
Automatically Generating Extraction Patterns from Untagged Text

Ellen Riloff
Department of Computer Science

University of Utah
Salt Lake City, UT 84112

riloff@cs.utah.edu

Abstract

Many corpus-based natural language processing sys-
tems rely on text corpora that have been manually
annotated with syntactic or semantic tags. In partic-
ular, all previous dictionary construction systems for
information extraction have used an annotated train-
ing corpus or some form of annotated input. We have
developed a system called AutoSlog-TS that creates
dictionaries of extraction patterns using only untagged
text. AutoSlog-TS is based on the AutoSlog system,
which generated extraction patterns using annotated
text and a set of heuristic rules. By adapting Au-
toSlog and combining it with statistical techniques, we
eliminated its dependency on tagged text. In experi-
ments with the MUG-4 terrorism domain, AutoSlog-
TS created a dictionary of extraction patterns that
performed comparably to a dictionary created by Au-
toSlog, using only preclassified texts as input.

Motivation
The vast amount of text becoming available on-line
offers new possibilities for conquering the knowledge-
engineering bottleneck lurking underneath most natu-
ral language processing (NLP) systems. Most corpus-
based systems rely on a text corpus that has been man-
ually tagged in some way. For example, the Brown cor-
pus (Francis & Kucera 1982) and the Penn Treebank
corpus (Marcus, Santorini, & Marcinkiewicz 1993) are
widely used because they have been manually anno-
tated with part-of-speech and syntactic bracketing in-
formation. Part-of-speech tagging and syntactic brack-
eting are relatively general in nature, so these corpora
can be used by different natural language processing
systems and for different domains. But some corpus-
based systems rely on a text corpus that has been
manually tagged in a domain-specific or task-specific
manner. For example, corpus-based approaches to in-
formation extraction generally rely on special domain-
specific text annotations. Consequently, the manual
tagging effort is considerably less cost effective because
the annotated corpus is useful for only one type of NLP
system and for only one domain.

1044 Natural Language

Corpus-based approaches to information extraction
have demonstrated a significant time savings over con-
ventional hand-coding methods (Riloff 1993). But the
time required to annotate a training corpus is a non-
trivial expense. To further reduce this knowledge-
engineering bottleneck, we have developed a system
called AutoSlog-TS that generates extraction patterns
using untagged text. AutoSlog-TS needs only a pre-
classified corpus of relevant and irrelevant texts. Noth-
ing inside the texts needs to be tagged in any way.

Generating Extraction Patterns from
Tagged Text

Related work

In the last few years, several systems have been de-
veloped to generate patterns for information extrac-
tion automatically. All of the previous systems de-
pend on manually tagged training data of some sort.
One of the first dictionary construction systems was
AutoSlog (Riloff 1993)) which requires tagged noun
phrases in the form of annotated text or text with asso-
ciated answer keys. PALKA (Kim & Moldovan 1993)
is similar in spirit to AutoSlog, but requires manually
defined frames (including keywords), a semantic hierar-
chy, and an associated lexicon. Competing hypotheses
are resolved by referring to manually encoded answer
keys, if available, or by asking a user.

CRYSTAL (Soderland et al. 1995) also generates
extraction patterns using an annotated training cor-
pus. CRYSTAL relies on both domain-specific anno-
tations plus a semantic hierarchy and associated lex-
icon. LIEP (Huffman 1996) is another system that
learns extraction patterns but relies on predefined key-
words, object recognizers (e.g., to identify people and
companies), and human interaction to annotate each
relevant sentence with an event type. Cardie (Cardie
1993) and Hastings (Hastings & Lytinen 1994) also
developed lexical acquisition systems for information
extraction, but their systems learned individual word

From: AAAI-96 Proceedings. Copyright © 1996, AAAI (www.aaai.org). All rights reserved.

meanings rather than extraction patterns. Both sys-
tems used a semantic hierarchy and sentence contexts
to learn the meanings of unknown words.

