innymi dla $s=\texttt{abcde}\textvisiblespace \texttt{a}$ i
$P=\{\texttt{a}, \texttt{bc}, \texttt{cde}, \texttt{de}\}$
$e(s,P)=\{a_0, a_6, bc_1\}$. Należy zwrócić uwagę, że $de_3 \notin e(s,P)$ i $cde_2 \notin e(s,P)$, ponieważ nie spełniają one kolejno warunków (ii) oraz (iii).
Mając dwa zbiory anotowanych przykładów $(E, E')$, zbiór wyrażeń
regularnych $P$ generowany jest używając
tylko i wyłącznie $E$ w taki sposób, że (i) maksymalizowana jest średnia harmoniczna z precyzji i
pokrycia (ang. \textit{recall}) na $E'$ oraz (ii) minimalizowana jest $\sum_{p\in
P}{l(p)}$, gdzie $l(p)$ to długość wyrażenia regularnego $p$.
Wtedy precyzja i pokrycie definiowane są w następujący sposób:
$$Prec(P, E'):=\frac{\sum_{(s,X)\in E'}{|e(s,P) \cup X|}}{\sum_{(s,X)\in E'}{|e(s,P)|}}$$
$$Rec(P, E'):=\frac{\sum_{(s,X)\in E'}{|e(s,P) \cup X|}}{\sum_{(s,X)\in E'}{|X|}}$$
\subsection{Szczegóły algorytmu genetycznego}
Na wejściu do algorytmu genetycznego podawany jest zbiór treningowy $T$, a na
wyjściu otrzymuje się pojedyncze wyrażenie regularne $p$.
Zbiór treningowy $E$ składa się z trójki uporządkowanej $(s,X_d,X_u)=(s,X)$,
gdzie $X_d$ to zbiór pożądanych ciągów $x_s$ ekstrahowanych przez $p$, a
$X_u$ to zbiór niepożądanych ciągów $x_s$ ekstrahowanych przez $p$.
Nie istnieje żaden podłańcuch $x'_s$ ciągu $x_s \in
X_d$, który nachodzi na jakikolwiek podłańcuch $x'''_s$ ciągu $x''_s \in X_u$.
Wyrażenie regularne reprezentowane jest za pomocą drzewa. Liście składają
się z:
\begin{enumerate}
\item zakresów znaków np. \texttt{a-ż}, \texttt{A-Ż} i \texttt{0-9},
\item klas znaków \texttt{\textbackslash w} i \texttt{\textbackslash d},
\item cyfr od 0 do 9,
\item częściowych zakresów, czyli największego zakresu znaków występującego \newline
w $\bigcup_{(s,X_d,X_u)\in T}X_d$, np. dla $\texttt{\{pokój}_3, \texttt{ubierać}_{13}\}$
otrzymuje się
zakresy \newline \texttt{j-k} i \texttt{o-r} (przy założeniu, że
korzysta się z polskiego alfabetu),
\item znaków specjalnych takich jak np. \texttt{\textbackslash ., :, @}.
\end{enumerate}
Wierzchołki nie będące liściami składają się z:
\begin{enumerate}
\item konkatenacji $\bullet \bullet$,
\item klasy znaków $[\bullet]$ i jej negacji $[ \hat{\ } \bullet ]$,
\item kwantyfikatorów bez nawrotów (ang. possessive quantifiers) $\bullet
\ast$\texttt{+}, $\bullet$\texttt{++}, $\bullet$\texttt{?+ } oraz $ \bullet
\{ \bullet, \bullet \}$\texttt{+},
\item oznaczeń grup nieprzechwytujących \texttt{(?:$\bullet$)}.
\end{enumerate}
Wyrażenie regularne $p$ otrzymuje się przechodząc drzewo sposobem
\textit{post-order},\newline w którym pod znak $\bullet$ w wierzchołkach
niebędących
liściami podstawia się łańcuchy znaków zawarte w dzieciach tego wierzchołka.
\begin{figure}[tbh]
\centering
\includegraphics[width=0.7\hsize]{drzewo.png}
\caption{Reprezentacja wyrażenia regularnego \texttt{abc\{1,2\}+} za pomocą drzewa.}
\label{drzewo_pic}
\end{figure}
\subsubsection{Inicjalizacja populacji}
Jako $n_{pop}$ oznacza się rozmiar populacji wyrażeń regularnych $P$. Dla każdego $x_s\in \bigcup_{(s,X_d,X_u)\in T}X_d$ budowane są dwa osobniki
(osobnikiem jest wyrażenie regularne). Pierwszy osobnik tworzony jest z $x_s$, w którym każda cyfra zamieniana
jest na \texttt{\textbackslash d} oraz każda litera zamienia jest na
\texttt{\textbackslash w}. Drugi osobnik tworzony jest identycznie jak pierwszy
z tą różnicą, że wielkrotne wystąpienia \texttt{\textbackslash d} (lub
\texttt{\textbackslash w}) zastępuje się oznaczeniami \texttt{\textbackslash d++} (lub
\texttt{\textbackslash w++}). W szczególności dla $x_s=\texttt{14\textvisiblespace lutego}$
otrzymujemy osobniki \texttt{\textbackslash d\textbackslash d\textvisiblespace
\textbackslash w\textbackslash w\textbackslash w\textbackslash w\textbackslash
w\textbackslash w} oraz
\texttt{\textbackslash d++\textvisiblespace \textbackslash w++}.
Jeśli liczba wygenerowanych osobników jest większa niż $n_{pop}$, to są one
losowo usuwane, natomiast jeśli liczba osobników jest mniejsza niż $n_{pop}$, to
brakujące osobniki są generowane metodą \textit{Ramped half-and-half} \cite{ramped}. Osobniki
niereprezentujące poprawnego wyrażenia regularnego są odrzucane, a w ich miejsce
generowane \newline są nowe.
\subsubsection{Funkcja przystosowania}
Dla każdego osobnika funkcję przystosowania defniuje się jako:
$$f(p):=(Prec(p,T), Acc(p,T), l(p))$$
Wprowadza się również dwie nowe operacje $\sqcap$ i $\ominus$, na których oparte są
funkcje $Prec$ i $Acc$.
Zakłada się, że $X_1$ i $X_2$ to zbiory spójnych podciągów tego samego łańcucha znaków $s$.
Wtedy:
\begin{itemize}
\item $X_1 \ominus X_2$ jest zbiorem takich $x_s$, że
(i) są one spójnym podciągiem jakiegoś elementu $X_1$, (ii) nie
nachodzą na żaden z elementów $X_2$ oraz (iii) nie mają nadłańcucha, który
spełnia warunki
(i), (ii);
\item $X_1 \sqcap X_2$ jest zbiorem takich $x_s$, że (i) są one
spójnym podciągiem jakiekolwiek elementu $X_1$ i
jakiekolwiek elementu $X_2$ oraz (ii) nie mają nadłańcucha, który spełnia (i).
\end{itemize}
Między innymi dla $X_1=\{\texttt{Ja}_0, \texttt{ty}_4,
\texttt{Adam\textvisiblespace Małysz}_9\}$, $X_2=\{\texttt{Ja}_0,
\texttt{Małysz}_{14}\}$: \newline $X_1 \ominus X_2 = \{\texttt{ty}_4, \texttt{Adam\textvisiblespace}_{9}\}$,
$X_1 \sqcap X_2 = \{\texttt{Ja}_0,\texttt{Małysz}_{14}\}$.
