from scratch RoBERTa MLM + classfier
This commit is contained in:
parent
ddce23e0d4
commit
2033259867
11
1-create-data.sh
Executable file
11
1-create-data.sh
Executable file
@ -0,0 +1,11 @@
|
||||
#!/usr/bin/env bash
|
||||
|
||||
set -e
|
||||
set -x
|
||||
|
||||
# Create spm vocab
|
||||
# spm_train --input=train/in.tsv --model_prefix=vocab_spm_bpe --model_type=bpe --vocab_size=50000 --pad_id 1 --bos_id 2 --eos_id 3
|
||||
|
||||
spm_encode --model vocab_spm_bpe.model < data/train/in.tsv > data/train.txt
|
||||
spm_encode --model vocab_spm_bpe.model < data/dev-0/in.tsv > data/valid.txt
|
||||
spm_encode --model vocab_spm_bpe.model < data/test-A/in.tsv > data/test.txt
|
19
2-preproc-classifier.sh
Executable file
19
2-preproc-classifier.sh
Executable file
@ -0,0 +1,19 @@
|
||||
#!/usr/bin/env bash
|
||||
|
||||
set -e
|
||||
set -x
|
||||
|
||||
TEXT=data/
|
||||
fairseq-preprocess \
|
||||
--only-source --nwordssrc 50000 \
|
||||
--trainpref $TEXT/train.txt \
|
||||
--validpref $TEXT/valid.txt \
|
||||
--destdir data-bin/classifier-spm-bpe/input0 \
|
||||
--workers 8
|
||||
|
||||
fairseq-preprocess \
|
||||
--only-source \
|
||||
--trainpref $TEXT/train/expected.tsv \
|
||||
--validpref $TEXT/dev-0/expected.tsv \
|
||||
--destdir data-bin/classifier-spm-bpe/label \
|
||||
--workers 8
|
13
2-preproc-mlm.sh
Executable file
13
2-preproc-mlm.sh
Executable file
@ -0,0 +1,13 @@
|
||||
#!/usr/bin/env bash
|
||||
|
||||
set -e
|
||||
set -x
|
||||
|
||||
TEXT=data
|
||||
fairseq-preprocess \
|
||||
--only-source --nwordssrc 50000 \
|
||||
--trainpref $TEXT/train.txt \
|
||||
--validpref $TEXT/valid.txt \
|
||||
--testpref $TEXT/test.txt \
|
||||
--destdir data-bin/lm-spm-bpe \
|
||||
--workers 8
|
23
3-train-mlm.sh
Executable file
23
3-train-mlm.sh
Executable file
@ -0,0 +1,23 @@
|
||||
#!/usr/bin/env bash
|
||||
|
||||
set -e
|
||||
set -x
|
||||
|
||||
TOTAL_UPDATES=200_000 # Total number of training steps == 10 epoch (1 peoch = 20_000)
|
||||
WARMUP_UPDATES=8_000 # Warmup the learning rate over this many updates
|
||||
PEAK_LR=0.0001 # Peak learning rate, adjust as needed
|
||||
TOKENS_PER_SAMPLE=256 # Max sequence length
|
||||
MAX_POSITIONS=256 # Num. positional embeddings (usually same as above)
|
||||
MAX_SENTENCES=50 # Number of sequences per batch (batch size)
|
||||
UPDATE_FREQ=1 # Increase the batch size
|
||||
|
||||
DATA_DIR=data-bin/lm-spm-bpe
|
||||
|
||||
fairseq-train $DATA_DIR \
|
||||
--fp16 --task masked_lm --criterion masked_lm --save-dir checkpoints/lm_roberta_small \
|
||||
--arch roberta_base --sample-break-mode complete --tokens-per-sample $TOKENS_PER_SAMPLE \
|
||||
--optimizer adam --adam-betas '(0.9,0.98)' --adam-eps 1e-6 --clip-norm 0.0 \
|
||||
--lr-scheduler polynomial_decay --lr $PEAK_LR --warmup-updates $WARMUP_UPDATES --total-num-update $TOTAL_UPDATES \
|
||||
--dropout 0.1 --attention-dropout 0.1 --encoder-layers 8 --encoder-embed-dim 512 --encoder-ffn-embed-dim 2048 --encoder-attention-heads 8 --weight-decay 0.01 \
|
||||
--max-sentences $MAX_SENTENCES --max-positions $MAX_POSITIONS --update-freq $UPDATE_FREQ \
|
||||
--max-epoch 10 --log-format tqdm --log-interval 1 --save-interval-updates 5000 --keep-interval-updates 5 --skip-invalid-size-inputs-valid-test
|
35
4-finetune.sh
Executable file
35
4-finetune.sh
Executable file
@ -0,0 +1,35 @@
|
||||
#!/usr/bin/env bash
|
||||
|
||||
set -e
|
||||
set -x
|
||||
|
||||
TOTAL_NUM_UPDATES=600_000 # Total number of training steps == 10 epoch (1 peoch = 60_000)
|
||||
WARMUP_UPDATES=24_000 # Warmup the learning rate over this many updates
|
||||
PEAK_LR=0.0001 # Peak learning rate, adjust as needed
|
||||
HEAD_NAME='he_she' # Custom name for the classification head.
|
||||
TOKENS_PER_SAMPLE=256 # Max sequence length
|
||||
NUM_CLASSES=2 # Number of classes for the classification task.