AutoSlog
AutoSlog (Riloff 1996) is a dictionary construction sys-
tem that creates extraction patterns automatically us-
ing heuristic rules. As input, AutoSlog needs answer
keys or text in which the noun phrases that should be
extracted have been labeled with domain-specific tags.
For example, in a terrorism domain, noun phrases
that refer to perpetrators, targets, and victims may
be tagged. Given a tagged noun phrase and the origi-
nal source text, AutoSlog first identifies the sentence in
which the noun phrase appears. If there is more than
one such sentence and the annotation does not indicate
which one is appropriate, then AutoSlog chooses the
first one. AutoSlog invokes a sentence analyzer called
CIRCUS (L e h nert 1991) to identify clause boundaries
and syntactic constituents. AutoSlog needs only a flat
syntactic analysis that recognizes the subject, verb, di-
rect object, and prepositional phrases of each clause,
so almost any parser could be used. AutoSlog deter-
mines which clause contains the targeted noun
and applies the heuristic rules shown in Figure

phrase

PATTERN EXAMPLE
<subj> passive-verb <victim> was murdered
<subj> active-verb <perp> bombed
<subj> verb infin. <perp> attempted to kill
<subj> aux noun <victim> was victim -

passive-verb <dobj>’
active-verb <dobj>
infin. <dobj>
verb infin. <dobj>
gerund <dobj>
noun aux <dobj>

killed <victim>
bombed <target >
to kiII <victim>
triedto attack <target >
killing <victim>
fatality was <victim>

noun prep <np> bomb against <target>
active-verb prep <np> killed with <instrument>
passive-verb prep <np> was aimed at <target>

Figure 1: AutoSlog Heuristics

The rules are divided into three categories, based
on the syntactic class of the noun phrase. For exam-
ple, if the targeted noun phrase is the subject of a
clause, then the subject rules apply. Each rule gen-
erates an expression that likely defines the conceptual
role of the noun phrase. In most cases, they assume
that the verb determines the role. The rules recognize
several verb forms, such as active, passive, and infini-

‘In principle, passive verbs should not have direct ob-
jects. We included this pattern only because CIRCUS oc-
casionally confused active and passive constructions.

tive. An extraction pattern is created by instantiating
the rule with the specific words that it matched in the
sentence. The rules are ordered so the first one that
is satisfied generates an extraction pattern, with the
longer patterns being tested before the shorter ones.
As an example, consider the following sentence:

Ricardo Castellar, the
yesterday by the FMLN.

mayor, was kidnapped

Suppose that “Ricardo Castellar” was tagged as a rele-
vant victim. AutoSlog passes the sentence to CIRCUS,
which identifies Ricardo Castellar as the subject. Au-
toslog’s subject heuristics are tested and the <subj>
passive-verb rule fires. This pattern is instantiated
with the specific words in the sentence to produce the
extraction pattern <victim> was kidnapped. In fu-
ture texts, this pattern will be activated whenever the
verb “kidnapped” appears in a passive construction,
and its subject will be extracted as a victim.

AutoSlog can produce undesirable patterns for a va-
riety of reasons, including faulty sentence analysis, in-
correct pp-attachment, or insufficient context. There-
fore a person must manually inspect each extraction
pattern and decide which ones should be accepted and
which ones should be rejected. This manual filtering
process is typically very fast. In experiments with
the MUC-4 terrorism domain, it took a user only 5
hours to review 1237 extraction patterns (Riloff 1993).
Although this manual filtering process is part of the
knowledge-engineering cycle, generating the annotated
training corpus is a much more substantial bottleneck.

Generating Extraction Patterns from
Untagged Text

To tag or not to tag?
Generating an annotated training corpus is a signifi-
cant undertaking, both in time and difficulty. Previ-
ous experiments with AutoSlog suggested that it took a
user about 8 hours to annotate 160 texts (Riloff 1996).
Therefore it would take roughly a week to construct a
training corpus of 1000 texts. Committing a domain
expert to a knowledge-engineering project for a week
is prohibitive for most short-term applications.

Furthermore, the annotation task is deceptively
complex. For AutoSlog, the user must annotate rel-
evant noun phrases. But what constitutes a relevant
noun phrase ? Should the user include modifiers or just
the head noun? All modifiers or just the relevant modi-
fiers? Determiners? If the noun phrase is part of a con-
junction, should the user annotate all conjuncts or just
one? Should the user include appositives? How about
prepositional phrases ? The meaning of simple NPs can
change substantially when a prepositional phrase is at-

Learning 1045

t ached. For example, “the Bank of Boston” is differ-
ent from “the Bank of Toronto.” Real texts are loaded
with complex noun phrases that often include a vari-
ety of these constructs in a single reference. There is
also the question of which references to tag. Should
the user tag all references to a person? If not, which
ones? It is difficult to specify a convention that reliably
captures the desired information, but not specifying a
convention can produce inconsistencies in the data.