\enlargethispage{4\baselineskip}
\bigskip
\noindent W końcu $$Prec(p,T):=\frac{\sum_{(s,X_d,X_u)\in T}|e(s,\{p\})\cap
X_d|}{\sum_{(s,X_d,X_u)\in T}|e(s,\{p\})\sqcap (X_d \cup X_u)|}$$
Drugi element trójki uporządkowanej, czyli $Acc(p,T)$ jest średnią arytmetyczną
pokrycia na znakach (ang. True Positive Character Rate skr. TPCR) i
specyficzności na znakach (ang. True Negative Character Rate skr. TNCR):
\begin{equation*}
\begin{split}
TPCR(p,T) & :=\frac{\sum_{(s,X_d,X_u)\in T}||e(s,\{p\})\sqcap X_d||}{\sum_{(s,X_d,X_u)\in T}||X_d||} \\[3pt]
TNCR(p,T) & :=\frac{\sum_{(s,X_d,X_u)\in T}||s \ominus e(s,\{p\}) \sqcap X_u||}{\sum_{(s,X_d,X_u)\in T}||X_u||} \\[3pt]
Acc(p,T) & :=\frac{TPCR(p,T) + TNCR(p,T)}{2}
\end{split}
\end{equation*}
gdzie $||X|| = \sum_{x_s\in X}l(x_s)$, a $l(x_s)$ oznacza długość ciągu $x_s$.
Osobniki porównywane są w pierwszej kolejności na podstawie $Prec$, \newline potem
za pomocą $Acc$, a na końcu w przypadku identycznych
$Prec$ i $Acc$ brane jest pod uwagę $l(p)$.
\enlargethispage{4\baselineskip}
% \end{split}
% \end{equation*}
% \begin{equation*}
% \begin{split}
\textbf{Przykład}
\begin{equation*}
\begin{split}
s & = \texttt{70.\textvisiblespace Poprawny\textvisiblespace zapis\textvisiblespace dat\textvisiblespace to\textvisiblespace np.\textvisiblespace } \\
& \quad \; \texttt{10.04.2019,\textvisiblespace 1.03.2018\textvisiblespace (nie\textvisiblespace 01.03.2018).} \\
X_d & =\{\texttt{10.04.2019}_{30}, \texttt{1.03.2018}_{42}\} \\
X_u & = \{\texttt{70.\textvisiblespace Poprawny\textvisiblespace zapis\textvisiblespace dat\textvisiblespace to\textvisiblespace np.\textvisiblespace }_0, \texttt{\textvisiblespace (nie\textvisiblespace}_{52}, \;\texttt{).}_{67}\} \\
T & = \{(s, X_d, X_u)\} \\
p_1 & = \texttt{\textbackslash d\{2,2\}+.\textbackslash d\{2,2\}+.\textbackslash d\{4,4\}+.} \\
p_2 & = \texttt{\textbackslash d\{2,4\}+} \\
e(s, {p_1}) & = \{\texttt{10.04.2019}_{30}, \texttt{01.03.2018}_{57}\} \\
e(s, {p_2}) & = \{\texttt{70}_{0}, \texttt{10}_{30}, \texttt{04}_{33}, \texttt{2019}_{36}, \texttt{03}_{44}, \texttt{2018}_{47}, \texttt{01}_{57}, \texttt{03}_{60}, \texttt{2018}_{63}\} \\[3pt]
Prec(p_1, T) & = \frac{|\{\texttt{10.04.2019}_{30}\}|}{|\{\texttt{10.04.2019}_{30}\}|} =\frac{1}{1} = 1 \\[3pt]
Prec(p_2, T) & = \frac{|\emptyset|}{|\{\texttt{70}_{0}, \texttt{10}_{30}, \texttt{04}_{33}, \texttt{2019}_{36}, \texttt{03}_{44}, \texttt{2018}_{47}\}|} = \frac{0}{6} = 0 \\[4pt]
TPCR(p_1, T) & = \frac{||\{\texttt{10.04.2019}_{30}\}||}{||\{\texttt{10.04.2019}_{30}, \texttt{1.03.2018}_{42}\}||} = \frac{10}{19} \\[4pt]
TPCR(p_2, T) & = \frac{||\{\texttt{10}_{26}, \texttt{04}_{29}, \texttt{2019}_{32}, \texttt{03}_{40}, \texttt{2018}_{43}\}||}{||\{\texttt{10.04.2019}_{30}, \texttt{1.03.2018}_{42}\}||} = \frac{14}{19} \\[4pt]
TNCR(p_1, T) & = \frac{||\{\texttt{70.\textvisiblespace Poprawny\textvisiblespace zapis\textvisiblespace dat\textvisiblespace to\textvisiblespace np.\textvisiblespace }_0, \texttt{\textvisiblespace (nie\textvisiblespace}_{51}, \;\texttt{).}_{67}\}||}{||\{\texttt{70.\textvisiblespace Poprawny\textvisiblespace zapis\textvisiblespace dat\textvisiblespace to\textvisiblespace np.\textvisiblespace }_0, \texttt{\textvisiblespace (nie\textvisiblespace}_{51}, \;\texttt{).}_{67}\}||} = \frac{38}{38} = 1\\[4pt]
TNCR(p_2, T) & = \frac{||\{\texttt{.\textvisiblespace Poprawny\textvisiblespace zapis\textvisiblespace dat\textvisiblespace to\textvisiblespace np.\textvisiblespace }_2, \texttt{\textvisiblespace (nie\textvisiblespace}_{51}, \;\texttt{).}_{67}\}||}{||\{\texttt{70.\textvisiblespace Poprawny\textvisiblespace zapis\textvisiblespace dat\textvisiblespace to\textvisiblespace np.\textvisiblespace }_0, \texttt{\textvisiblespace (nie\textvisiblespace}_{51}, \;\texttt{).}_{67}\}||} = \frac{36}{38}\\[4pt]
f(p_1) & = \bigg(1, 0.76=\frac{1}{2}\Big(\frac{10}{19} + 1\Big), 20 \bigg)\\
f(p_2) & = \bigg(0, 0.84=\frac{1}{2}\Big(\frac{14}{19} + \frac{36}{38}, \Big), 24\bigg)
\end{split}
\end{equation*}
Zgodnie z wprowadzoną funkcją oceny osobnik $p_1$ jest lepiej
przystosowany niż osobnik $p_2$.
\subsubsection{Ewolucja populacji}
Populacja $P$ o liczności $n_{pop}$ ewoluuje następująco. W każdej epoce $0.1n$ osobników
generowanych jest losowo za pomocą metody
\textit{Ramped half-and-half} \cite{ramped}, kolejne $0.1n$ osobników powstaje za pomocą mutacji, a
pozostałe $0.8n$ otrzymuje \newline się metodą krzyżowania.
Z populacji P i zbioru nowo
wygenerowanych osobników wybierane jest $n$ najlepiej przystosowanych osobników,
które tworzą nową populację. Osobniki wybierane są do mutacji i krzyżowania
metodą turnieju (losowanie z $P$ siedmiu osobników i wyłonienie najlepszego).