|
||||
MAX_SENTENCES=50 # Batch size.
|
||||
UPDATE_FREQ=1 # Increase the batch size
|
||||
|
||||
MODEL_PATH='checkpoints/lm_roberta_small/checkpoint_best.pt'
|
||||
DATA_DIR=data-bin/classifier-spm-bpe
|
||||
|
||||
fairseq-train $DATA_DIR \
|
||||
--restore-file "$MODEL_PATH" \
|
||||
--fp16 --max-sentences $MAX_SENTENCES --max-positions $TOKENS_PER_SAMPLE --update-freq $UPDATE_FREQ \
|
||||
--max-tokens 32768 --save-dir checkpoints/lm_roberta_small_finetune \
|
||||
--task sentence_prediction \
|
||||
--reset-optimizer --reset-dataloader --reset-meters \
|
||||
--required-batch-size-multiple 1 \
|
||||
--init-token 0 --separator-token 2 \
|
||||
--arch roberta \
|
||||
--criterion sentence_prediction \
|
||||
--num-classes $NUM_CLASSES \
|
||||
--dropout 0.1 --attention-dropout 0.1 --encoder-layers 8 --encoder-embed-dim 512 --encoder-ffn-embed-dim 2048 --encoder-attention-heads 8 \
|
||||
--weight-decay 0.1 --clip-norm 0.0 \
|
||||
--optimizer adam --adam-betas "(0.9, 0.98)" --adam-eps 1e-06 \
|
||||
--lr-scheduler polynomial_decay --lr $PEAK_LR --total-num-update $TOTAL_NUM_UPDATES --warmup-updates $WARMUP_UPDATES \
|
||||
--max-epoch 10 --log-format tqdm --log-interval 1 --save-interval-updates 15000 --keep-interval-updates 5 --skip-invalid-size-inputs-valid-test \
|
||||
--best-checkpoint-metric accuracy --maximize-best-checkpoint-metric \
|
||||
--find-unused-parameters
|
52
5-eval.py
Executable file
52
5-eval.py
Executable file
@ -0,0 +1,52 @@
|
||||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
import torch
|
||||
from fairseq.models.roberta import RobertaModel
|
||||
from tqdm import tqdm
|
||||
|
||||
if __name__ == '__main__':
|
||||
roberta = RobertaModel.from_pretrained(
|
||||
model_name_or_path='checkpoints/lm_roberta_small_finetune',
|
||||
data_name_or_path='data-bin/classifier-spm-bpe',
|
||||
sentencepiece_vocab='vocab_spm_bpe.model',
|
||||
checkpoint_file='checkpoint_best.pt',
|
||||
bpe='sentencepiece',
|
||||
)
|
||||
|
||||
roberta.cuda()
|
||||
roberta.eval()
|
||||
|
||||
max_seq = 256
|
||||
batch_size = 15
|
||||
pad_index = roberta.task.source_dictionary.pad()
|
||||
|
||||
for dir_test in ['dev-0', 'dev-1', 'test-A']:
|
||||
lines = []
|
||||
with open(f'data/{dir_test}/in.tsv', 'rt') as f:
|
||||
for line in tqdm(f, desc=f'Reading {dir_test}'):
|
||||
line = roberta.encode(line.rstrip('\n'))[:max_seq]
|
||||
lines.append(line)
|
||||
|
||||
predictions = []
|
||||
for i in tqdm(range(0, len(lines), batch_size), desc='Processing'):
|
||||
batch_text = lines[i: i + batch_size]
|
||||
# Get max length of batch
|
||||
max_len = max([tokens.size(0) for tokens in batch_text])
|
||||
|
||||
# Create empty tensor with padding index
|
||||
input_tensor = torch.LongTensor(len(batch_text), max_len).fill_(pad_index)
|
||||
# Fill tensor with tokens
|
||||
for i, tokens in enumerate(batch_text):
|
||||
input_tensor[i][:tokens.size(0)] = tokens
|
||||
|
||||
with torch.no_grad():
|
||||
raw_prediction = roberta.predict('sentence_classification_head', input_tensor)
|
||||
# Get probability for second class (M class)
|
||||
out_tensor = torch.exp(raw_prediction[:, 1])
|
||||
for line_prediction in out_tensor:
|
||||
# Get probability for first class
|
||||
predictions.append(line_prediction.item())
|
||||
|
||||
with open(f'data/{dir_test}/out.tsv', 'wt') as fw:
|
||||
fw.write('\n'.join([f'{p:.8f}' for p in predictions]))
|
137314
dev-0/out.tsv
Normal file
137314
dev-0/out.tsv
Normal file
File diff suppressed because it is too large
Load Diff
156606
dev-1/out.tsv
Normal file
156606
dev-1/out.tsv
Normal file
File diff suppressed because it is too large
Load Diff
49996
dict-mlm.txt
Normal file
49996
dict-mlm.txt
Normal file
File diff suppressed because it is too large
Load Diff
134618
test-A/out.tsv
Normal file
134618
test-A/out.tsv
Normal file
File diff suppressed because it is too large
Load Diff
BIN
vocab_spm_bpe.model
Normal file
BIN
vocab_spm_bpe.model
Normal file
Binary file not shown.
Loading…
Reference in New Issue
Block a user