To avoid these problems, we have developed a new
version of AutoSlog, called AutoSlog-TS, that does not
require any text annotations. AutoSlog-TS requires
only a preclassified training corpus of relevant and ir-
relevant texts for the domain.2 A preclassified corpus
is much easier to generate, since the user simply needs
to identify relevant and irrelevant sample texts. Fur-
thermore, relevant texts are already available on-line
for many applications and could be easily exploited to
create a training corpus for AutoSlog-TS.

AutoSlog-TS

AutoSlog-TS is an extension of AutoSlog that operates
exhaustively by generating an extraction pattern for
every noun phrase in the training corpus. It then eval-
uates the extraction patterns by processing the corpus
a second time and generating relevance statistics for
each pattern. The process is illustrated in Figure 2.

preclassified texts

& Q

Stage I

s: l!!arldum
V: wasbombed rr)
Pp: bye

preclassified texts

bombed by <y>
<w saw I

Figure 2: AutoSlog-TS flowchart

In Stage 1, the sentence analyzer produces a syntac-
tic analysis for each sentence and identifies the noun
phrases. For each noun phrase, the heuristic rules gen-
erate a pattern (called a concept node in CIRCUS) to
extract the noun phrase. AutoSlog-TS uses a set of

2 Ideally, the irrelevant texts should
that are similar to the relevant texts.

be “near-miss” texts

15 heuristic rules: the original 13 rules used by Au-
toSlog plus two more: <subj> active-verb dobj
and infinitive prep <np>. The two additional rules
were created for a business domain from a previous
experiment and are probably not very important for
the experiments described in this paper.3 A more sig-
nificant difference is that AutoSlog-TS allows multiple
rules to fire if more than one matches the context. As
a result, multiple extraction patterns may be gener-
ated in response to a single noun phrase. For exam-
ple, the sentence “terrorists bombed the U.S. embassy”
might produce two patterns to extract the terrorists:
<subj> bombed and <subj> bombed embassy.
The statistics will later reveal whether the shorter,
more general pattern is good enough or whether the
longer pattern is needed to be reliable for the domain.
At the end of Stage 1, we have a giant dictionary of ex-
traction patterns that are literally capable of extract-
ing every noun phrase in the corpus.

In Stage 2, we process the training corpus a second
time using the new extraction patterns. The sentence
analyzer activates all patterns that are applicable in
each sentence. We then compute relevance statistics
for each pattern. More specifically, we estimate the
conditional probability that a text is relevant given
that it activates a particular extraction pattern. The
formula is:

Pr(relevant text 1 text contains pattern,) = ,~,efi;frr:~;l t

where rel - freq t is the number of instances of pattern,

that were activated in relevant texts, and total-freq, is
the total number of instances of pattern, that were acti-
vated in the training corpus. For the sake of simplicity,
we will refer to this probability as a pattern’s relevance
rate. Note that many patterns will be activated in rel-
evant texts even though they are not domain-specific.
For example, general phrases such as “was reported”
will appear in all sorts of texts. The motivation behind
the conditional probability estimate is that domain-
specific expressions will appear substantially more of-
ten in relevant texts than irrelevant texts.

Next, we rank the patterns in order of importance
to the domain. AutoSlog-TS’s exhaustive approach to
pattern generation can easily produce tens of thou-
sands of extraction patterns and we cannot reasonably
expect a human to review them all. Therefore, we use
a ranking function to order them so that a person only
needs to review the most highly ranked patterns.

We rank the extraction patterns according to the
formula: relevance rate * log2(frequency), unless the
relevance rate is 5 0.5 in which case the function re-
turns zero because the pattern is negatively correlated

3See (Riloff 1996) for a more detailed explanation.

1046 Natural Language

with the domain (assuming the corpus is 50% relevant).
This formula promotes patterns that have a high rel-
evance rate or a high frequency. It is important for
high frequency patterns to be considered even if their
relevance rate is only moderate (say 70%) because of
expressions like “was killed” which occur frequently in
both relevant and irrelevant texts. If only the pat-
terns with the highest relevance rates were promoted,
then crucial expressions like this would be buried in
the ranked list. We do not claim that this particular
ranking function is the best - to the contrary, we will
argue later that a better function is needed. But this
function worked reasonably well in our experiments.

Experimental Results
Automated scoring programs were developed to eval-
uate information extraction (IE) systems for the mes-
sage understanding conferences, but the credit assign-
ment problem for any individual component is vir-
tually impossible using only the scores produced by
these programs. Therefore, we evaluated AutoSlog and
AutoSlog-TS by manually inspecting the performance
of their dictionaries in the MUC-4 terrorism domain.
We used the MUC-4 texts as input and the MUC-4
answer keys as the basis for judging “correct” out-
put (MUC-4 Proceedings 1992).