Pondato wymusza się także różnorodność między fenotypami osobników, tzn. jeśli oba
osobniki mają identyczny łańcuch znaków to w populacji zostawia się tylko jednego
z nich. Koniec iteracji następuje, gdy zostanie osiągnięty z góry ustalony limit
iteracji lub
najlepiej przystosowany osobnik nie zmieni się od określonej liczby epok.
Finalne wyrażenie regularne $p$ to najlepiej przystosowany osobnik po
zakończeniu wszystkich iteracji.
\subsubsection{Zastosowanie metody „dziel i zwyciężaj”}
Zbiór wyrażeń regularnych $P$ generowany jest za pomocą strategii „dziel i zwyciężaj”.
W każdej iteracji spójne podciągi ciągu znaków $s$, które zostały poprawnie
wykryte przez $P$ są usuwane ze zbioru treningowego.
\enlargethispage{2\baselineskip}
Oby uniknąć przetrenowania, czyli bardzo wysokiego \textit{F-measure} na $E$, a niskiego na $E'$,
zbiór treningowy $E$ dzielony jest losowo na dwa zbiory $E_{train}$ i $E_{validation}$
takie, że $E=E_{train} \cup E_{validation}$, $E_{train} \cap E_{validation} =
\emptyset$ \newline i
$\sum_{(s,X)\in E_{train}}|X|\approx \sum_{(s,X)\in E_{validation}}|X|$.
\noindent Procedura generowania zbioru wyrażeń regularnych $P$ prezentuje się następująco.
Zacznij z $P=\emptyset$ i z $T$ utworzonym w taki sposób, że dla
każdego $(s,X)\in E_{train}$, trójka uporządkowana $(s, X, \{s\} \ominus X)$ jest
dodawana do $T$, \newline gdzie $X_d:=X$ i $X_u:=\{s\} \ominus X$.
\noindent Następnie dopóki $\bigcup_{(x,X_d,X_u)\in T}X_d\ne \emptyset$ powtarzaj:
\begin{enumerate}
\item Wykonaj algorytm genetyczny na $T$ i otrzymaj wyrażenie regularne $p$.
\item Jeśli $Prec(p,T)=1$, to $P:=P\cup\{p\}$, w przeciwnym wypadku przerwij pętlę.
\item Dla każdego $(s, X_d, X_u)\in T$ ustaw $X_d:=X_d\setminus e(s, \{p\})$.
\end{enumerate}
Powyższa procedura powtarzana jest wiele razy z różnym zarodkiem generatora
liczb losowych (startowy zbiór trenujący $T$ pozostaje bez zmian), by otrzymać
dużo różnych zbiorów $P$, z których na końcu wybierany jest ten o najwyższej
 średniej harmonicznej z precyzji i pokrycia na $E=E_{train} \cup E_{validation}$.
%\section{Sieci neuronowe}
\chapter{Metodologia}
\section{Ogólny zarys}
\section{Zbieranie informacji o parafiach}
\section{Wyszukiwanie stron internetowych parafii}
\section{Wydobywanie tekstu ze stron parafialnych}
\section{Organizacja danych} % może zbyt inżynierskieby
\section{Ekstrakcja godzin rozpoczęcia mszy świętych}
\subsection{Ogólny zarys}
\subsection{Named entity recognition}
\subsection{Słowa kluczowe}
\subsection{Reguły}
\subsection{Bootstraping}
\subsection{Otoczenia słów (ang. word embeddings)}
\chapter{Rezultaty}
\section{Wyrażenia regularne}
\section{Bootstraping}
\section{Autorska metoda}
\subsection{Ewaluacja wewnętrzna} %F1 score
\subsection{Ewaluacja zewnętrzna} % w systemie webowym, użytkownicy
\chapter{Wnioski}
\chapter{Perspektywy na przyszłość}
\chapter*{Streszczenie}
TODO
\textbf{Słowa kluczowe:} ekstrakcja informacji\chapter*{Abstract}
todo
\textbf{Key words:} information extraction\markboth{Wstęp}{Wstęp}
\addcontentsline{toc}{chapter}{Wstęp}
@ARTICLE{Bootstrap,
author = {Daniel Waegel},
title = {A Survey of Bootstrapping Techniques in Natural Language Processing},
journal = {Department of Computer Science,
University of Delaware, Literature Survey Reports},
year = {2013}
}
@ARTICLE{Hearst,
author = {Marti Hearst },
title = {Automatic Acquisition of Hyponyms from Large Text Corpora.},
journal = {Proc. of the
Fourteenth International Conference on Computational Linguistics, Nantes, France.},
year = {1992}
}
@inproceedings{genetic,
title={Learning text patterns using separate-and-conquer genetic programming},
author={Bartoli, Alberto and De Lorenzo, Andrea and Medvet, Eric and Tarlao, Fabiano},
booktitle={European Conference on Genetic Programming},
pages={16--27},
year={2015},
organization={Springer}
}
@article{ramped,
title={Genetic programming as a means for programming computers by natural selection},
author={Koza, John R},
journal={Statistics and computing},
volume={4},
number={2},
pages={87--112},
year={1994},
publisher={Springer}
}

View File

@ -1,3 +1,11 @@
@ARTICLE{Bootstrap,
author = {Daniel Waegel},
title = {A Survey of Bootstrapping Techniques in Natural Language Processing},
journal = {Department of Computer Science,
University of Delaware, Literature Survey Reports},
year = {2013}
}
@ARTICLE{Hearst,
author = {Marti Hearst },
title = {Automatic Acquisition of Hyponyms from Large Text Corpora.},
@ -7,10 +15,22 @@ Fourteenth International Conference on Computational Linguistics, Nantes, France
}
@ARTICLE{Bootstrap,
author = {Daniel Waegel},
title = {A Survey of Bootstrapping Techniques in Natural Language Processing},
journal = {Department of Computer Science,
University of Delaware, Literature Survey Reports},
year = {2013}
@inproceedings{genetic,
title={Learning text patterns using separate-and-conquer genetic programming},
author={Bartoli, Alberto and De Lorenzo, Andrea and Medvet, Eric and Tarlao, Fabiano},
booktitle={European Conference on Genetic Programming},
pages={16--27},
year={2015},
organization={Springer}
}
@article{ramped,
title={Genetic programming as a means for programming computers by natural selection},
author={Koza, John R},
journal={Statistics and computing},
volume={4},
number={2},
pages={87--112},
year={1994},
publisher={Springer}
}

66
master.tex Normal file
View File

@ -0,0 +1,66 @@
\documentclass[a4paper, 12pt, twoside]{report}
\input{pakiety.tex}
\input{ustawienia.tex}
\newcommand\blankpage{%
\null
\thispagestyle{empty}%
%\addtocounter{page}{-1}%
\newpage}
\begin{document}
\pagenumbering{roman}
% strona tytulowa
\input{strona_tytulowa.tex}
% oswiadczenie
\blankpage
\input{oswiadczenie.tex}
\blankpage
\input{empty.tex}
% wstawienie spisu tresci:
\newpage
\tableofcontents
% tresc pracy - numeracja stron liczbami arabskimi
\newcounter{licznikStron}
\setcounter{licznikStron}{\value{page}}
\pagenumbering{arabic}
\setcounter{page}{\value{licznikStron}}
\newpage\null\thispagestyle{empty}\newpage
\input{streszczenie.tex}
\newpage\null\thispagestyle{empty}\newpage
\input{empty.tex}
\input{abstract.tex}
\newpage\null\thispagestyle{empty}\newpage
\input{wstep.tex}
\newpage\null\thispagestyle{empty}\newpage
\input{rozdzial_1.tex}
\input{rozdzial_2.tex}
\newpage\null\thispagestyle{empty}\newpage
\input{rozdzial_3.tex}
\input{rozdzial_4.tex}
\input{rozdzial_5.tex}
\newpage\null\thispagestyle{empty}\newpage
% spis ilustracji:
%\newpage
%\listoffigures
%\addcontentsline{toc}{chapter}{Spis ilustracji}
% spis tabel:
%\newpage
%\listoftables
%\addcontentsline{toc}{chapter}{Spis tabel}
%bibliografia
\nocite{*}
\bibliographystyle{acm}
\bibliography{bibliografia}
\addcontentsline{toc}{chapter}{Bibliografia}
%\newpage\null\thispagestyle{empty}\newpage
%\input{zakres_projektu.tex}
\end{document}

View File

@ -1,3 +1 @@
\chapter{Podstawowe pojęcia}
\chapter{stub}

View File

@ -2,132 +2,150 @@
% w kontekście mojego projektu
W tym rozdziale zaprezentowane są wybrane metody,
które brane były pod uwagę lub zostały zastosowane
w końcowym systemie ekstrakcji informacji o godzinach rozpoczęcia mszy świętych.