The AutoSlog dictionary was constructed using the
772 relevant MUC-4 texts and their associated answer
keys. AutoSlog produced 1237 extraction patterns,
which were manually filtered in about 5 person-hours.
The final AutoSlog dictionary contained 450 extrac-
tion patterns. The AutoSlog-TS dictionary was con-
structed using the 1500 MUC-4 development texts, of
which about 50% are relevant. AutoSlog-TS generated
32,345 unique extraction patterns. To make the size of
the dictionary more manageable, we discarded patterns
that were proposed only once under the assumption
that they were not likely to be of much value. This re-
duced the size of the dictionary down to 11,225 extrac-
tion patterns. We loaded the dictionary into CIRCUS,
reprocessed the corpus, and computed the relevance
rate of each pattern. Finally, we ranked all 11,225 pat-
terns using the ranking function. The 25 top-ranked
extraction patterns appear in Figure 3. Most of these
patterns are clearly associated with terrorism, so the
ranking function appears to be doing a good job of
pulling the domain-specific patterns up to the top.

The ranked extraction patterns were then presented
to a user for manual review.4 The review process con-
sists of deciding whether a pattern should be accepted
or rejected, and labeling the accepted patterns.5 For

4The author did the manual review for this experiment.
5Note that AutoSlog’s patterns were labeled automati-

1.
2.
3.
4.
5.
6.
7.
8.
9.

<sub j > exploded 14
murder of <np> 15
assassination of <np> 16
<subj> was killed 17
<subj> was kidnapped 18
attack on <np> 19
<subj> was injured 20
exploded in <np>
death of <np>

21.
22.

<sub j > occurred
<subj> was located
took-place on <np>
responsibility for <np>
occurred on <np>
was wounded in <np>
destroyed <dobj>
<subj> was murdered
one of <np>

10. <subj> took-place 23. <subj> kidnapped
11. caused <dobj> 24. exploded on <np>
1.2. claimed <dobj> 25. <subj> died
13. <subj> was wounded

Figure 3: The Top 25 Extraction Patterns

example, the second pattern murder of <up> was
accepted and labeled as a murder pattern that will
extract victims. The user reviewed the top 1970 pat-
terns in about 85 minutes and then stopped because
few patterns were being accepted at that point. In
total, 210 extraction patterns were retained for the fi-
nal dictionary. The review time was much faster than
for AutoSlog, largely because the ranking scheme clus-
tered the best patterns near the top so the retention
rate dropped quickly.

Note that some of the patterns in Figure 3 were not
accepted for the dictionary even though they are asso-
ciated with terrorism. Only patterns useful for extract-
ing perpetrators, victims, targets, and weapons were
kept. For example, the pattern exploded in <np>
was rejected because it would extract locations.

To evaluate the two dictionaries, we chose 100 blind
texts from the MUC-4 test set. We used 25 relevant
texts and 25 irrelevant texts from the TST3 test set,
plus 25 relevant texts and 25 irrelevant texts from the
TST4 test set. We ran CIRCUS on these 100 texts,
first using the AutoSlog dictionary and then using the
AutoSlog-TS dictionary. The underlying information
extraction system was otherwise identical.

We scored the output by assigning each extracted
item to one of four categories: correct, mislabeled, du-
plicate, or spurious. An item was scored as correct if
it matched against the answer keys. An item was mis-
labeled if it matched against the answer keys but was
extracted as the wrong type of object. For example, if
“Hector Colindres” was listed as a murder victim but
was extracted as a physical target. An item was a du-
plicate if it was coreferent with an item in the answer
keys. For example, if “him” was extracted and coref-
erent with “Hector Colindres.” The extraction pattern
acted correctly in this case, but the extracted informa-
tion was not specific enough. Correct items extracted
more than once were also scored as duplicates. An item

tally by referring to the text annotations.