w opisywanym tutaj systemie ekstrakcji informacji o godzinach rozpoczęcia mszy świętych.
\section {Algorytmy \textit{bootstraping}}
Niech $J$ to będzie dowolna reprezentacja języka (wyraz, fraza, wyrażenie
regularne itp.)
Niech $J$ będzie dowolną reprezentacją języka (wyraz, fraza, wyrażenie
regularne itp.).
W dziedzinie przetwarzania języka naturalnego \textit{bootstraping} to technika
wyszukiwania niezanotowanych $J$ przy użyciu małego zbioru specjalnie
wyselekcjonowanych $J$.
Implementacji algorytmu \textit{bootstraping} jest wiele; wszystkie jednak
wyszukiwania niezanotowanych (nieprzypisanych do badanej klasy) $J$ przy użyciu małego zbioru specjalnie
wyselekcjonowanych zanotowanych $J$.
Implementacji algorytmu \textit{bootstraping} jest wiele, wszystkie jednak
oparte są na następującym schemacie \cite{Bootstrap}:
\enlargethispage{4\baselineskip}
\begin{enumerate}
\item Stwórz pustą listę $J$. % pusta lista $J$, pusta lista wyrazów, pusta
\item Stwórz pustą listę reprezentacji języka $J$. % pusta lista $J$, pusta lista wyrazów, pusta
% lista fraz
\item Zainicjalizuj listę starannie dobranymi $J$.
\item Wykorzystaj elementy listy do znalezienia nowych $J$ z korpusu treningowego.
\item Oceń nowe $J$; najlepsze $J$ dodaj do listy.
\item Wróć do 3. i powtarzaj aż do osiągnięcia z góry określonej liczby iteracji lub
\item Wróć do 3. i powtarzaj aż do osiągnięcia z góry określonej liczby iteracji
\newline lub
spełnienia innego warunku stopu.
\end{enumerate}
\textit{Bootstraping} jest szczególnie przydatny w przypadku, gdy mamy mały
zbiór treningowy, ponieważ z jego pomocą jesteśmy w stanie powiększyć zbiór
treningowy. %todo poprawić
% \textit{Bootstraping} jest szczególnie przydatny w przypadku, gdy mamy mały
% zbiór treningowy, ponieważ z jego pomocą jesteśmy w stanie powiększyć zbiór
% treningowy. %todo poprawić
\subsection{Wzorce Hearst}
Jedną z pierwszych implementacji algorytmu \textit{bootstraping} w dziedzinie
Jednymi z pierwszych implementacji algorytmu \textit{bootstraping} w dziedzinie
ekstrakcji informacji
są wzorce Hearst \textit{(ang. Hearst patterns)} \cite{Hearst}.
\smallskip
\noindent Znajdowanie nowych wzorców za pomocą wzorców Hearst można przedstawić
\noindent Znajdowanie nowych przykładów uczących za pomocą wzorców Hearst przedstawia się
następująco:
\begin{enumerate}
\item Wybierz relację leksykalną $R$.
\item Zbierz zbiór $S$ par $(x, y)\in R$, gdzie $x$ i $y$ to słowa lub frazy.
\item Utwórz początkowy zbiór $S$ par $(x, y)\in R$, gdzie $x$ i $y$ to słowa lub frazy.
\item Znajdź zdania, które zawierają pary ze zbioru $S$.
\item Przyjrzyj się kontekstowi w jakim występują te pary. Załóż, że często powtarzające się wzorce reprezentują relację R.
\item Wykorzystaj nowo odkryte wzorce do znalezienia nowych par słów lub fraz będących w relacji $R$.
\item Dodaj nowo znalezione pary słów lub fraz do zbioru $S$, wróć do 3. i powtarzaj aż do osiągnięcia z góry określonej liczby iteracji.
\item Przyjrzyj się kontekstowi, w jakim występują te pary. Załóż, że często powtarzające się wzorce reprezentują relację R.
\item Wykorzystaj nowo odkryte wzorce do znalezienia kolejnych par $(x, y)\in R$.
\item Dodaj nowo znalezione pary do zbioru $S$, wróć do 3. i powtarzaj aż do osiągnięcia z góry określonej liczby iteracji.
\end{enumerate}
\enlargethispage{6\baselineskip}
\enlargethispage{4\baselineskip}
\subsubsection{Przykład}
Rozważmy relację R taką, że $(x, y) \in R$ wtedy, gdy $x$ został pochowany w
$y$.
Załóżmy, że zaczynamy z parą \texttt{('Józef Piłsudski', 'Kraków')}$\in R$.
W korpusie treningowym szukamy zdań zawierających w sobie parę \texttt{('Józef Piłsudski', 'Kraków')} i otrzymujemy:
W korpusie treningowym szukamy zdań zawierających w sobie parę \texttt{('Józef
Piłsudski', 'Kraków')} i otrzymujemy zdania takie jak:
\centerline{„Józef Piłsudski został pochowany w Krakowie.”}
\centerline{„Miejsce pochówku Józefa Piłsudskiego to Kraków.”}
\centerline{„Grób Józefa Piłsudskiego znajduje się w Krakowie.”}
Ze znalezionych zdań tworzymy następujące wzorce:
\noindent Ze znalezionych zdań tworzymy następujące wzorce:
\centerline{$x$ został pochowany w $y$.}
\centerline{Miejsce pochówku $x$ to $y$.}
\centerline{Grób $x$ znajduje się w $y$.}
Wykorzystujemy powyższe wzorce do znalezienia nowych par będących w relacji $R$
i otrzymujemy:
\noindent Wykorzystujemy powyższe wzorce do znalezienia nowych par będących w relacji $R$, przykładowo:
% i otrzymujemy:
\centerline{\texttt{('Władysław Araszkiewicz', 'Warszawa')}}
\centerline{\texttt{('Władysław Kuczewski', 'Częstochowa')}}
\centerline{\texttt{('Witold Doroszweski, 'Warszawa')}}
\centerline{\texttt{('Jana Długosz', 'Zakopane')}}
Następnie nowe pary używamy do znalezienia nowych wzorców, a potem nowe
wzorce do wyszukania kolejnych par i powtarzamy powyższy
algorytm aż do osiągnięcia określonej liczby iteracji.
\noindent Następnie szukamy zdań w których występują powyższe pary, na przykład:
\centerline{„Witold Doroszewski spoczywa w Warszawie.”}
\centerline{„Na cmentarzu w Zakopanem mieści
się grób Jana Długosza.”}
\noindent Z nowo otrzymanych zdań tworzymy poniższe wzorce:
\centerline{$x$ spoczywa w $y$.}
\centerline{Na cmentarzu w $y$ mieści się grób $x$.}
\noindent Powtarzamy powyższy algorytm aż do osiągnięcia określonej liczby iteracji.
% \subsection{Miejsce na opis bardziej skomplikowanej metody implementującej
% algorytm \textit{bootstraping}}
\subsection{Miejsce na opis bardziej skomplikowanej metoda implementującej
algorytm \textit{bootstraping}}
\section{Dziel i zwyciężaj algorytmami genetycznymi}
W 2015 Bartoli i in. zaprezentowali efektywny algorytm genetyczny do generowania wzorców w
postaci wyrażeń regularnych przy użyciu niewielkiego zbioru zanotowanych przykładów.
Problem generowania automatycznych wyrażeń regularnych jest ciężki. Warto zauważyć, że
bardzo łatwo wytrenować na zbiorze treningowym system, który znajdzie wzorzec o bardzo wysokiej precyzji i niskiej
czułości (np. wystarczy alternatywa po wszystkich zanotowanych przykładach), ale szczególnie trudno wytrenować system tak, aby generalizował się na przypadki poza
zbiorem treningowym (innymi słowy taki system łatwo przetrenować).
%Bartoli i in. na następujących przykładach
%tabela tekstu do wyekstrachowania
%(otrzymali wyniki bardzo zadowalające wyniki ) tabela wyników
\section{Automatyczne generowanie wyrażeń regularnych za pomocą algorytmów genetycznych}
W 2015 roku Bartoli i in. zaprezentowali efektywny algorytm genetyczny do generowania
wzorców zapisanch w
postaci wyrażeń regularnych przy użyciu niewielkiego zbioru zanotowanych
przykładów (fraz oznaczonych jako pasujące do wyrażeń regularnych) \cite{genetic}. Nowością było zastosowanie metody „dziel i zwyciężaj”.
Zamiast uczyć się jednego wyrażenia regularnego, które znajdowałoby wszystkie
przykłady, system uczy się wielu różnych wzorców, które dopiero po połączeniu
alternatywą tworzą
ostateczne wyrażenie regularne.
% Problem automatycznego generowania wyrażeń regularnych jest złożony. Warto zauważyć, że % bardzo łatwo wytrenować na zbiorze treningowym system, który znajdzie wzorzec o bardzo wysokiej precyzji i niskiej % czułości (np. wystarczy alternatywa, której składnikami są wszystkie zanotowane przykłady), ale szczególnie trudno wytrenować system tak, aby generalizował się na przypadki poza % zbiorem treningowym (innymi słowy taki system łatwo przetrenować). %(otrzymali wyniki bardzo zadowalające wyniki ) tabela wyników
\subsection{Opis problemu}
Niech $x_s$ będzie spójnym podciągiem ciągu znaków $s$ reprezentowanym przez
indeks początkowy i końcowy w $s$.
$x_s$ nazywa się nadłańcuchem $x'_s$ (a $x'_s$ jest podłańcuchem $x_s$)
indeks początkowy i końcowy w $s$. Dla ułatwienia, w przykładach $x_s$ będziemy
reprezentować przez zawartość i indeks początkowy.
\enlargethispage{1\baselineskip}
Na przykład $x_s=\texttt{ku}_0$, $x'_s=\texttt{ku}_2$, $x''_s=\texttt{kuku}_0$, $x'''_s=\texttt{łka}_4$ to spójne podciągi ciągu znaków $s=\texttt{kukułka}$.
$x_s$ nazywa się nadłańcuchem $x'_s$ (a $x'_s$ jest podłańcuchem $x_s$),
jeśli (i) $x'_s$ jest krótszy niż $x_s$, (ii) indeks początkowy $x'_s$ jest
większy lub równy niż indeks początkowy $x_s$ oraz (iii) indeks końcowy $x'_s$
jest mniejszy lub równy niż indeks końcowy $x_s$.
nie mniejszy niż indeks początkowy $x_s$ oraz (iii) indeks końcowy $x'_s$
jest nie większy niż indeks końcowy $x_s$. Na przykład $\texttt{ku}_0$
jest podłańcuchem $\texttt{kuku}_0$.
Mówi się, że $x_s$ nachodzi na $x'_s$ (lub $x'_s$ nachodzi na $x_s$), jeśli (i) indeks początkowy $x_s$ jest
nie większy niż indeks końcowy $x'_s$ oraz (ii) indeks końcowy $x_s$ jest nie
mniejszy niż indeks początkowy $x'_s$.
Niech $(s,X)$ to przykład uczący, w którym $X$ to zbiór
Niech $(s,X)$ będzie przykładem uczącym, w którym $X$ to zbiór
nienachodzących na siebie $x_s$.
Niech $e(s,P)$ to zbiór wszystkich ciągów $x_s$
Jako $e(s,P)$ oznacza się zbiór wszystkich ciągów $x_s$
wyekstrahowanych poprzez zbiór wyrażeń regularnych $P$, taki że (i)
$x_s$
pasuje do jakiegokolwiek wyrażenia regularnego $p\in P$, (ii) każdy nadłańcuch
$x'_s$ ciągu $x_s$ nie pasuje do żadnego wyrażenia regularnego $p\in P$
oraz (iii) dla każdego innego ciągu $x''_s$, który nachodzi na
$x_s$, indeks początkowy $x''_s$ albo jest większy od indeksu początkowego $x_s$
oraz (iii) dla każdego ciągu $x''_s\neq x_s$, który nachodzi na
$x_s$, indeks początkowy $x''_s$ jest większy od indeksu początkowego $x_s$
albo $x''_s$ nie pasuje do żadnego $p\in P$.
Między innymi dla $s=\texttt{abcde}\textvisiblespace \texttt{a}$ i
$P=\{\texttt{a}, \texttt{bc}, \texttt{cde}, \texttt{de}\}$
$e(s,P)=\{a_0, a_6, bc_1\}$. Należy zwrócić uwagę, że $de_3 \notin e(s,P)$ i $cde_2 \notin e(s,P)$, ponieważ nie spełniają one kolejno warunków (ii) oraz (iii).