Learning 1047

was spurious if it did not refer to any object in the an-
swer keys. All items extracted from irrelevant texts
were spurious. Finally, items in the answer keys that
were not extracted were counted as missing. There-
fore correct + missing should equal the total number
of items in the answer keys.6

Tables 1 and 2 show the numbers obtained after
manually judging the output of the dictionaries. We
scored three items: perpetrators, victims, and tar-
gets. The performance of the two dictionaries was very
similar. The AutoSlog dictionary extracted slightly
more correct items, but the AutoSlog-TS dictionary
extracted fewer spurious items.7

Slot Corr. Miss. Mislab. Dup. Spur.
perp 36 22 1 11 129
Victim 41 24 7 18 113 i
Target 39 1 19 8 18 108
Total 116 1 65 16 47 350

Table 1: AutoSlog Results

Table 2: AutoSlog-TS Results

We applied a well-known statistical technique, the
two-sample t test, to determine whether the differ-
ences between the dictionaries were statistically sig-
nificant. We tested four data sets: correct, correct
+ duplicate, missing, and spurious. The t values for
these sets were 1.1012, 1.1818, 0.1557, and 2.27 re-
spectively. The correct, correct + duplicate, and miss-
ing data sets were not significantly different even at
the p < 0.20 significance level. These results suggest
that AutoSlog and AutoSlog-TS can extract relevant
information with comparable performance. The spuri-
ous data, however, was significantly different at the p
< 0.05 significance level. Therefore AutoSlog-TS was
significantly more effective at reducing spurious extrac-
tions.

We applied three performance metrics to this raw
data: recall, precision, and the F-measure. We
calculated recall as correct / (correct + missing), and
computed precision a~ (correct + duplicate) / (correct
+ duplicate + mislabeled + spurious). The F-measure

6 “Optional” items in the answer keys were scored as
correct if extracted, but were never scored as missing.

7 The difference in mislabeled items is an artifact of the
human review process, not AutoSlog-TS.

(MUC-4 Proceedings 1992) combines recall and preci-
sion into a single value, in our case with equal weight.

As the raw data suggests, Table 3 shows that Au-
toSlog achieved slightly higher recall and AutoSlog-TS
achieved higher precision. The F-measure scores were
similar for both systems, but AutoSlog-TS obtained
slightly higher F scores for victims and targets. Note
that the AutoSlog-TS dictionary contained only 210
patterns, while the AutoSlog dictionary contained 450
patterns, so AutoSlog-TS achieved a comparable level
of recall with a dictionary less than half the size.

I II AutoSlog II AutoSlog-TS 1

I II II I I J

Table 3: Comparative Results

The AutoSlog precision results are substantially
lower than those generated by the MUC-4 scoring
program (Riloff 1993). There are several reasons for
the difference. For one, the current experiments were
done with a debilitated version of CIRCUS that did
not process conjunctions or semantic features. Al-
though AutoSlog does not use semantic features to
create extraction patterns, they can be incorporated
as selectional restrictions in the patterns. For exam-
ple, extracted victims should satisfy a human con-
straint. Semantic features were not used in the cur-
rent experiments for technical reasons, but undoubt-
edly would have improved the precision of both dic-
tionaries. Also, the previously reported scores were
based on the UMass/MUC-4 system, which included
a discourse analyzer that used domain-specific rules to
distinguish terrorist incidents from other events. CIR-
CUS was designed to extract potentially relevant infor-
mation using only local context, under the assumption
that a complete IE system would contain a discourse
analyzer to make global decisions about relevance.

Behind the scenes
It is informative to look behind the scenes and try to
understand why AutoSlog achieved slightly better re-
call and why AutoSlog-TS achieved better precision.
Most of AutoSlog’s additional recall came from low
frequency patterns that were buried deep in AutoSlog-
TS’s ranked list. The main advantage of corpus-
tagging is that the annotations provide guidance so the
system can more easily hone in on the relevant expres-
sions. Without corpus tagging, we are at the mercy
of the ranking function. We believe that the ranking
function did a good job of pulling the most impor-

1048 Natural Language

tant patterns up to the top, but additional research is
needed to recognize good low frequency patterns.

In fact, we have reason to believe that AutoSlog-TS
is ultimately capable of producing better recall than
AutoSlog because it generated many good patterns
that AutoSlog did not. AutoSlog-TS produced 158
patterns with a relevance rate 2 90% and frequency
2 5. Only 45 of these patterns were in the original
AutoSlog dictionary.

The higher precision demonstrated by AutoSlog-TS
is probably a result of the relevance statistics. For ex-
ample, the AutoSlog dictionary contains an extraction
pattern for the expression <subj> admitted, but this
pattern was found to be negatively correlated with rele-
vance (46%) by AutoSlog-TS. Some of AutoSlog’s pat-
terns looked good to the human reviewer, but were not
in fact highly correlated with relevance.