Mając dwa zbiory zanotowanych przykładów $(E, E')$ zbiór wyrażeń
Mając dwa zbiory anotowanych przykładów $(E, E')$, zbiór wyrażeń
regularnych $P$ generowany jest używając
tylko i wyłącznie $E$ w taki sposób, że (i) maksymalizowana jest średnia harmoniczna z precyzji i
czułości na $E'$ oraz (ii) minimalizowana jest $\sum_{p\in
P}{l(p)}$, gdzie $l(p)$ to długość wyrażenie regularnego $p$.
Wtedy precyzja i czułość definiowane są w następujący sposób:
pokrycia (ang. \textit{recall}) na $E'$ oraz (ii) minimalizowana jest $\sum_{p\in
P}{l(p)}$, gdzie $l(p)$ to długość wyrażenia regularnego $p$.
Wtedy precyzja i pokrycie definiowane są w następujący sposób:
$$Prec(P, E'):=\frac{\sum_{(s,X)\in E'}{|e(s,P) \cup X|}}{\sum_{(s,X)\in E'}{|e(s,P)|}}$$
$$Rec(P, E'):=\frac{\sum_{(s,X)\in E'}{|e(s,P) \cup X|}}{\sum_{(s,X)\in E'}{|X|}}$$
\subsection{Algorytm}
\subsection{Szczegóły algorytmu genetycznego}
\subsubsection{Algorytm genetyczny}
Na wejściu podawany jest zbiór treningowy $T$, a na wyjściu pojedyńcze wyrażenie regularne $p$.
Zbiór treningowy $E$ składa się z trójki uporządkowanej $(s,X)=(s,X_d,X_u)$,
gdzie $X_d$ to zbiór ciągów $x_s$ ekstrahowanych przez $p$, a
$X_u$ to zbiór niepożądanych ciągów $x_s$ ekstrahowanych przez $p$. Dodatkowo
żaden podłańcuch $x'_s$ ciągu $x_s\in X_d$ nie nachodzi na żaden podłańcuch $x'_s$ ciągu $x_s\in X_u$.
Na wejściu do algorytmu genetycznego podawany jest zbiór treningowy $T$, a na
wyjściu otrzymuje się pojedyncze wyrażenie regularne $p$.
Zbiór treningowy $E$ składa się z trójki uporządkowanej $(s,X_d,X_u)=(s,X)$,
gdzie $X_d$ to zbiór pożądanych ciągów $x_s$ ekstrahowanych przez $p$, a
$X_u$ to zbiór niepożądanych ciągów $x_s$ ekstrahowanych przez $p$.
Nie istnieje żaden podłańcuch $x'_s$ ciągu $x_s \in
X_d$, który nachodzi na jakikolwiek podłańcuch $x'''_s$ ciągu $x''_s \in X_u$.
Wyrażenie regularne reprezentowane jest za pomocą drzewa. Liście składają
się z:
@ -135,10 +153,10 @@ się z:
\item zakresów znaków np. \texttt{a-ż}, \texttt{A-Ż} i \texttt{0-9},
\item klas znaków \texttt{\textbackslash w} i \texttt{\textbackslash d},
\item cyfr od 0 do 9,
\item częściowych zakresów, czyli największego zakresu znaków występującego
w $\bigcup_{(s,X_d,X_u)\in T}X_d$, np. dla \texttt{\{pokój, ubierać\}}
\item częściowych zakresów, czyli największego zakresu znaków występującego \newline
w $\bigcup_{(s,X_d,X_u)\in T}X_d$, np. dla $\texttt{\{pokój}_3, \texttt{ubierać}_{13}\}$
otrzymuje się
zakresy \texttt{a-b}, \texttt{j-k} i \texttt{o-r} (przy założeniu, że
zakresy \newline \texttt{j-k} i \texttt{o-r} (przy założeniu, że
korzysta się z polskiego alfabetu),
\item znaków specjalnych takich jak np. \texttt{\textbackslash ., :, @}.
\end{enumerate}
@ -149,96 +167,156 @@ Wierzchołki nie będące liściami składają się z:
\item kwantyfikatorów bez nawrotów (ang. possessive quantifiers) $\bullet
\ast$\texttt{+}, $\bullet$\texttt{++}, $\bullet$\texttt{?+ } oraz $ \bullet
\{ \bullet, \bullet \}$\texttt{+},
\item nie łapiących grup \texttt{(?:$\bullet$)}.
\item oznaczeń grup nieprzechwytujących \texttt{(?:$\bullet$)}.
\end{enumerate}
Wyrażenie regularne $p$ otrzymuje się przechodząc drzewo sposobem post-order,\newline w którym pod $\bullet$ w wierzchołkach
Wyrażenie regularne $p$ otrzymuje się przechodząc drzewo sposobem
\textit{post-order},\newline w którym pod znak $\bullet$ w wierzchołkach
niebędących
liściami podstawia się łańcuchy znaków zawarte w dzieciach tego wierzchołka.
\begin{figure}[tbh]
\centering
\includegraphics[width=0.7\hsize]{drzewo.png}
\caption{Reprezentacja wyrażenia regularnego \texttt{abc\{1,2\}+} za pomocą drzewa.}
\label{drzewo_pic}
\end{figure}
\subsubsection{Inicjalizacja populacji}
Dla każdego $x_s\in \bigcup_{(s,X_d,X_u)\in T}X_d$ budowane są dwa osobniki
(osobnik to wyrażenie regularne). Pierwszy osobnik tworzony jest z $x_s$, w którym każda cyfra zamieniana
Jako $n_{pop}$ oznacza się rozmiar populacji wyrażeń regularnych $P$. Dla każdego $x_s\in \bigcup_{(s,X_d,X_u)\in T}X_d$ budowane są dwa osobniki
(osobnikiem jest wyrażenie regularne). Pierwszy osobnik tworzony jest z $x_s$, w którym każda cyfra zamieniana
jest na \texttt{\textbackslash d} oraz każda litera zamienia jest na
\texttt{\textbackslash w}. Drugi osobnik tworzony jest identycznie jak pierwszy
z tą różnicą, że wielkrotne wystąpienia \texttt{\textbackslash d} (lub
\texttt{\textbackslash w}) zastępuje się \texttt{\textbackslash d++} (lub
\texttt{\textbackslash w++}). %\marginpar{przykład}
\texttt{\textbackslash w}) zastępuje się oznaczeniami \texttt{\textbackslash d++} (lub
\texttt{\textbackslash w++}). W szczególności dla $x_s=\texttt{14\textvisiblespace lutego}$
otrzymujemy osobniki \texttt{\textbackslash d\textbackslash d\textvisiblespace
\textbackslash w\textbackslash w\textbackslash w\textbackslash w\textbackslash
w\textbackslash w} oraz
\texttt{\textbackslash d++\textvisiblespace \textbackslash w++}.
Jeśli liczba wygenerowanych osobników jest większa niż $n_{pop}$, to są one
losowo usuwane, natomiast jeśli liczba osobników jest mniejsza niż $n_{pop}$, to
brakujące osobniki są generowane metodą \textit{Ramped half-and-half} \cite{ramped}. Osobniki
niereprezentujące poprawnego wyrażenia regularnego są odrzucane, a w ich miejsce
generowane \newline są nowe.