In an ideal ranking scheme, the “heavy hitter” ex-
traction patterns should float to the top so that the
most important patterns (in terms of recall) are re-
viewed first. AutoSlog-TS was very successful in this
regard. Almost 35% recall was achieved after review-
ing only the first 50 extraction patterns! Almost 50%
recall was achieved after reviewing about 300 patterns.

Future Directions

The previous results suggest that a core dictionary of
extraction patterns can be created after reviewing only
a few hundred patterns. The specific number of pat-
terns that need to be reviewed will ultimately depend
on the breadth of the domain and the desired perfor-
mance levels. A potential problem with AutoSlog-TS
is that there are undoubtedly many useful patterns
buried deep in the ranked list, which cumulatively
could have a substantial impact on performance. The
current ranking scheme is biased towards encouraging
high frequency patterns to float to the top, but a bet-
ter ranking scheme might be able to balance these two
needs more effectively. The precision of the extraction
patterns could also be improved by adding semantic
constraints and, in the long run, creating more com-
plex extraction patterns.

AutoSlog-TS represents an important step towards
making information extraction systems more easily
portable across domains. AutoSlog-TS is the first sys-
tem to generate domain-specific extraction patterns
automatically without annotated training data. A user
only needs to provide sample texts (relevant and ir-
relevant), and spend some time filtering and labeling
the resulting extraction patterns. Fast dictionary con-
struction also opens the door for IE technology to sup-
port other tasks, such as text classification (Riloff &
Shoen 1995). Finally, AutoSlog-TS represents a new

approach to exploiting on-line text corpora for domain-
specific knowledge acquisition by squeezing preclassi-
fied texts for all they’re worth.

Acknowledgments
This research was funded by NSF grant MIP-9023174
and NSF grant IRI-9509820. Thanks to Kern Mason
and Jay Shoen for generating much of the data.

References
Cardie, C. 1993. A Case-Based Approach to Knowledge
Acquisition for Domain-Specific Sentence Analysis. In
Proceedings of the Eleventh National Conference on Arti-
ficial Intelligence, 798-803. AAAI Press/The MIT Press.

Francis, W., and Kucera, H. 1982. Frequency Analysis of
English Usage. Boston, MA: Houghton Mifflin.

Hastings, P., and Lytinen, S. 1994. The Ups and Downs
of Lexical Acquisition. In Proceedings of the Twelfth
National Conference on Artificial Intelligence, 754-759.
AAAI Press/The MIT Press.

Huffman, S. 1996. Learning information extraction pat-
terns from examples. In Wermter, S.; Riloff, E.; and
Scheler, G., eds., Connectionist, Statistical, and Symbolic
Approaches to Learning for Natural Language Processing.
Springer-Verlag, Berlin.

Kim, J., and Moldovan, D. 1993. Acquisition of Semantic
Patterns for Information Extraction from Corpora. In
Proceedings of the Ninth IEEE Conference on Artificial
Intelligence for Applications, 171-176. Los Alamitos, CA:
IEEE Computer Society Press.

Lehnert , W. 1991. Symbolic/Subsymbolic Sentence Anal-
ysis: Exploiting the Best of Two Worlds. In Barnden, J.,
and PolIack, J., eds., Advances in Connectionist and Neu-
ral Computation Theory, Vol. 1. Ablex Publishers, Nor-
wood, NJ. 135-164.

Marcus, M.; Santorini, B.; and Marcinkiewicz, M. 1993.
Building a Large Annotated Corpus of English: The Penn
Treebank. Computational Linguistics 19(2):313-330.

MUC-4 Proceedings. 1992. Proceedings of the Fourth
Message Understanding Conference (MUC-4). San Ma-
teo, CA: Morgan Kaufmann.

Riloff, E., and Shoen, J. 1995. Automatically Acquiring
Conceptual Patterns Without an Annotated Corpus. In
Proceedings of the Third Workshop on Very Large Cor-
pora, 148-161.

Riloff, E. 1993. Automatically Constructing a Dictio-
nary for Information Extraction Tasks. In Proceedings
of the Eleventh National Conference on Artificial Intelli-
gence, 811-816. AAAI Press/The MIT Press.

Riloff, E. 1996. An Empirical Study of Automated Dic-
tionary Construction for-Information Extraction in Three
Domains. Artificial Intelligence. Vol. 85. Forthcoming.

Soderland, S.; Fisher, D.; Aseltine, J.; and Lehnert, W.
1995. CRYSTAL: Inducing a conceptual dictionary. In
Proceedings of the Fourteenth International Joint Confer-
ence on Artificial Intelligence, 1314-1319.

Learning 1049