\subsubsection{Funkcja przystosowania}
Dla każdego osobnika funkcję przystosowania zdefiniowano jako
Dla każdego osobnika funkcję przystosowania defniuje się jako:
$$f(p):=(Prec(p,T), Acc(p,T), l(p))$$
Wprowadzono również dwie nowe operacje $\sqcap$ i $\ominus$, na których oparte są
Wprowadza się również dwie nowe operacje $\sqcap$ i $\ominus$, na których oparte są
funkcje $Prec$ i $Acc$.
Załóżono, że $X_1$ i $X_2$ to zbiory spójnych podciągów tego samego łańcucha znaków $s$.
Zakłada się, że $X_1$ i $X_2$ to zbiory spójnych podciągów tego samego łańcucha znaków $s$.
Wtedy:
\begin{itemize}
\item $X_1 \ominus X_2$ jest zbiorem takich $x_s$, że
(i) są one spójnym podciągiem jakiegoś elementu $X_1$, (ii) nie
nachodzą na żaden z elementów $X_2$ oraz (iii) nie mają nadłańcucha, który spełnia
nachodzą na żaden z elementów $X_2$ oraz (iii) nie mają nadłańcucha, który
spełnia warunki
(i), (ii);
\item $X_1 \sqcap X_2$ jest zbiorem takich $x_s$, że (i) są one
spójnym podciągiem jakiekolwiek elementu $X_1$ i
jakiekolwiek elementu $X_2$ oraz (ii) nie mają nadłańcucha, który spełnia (i).
\end{itemize}
W końcu $$Prec(p,T):=\frac{\sum_{(s,X_d,X_u)\in T}|e(s,\{p\})\cap
Między innymi dla $X_1=\{\texttt{Ja}_0, \texttt{ty}_4,
\texttt{Adam\textvisiblespace Małysz}_9\}$, $X_2=\{\texttt{Ja}_0,
\texttt{Małysz}_{14}\}$: \newline $X_1 \ominus X_2 = \{\texttt{ty}_4, \texttt{Adam\textvisiblespace}_{9}\}$,
$X_1 \sqcap X_2 = \{\texttt{Ja}_0,\texttt{Małysz}_{14}\}$.
\enlargethispage{4\baselineskip}
\bigskip
\noindent W końcu $$Prec(p,T):=\frac{\sum_{(s,X_d,X_u)\in T}|e(s,\{p\})\cap
X_d|}{\sum_{(s,X_d,X_u)\in T}|e(s,\{p\})\sqcap (X_d \cup X_u)|}$$
Drugi element trójki uporządkowanej, czyli $Acc(p,T)$ jest średnią arytmetyczną
czułości na znakach (ang. True Positive Character Rate skr. TPCR) i
pokrycia na znakach (ang. True Positive Character Rate skr. TPCR) i
specyficzności na znakach (ang. True Negative Character Rate skr. TNCR):
$$TPCR(p,T):=\frac{\sum_{(s,X_d,X_u)\in T}||e(s,\{p\})\sqcap X_d||}{\sum_{(s,X_d,X_u)\in T}||X_d||}$$
$$TNCR(p,T):=\frac{\sum_{(s,X_d,X_u)\in T}||s \ominus e(s,\{p\}) \sqcap X_u||}{\sum_{(s,X_d,X_u)\in T}||X_u||}$$
$$Acc(p,T)=\frac{TPCR(p,T) + TNCR(p,T)}{2},$$
\begin{equation*}
\begin{split}
TPCR(p,T) & :=\frac{\sum_{(s,X_d,X_u)\in T}||e(s,\{p\})\sqcap X_d||}{\sum_{(s,X_d,X_u)\in T}||X_d||} \\[3pt]
TNCR(p,T) & :=\frac{\sum_{(s,X_d,X_u)\in T}||s \ominus e(s,\{p\}) \sqcap X_u||}{\sum_{(s,X_d,X_u)\in T}||X_u||} \\[3pt]
Acc(p,T) & :=\frac{TPCR(p,T) + TNCR(p,T)}{2}
\end{split}
\end{equation*}
gdzie $||X|| = \sum_{x_s\in X}l(x_s)$, a $l(x_s)$ oznacza długość ciągu $x_s$.
Osobniki porównywane są w pierwszej kolejności na podstawie $Prec$, potem
\newline w
przypadku remisu za pomocą $Acc$, a w przypadku identycznych
Osobniki porównywane są w pierwszej kolejności na podstawie $Prec$, \newline potem
za pomocą $Acc$, a na końcu w przypadku identycznych
$Prec$ i $Acc$ brane jest pod uwagę $l(p)$.
Populacja $P$ o liczności $n$ ewoluuje następująco. W każdej iteracji $0.1n$ osobników
\enlargethispage{4\baselineskip}
% \end{split}
% \end{equation*}
% \begin{equation*}
% \begin{split}
\textbf{Przykład}
\begin{equation*}
\begin{split}
s & = \texttt{70.\textvisiblespace Poprawny\textvisiblespace zapis\textvisiblespace dat\textvisiblespace to\textvisiblespace np.\textvisiblespace } \\
& \quad \; \texttt{10.04.2019,\textvisiblespace 1.03.2018\textvisiblespace (nie\textvisiblespace 01.03.2018).} \\
X_d & =\{\texttt{10.04.2019}_{30}, \texttt{1.03.2018}_{42}\} \\
X_u & = \{\texttt{70.\textvisiblespace Poprawny\textvisiblespace zapis\textvisiblespace dat\textvisiblespace to\textvisiblespace np.\textvisiblespace }_0, \texttt{\textvisiblespace (nie\textvisiblespace}_{52}, \;\texttt{).}_{67}\} \\
T & = \{(s, X_d, X_u)\} \\
p_1 & = \texttt{\textbackslash d\{2,2\}+.\textbackslash d\{2,2\}+.\textbackslash d\{4,4\}+.} \\
p_2 & = \texttt{\textbackslash d\{2,4\}+} \\
e(s, {p_1}) & = \{\texttt{10.04.2019}_{30}, \texttt{01.03.2018}_{57}\} \\
e(s, {p_2}) & = \{\texttt{70}_{0}, \texttt{10}_{30}, \texttt{04}_{33}, \texttt{2019}_{36}, \texttt{03}_{44}, \texttt{2018}_{47}, \texttt{01}_{57}, \texttt{03}_{60}, \texttt{2018}_{63}\} \\[3pt]
Prec(p_1, T) & = \frac{|\{\texttt{10.04.2019}_{30}\}|}{|\{\texttt{10.04.2019}_{30}\}|} =\frac{1}{1} = 1 \\[3pt]
Prec(p_2, T) & = \frac{|\emptyset|}{|\{\texttt{70}_{0}, \texttt{10}_{30}, \texttt{04}_{33}, \texttt{2019}_{36}, \texttt{03}_{44}, \texttt{2018}_{47}\}|} = \frac{0}{6} = 0 \\[4pt]
TPCR(p_1, T) & = \frac{||\{\texttt{10.04.2019}_{30}\}||}{||\{\texttt{10.04.2019}_{30}, \texttt{1.03.2018}_{42}\}||} = \frac{10}{19} \\[4pt]
TPCR(p_2, T) & = \frac{||\{\texttt{10}_{26}, \texttt{04}_{29}, \texttt{2019}_{32}, \texttt{03}_{40}, \texttt{2018}_{43}\}||}{||\{\texttt{10.04.2019}_{30}, \texttt{1.03.2018}_{42}\}||} = \frac{14}{19} \\[4pt]
TNCR(p_1, T) & = \frac{||\{\texttt{70.\textvisiblespace Poprawny\textvisiblespace zapis\textvisiblespace dat\textvisiblespace to\textvisiblespace np.\textvisiblespace }_0, \texttt{\textvisiblespace (nie\textvisiblespace}_{51}, \;\texttt{).}_{67}\}||}{||\{\texttt{70.\textvisiblespace Poprawny\textvisiblespace zapis\textvisiblespace dat\textvisiblespace to\textvisiblespace np.\textvisiblespace }_0, \texttt{\textvisiblespace (nie\textvisiblespace}_{51}, \;\texttt{).}_{67}\}||} = \frac{38}{38} = 1\\[4pt]
TNCR(p_2, T) & = \frac{||\{\texttt{.\textvisiblespace Poprawny\textvisiblespace zapis\textvisiblespace dat\textvisiblespace to\textvisiblespace np.\textvisiblespace }_2, \texttt{\textvisiblespace (nie\textvisiblespace}_{51}, \;\texttt{).}_{67}\}||}{||\{\texttt{70.\textvisiblespace Poprawny\textvisiblespace zapis\textvisiblespace dat\textvisiblespace to\textvisiblespace np.\textvisiblespace }_0, \texttt{\textvisiblespace (nie\textvisiblespace}_{51}, \;\texttt{).}_{67}\}||} = \frac{36}{38}\\[4pt]
f(p_1) & = \bigg(1, 0.76=\frac{1}{2}\Big(\frac{10}{19} + 1\Big), 20 \bigg)\\
f(p_2) & = \bigg(0, 0.84=\frac{1}{2}\Big(\frac{14}{19} + \frac{36}{38}, \Big), 24\bigg)
\end{split}
\end{equation*}
Zgodnie z wprowadzoną funkcją oceny osobnik $p_1$ jest lepiej
przystosowany niż osobnik $p_2$.
\subsubsection{Ewolucja populacji}
Populacja $P$ o liczności $n_{pop}$ ewoluuje następująco. W każdej epoce $0.1n$ osobników
generowanych jest losowo za pomocą metody
Ramped half-and-half, kolejne $0.1n$ osobników powstaje za pomocą mutacji, a
pozostałe $0.8n$ otrzymano z
populacji i zbioru nowo
\textit{Ramped half-and-half} \cite{ramped}, kolejne $0.1n$ osobników powstaje za pomocą mutacji, a
pozostałe $0.8n$ otrzymuje \newline się metodą krzyżowania.
Z populacji P i zbioru nowo
wygenerowanych osobników wybierane jest $n$ najlepiej przystosowanych osobników,
które tworzą nową populację. Osobniki wybierane \newline są do mutacji i krzyżowania za
pomocą turnieju (losowanie z $P$ siedmiu osobników i zostawienie najlepszego).
Wymuszono również różnorodność między fenotypami osobników tzn. jeśli oba
osobniki mają identyczny łańcuch znaków to w populacji zostawiono tylko jednego
z nich. Koniec iteracji następuje, gdy zostanie osiągnięty \newline z góry ustalony limit generacji lub
najlepiej przystosowany osobnik nie zmieni się od określonej liczby iteracji.
które tworzą nową populację. Osobniki wybierane są do mutacji i krzyżowania
metodą turnieju (losowanie z $P$ siedmiu osobników i wyłonienie najlepszego).
Pondato wymusza się także różnorodność między fenotypami osobników, tzn. jeśli oba
osobniki mają identyczny łańcuch znaków to w populacji zostawia się tylko jednego
z nich. Koniec iteracji następuje, gdy zostanie osiągnięty z góry ustalony limit
iteracji lub
najlepiej przystosowany osobnik nie zmieni się od określonej liczby epok.
Finalne wyrażenie regularne $p$ to najlepiej przystosowany osobnik po
zakończeniu wszystkich iteracji.
\subsubsection{Dziel i zwyciężaj}
Zbiór wyrażeń regularnych $P$ generowany jest za pomocą strategii dziel i
zwyciężaj. W każdej iteracji spójne podciągi ciągu znaków $s$, które zostały poprawnie
\subsubsection{Zastosowanie metody „dziel i zwyciężaj”}
Zbiór wyrażeń regularnych $P$ generowany jest za pomocą strategii dziel i zwyciężaj”.
W każdej iteracji spójne podciągi ciągu znaków $s$, które zostały poprawnie
wykryte przez $P$ są usuwane ze zbioru treningowego.
Oby uniknąć przetrenowania, czyli bardzo wysokiego F-measure na $E$, a niskiego na $E'$
\enlargethispage{2\baselineskip}
Oby uniknąć przetrenowania, czyli bardzo wysokiego \textit{F-measure} na $E$, a niskiego na $E'$,
zbiór treningowy $E$ dzielony jest losowo na dwa zbiory $E_{train}$ i $E_{validation}$
takie, że $E=E_{train} \cup E_{validation}$, $E_{train} \cap E_{validation} =
\emptyset$ \newline i
$\sum_{(s,X)\in E_{train}}|X|\approx \sum_{(s,X)\in E_{validation}}|X|$.
\enlargethispage{7\baselineskip}
\newpage
\noindent Procedura generowania zbioru wyrażeń regularnych $P$ prezentuje się następująco.
Zacznij z $P=\emptyset$ i z $T$ utworzonym w taki sposób, że dla
każdego $(s,X)\in E_t$, trójka uporządkowana $(s, X, \{s\} \ominus X)$ jest
każdego $(s,X)\in E_{train}$, trójka uporządkowana $(s, X, \{s\} \ominus X)$ jest
dodawana do $T$, \newline gdzie $X_d:=X$ i $X_u:=\{s\} \ominus X$.
\noindent Następnie dopóki $\bigcup_{(x,X_d,X_u)\in T}X_d\ne \emptyset$ powtarzaj:
\begin{enumerate}
\item Wykonaj algorytm genetyczny na $T$ i otrzymaj finalne $p$.
\item Wykonaj algorytm genetyczny na $T$ i otrzymaj wyrażenie regularne $p$.
\item Jeśli $Prec(p,T)=1$, to $P:=P\cup\{p\}$, w przeciwnym wypadku przerwij pętlę.
\item Dla każdego $(s, X_d, X_u)\in T$, ustaw $X_d:=X_d\setminus e(s, \{p\})$.
\item Dla każdego $(s, X_d, X_u)\in T$ ustaw $X_d:=X_d\setminus e(s, \{p\})$.
\end{enumerate}
Powyższa procedura powtarzana jest wiele razy z różnym zarodkiem generatora
liczb losowych (startowy zbiór trenujący $T$ pozostaje bez zmian), by otrzymać
wiele różnych zbiorów $P$, z których na końcu wybierany jest ten o najwyższej
 średniej harmonicznej z precyzji i czułości na $E=E_{train} \cup E_{validation}$.
dużo różnych zbiorów $P$, z których na końcu wybierany jest ten o najwyższej
 średniej harmonicznej z precyzji i pokrycia na $E=E_{train} \cup E_{validation}$.
%\section{Sieci neuronowe}