from scratch RoBERTa MLM + classfier

This commit is contained in:
Karol Kaczmarek 2020-06-13 21:30:25 +02:00
parent ddce23e0d4
commit 2033259867
11 changed files with 478687 additions and 0 deletions

11
1-create-data.sh Executable file
View File

@ -0,0 +1,11 @@
#!/usr/bin/env bash
set -e
set -x
# Create spm vocab
# spm_train --input=train/in.tsv --model_prefix=vocab_spm_bpe --model_type=bpe --vocab_size=50000 --pad_id 1 --bos_id 2 --eos_id 3
spm_encode --model vocab_spm_bpe.model < data/train/in.tsv > data/train.txt
spm_encode --model vocab_spm_bpe.model < data/dev-0/in.tsv > data/valid.txt
spm_encode --model vocab_spm_bpe.model < data/test-A/in.tsv > data/test.txt

19
2-preproc-classifier.sh Executable file
View File

@ -0,0 +1,19 @@
#!/usr/bin/env bash
set -e
set -x
TEXT=data/
fairseq-preprocess \
--only-source --nwordssrc 50000 \
--trainpref $TEXT/train.txt \
--validpref $TEXT/valid.txt \
--destdir data-bin/classifier-spm-bpe/input0 \
--workers 8
fairseq-preprocess \
--only-source \
--trainpref $TEXT/train/expected.tsv \
--validpref $TEXT/dev-0/expected.tsv \
--destdir data-bin/classifier-spm-bpe/label \
--workers 8

13
2-preproc-mlm.sh Executable file
View File

@ -0,0 +1,13 @@
#!/usr/bin/env bash
set -e
set -x
TEXT=data
fairseq-preprocess \
--only-source --nwordssrc 50000 \
--trainpref $TEXT/train.txt \
--validpref $TEXT/valid.txt \
--testpref $TEXT/test.txt \
--destdir data-bin/lm-spm-bpe \
--workers 8

23
3-train-mlm.sh Executable file
View File

@ -0,0 +1,23 @@
#!/usr/bin/env bash
set -e
set -x
TOTAL_UPDATES=200_000 # Total number of training steps == 10 epoch (1 peoch = 20_000)
WARMUP_UPDATES=8_000 # Warmup the learning rate over this many updates
PEAK_LR=0.0001 # Peak learning rate, adjust as needed
TOKENS_PER_SAMPLE=256 # Max sequence length
MAX_POSITIONS=256 # Num. positional embeddings (usually same as above)
MAX_SENTENCES=50 # Number of sequences per batch (batch size)
UPDATE_FREQ=1 # Increase the batch size
DATA_DIR=data-bin/lm-spm-bpe
fairseq-train $DATA_DIR \
--fp16 --task masked_lm --criterion masked_lm --save-dir checkpoints/lm_roberta_small \
--arch roberta_base --sample-break-mode complete --tokens-per-sample $TOKENS_PER_SAMPLE \
--optimizer adam --adam-betas '(0.9,0.98)' --adam-eps 1e-6 --clip-norm 0.0 \
--lr-scheduler polynomial_decay --lr $PEAK_LR --warmup-updates $WARMUP_UPDATES --total-num-update $TOTAL_UPDATES \
--dropout 0.1 --attention-dropout 0.1 --encoder-layers 8 --encoder-embed-dim 512 --encoder-ffn-embed-dim 2048 --encoder-attention-heads 8 --weight-decay 0.01 \
--max-sentences $MAX_SENTENCES --max-positions $MAX_POSITIONS --update-freq $UPDATE_FREQ \
--max-epoch 10 --log-format tqdm --log-interval 1 --save-interval-updates 5000 --keep-interval-updates 5 --skip-invalid-size-inputs-valid-test

35
4-finetune.sh Executable file
View File

@ -0,0 +1,35 @@
#!/usr/bin/env bash
set -e
set -x
TOTAL_NUM_UPDATES=600_000 # Total number of training steps == 10 epoch (1 peoch = 60_000)
WARMUP_UPDATES=24_000 # Warmup the learning rate over this many updates
PEAK_LR=0.0001 # Peak learning rate, adjust as needed
HEAD_NAME='he_she' # Custom name for the classification head.
TOKENS_PER_SAMPLE=256 # Max sequence length
NUM_CLASSES=2 # Number of classes for the classification task.
MAX_SENTENCES=50 # Batch size.
UPDATE_FREQ=1 # Increase the batch size
MODEL_PATH='checkpoints/lm_roberta_small/checkpoint_best.pt'
DATA_DIR=data-bin/classifier-spm-bpe
fairseq-train $DATA_DIR \
--restore-file "$MODEL_PATH" \
--fp16 --max-sentences $MAX_SENTENCES --max-positions $TOKENS_PER_SAMPLE --update-freq $UPDATE_FREQ \
--max-tokens 32768 --save-dir checkpoints/lm_roberta_small_finetune \
--task sentence_prediction \
--reset-optimizer --reset-dataloader --reset-meters \
--required-batch-size-multiple 1 \
--init-token 0 --separator-token 2 \
--arch roberta \
--criterion sentence_prediction \
--num-classes $NUM_CLASSES \
--dropout 0.1 --attention-dropout 0.1 --encoder-layers 8 --encoder-embed-dim 512 --encoder-ffn-embed-dim 2048 --encoder-attention-heads 8 \
--weight-decay 0.1 --clip-norm 0.0 \
--optimizer adam --adam-betas "(0.9, 0.98)" --adam-eps 1e-06 \
--lr-scheduler polynomial_decay --lr $PEAK_LR --total-num-update $TOTAL_NUM_UPDATES --warmup-updates $WARMUP_UPDATES \
--max-epoch 10 --log-format tqdm --log-interval 1 --save-interval-updates 15000 --keep-interval-updates 5 --skip-invalid-size-inputs-valid-test \
--best-checkpoint-metric accuracy --maximize-best-checkpoint-metric \
--find-unused-parameters

52
5-eval.py Executable file
View File

@ -0,0 +1,52 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import torch
from fairseq.models.roberta import RobertaModel
from tqdm import tqdm
if __name__ == '__main__':
roberta = RobertaModel.from_pretrained(
model_name_or_path='checkpoints/lm_roberta_small_finetune',
data_name_or_path='data-bin/classifier-spm-bpe',
sentencepiece_vocab='vocab_spm_bpe.model',
checkpoint_file='checkpoint_best.pt',
bpe='sentencepiece',
)
roberta.cuda()
roberta.eval()
max_seq = 256
batch_size = 15
pad_index = roberta.task.source_dictionary.pad()
for dir_test in ['dev-0', 'dev-1', 'test-A']:
lines = []
with open(f'data/{dir_test}/in.tsv', 'rt') as f:
for line in tqdm(f, desc=f'Reading {dir_test}'):
line = roberta.encode(line.rstrip('\n'))[:max_seq]
lines.append(line)
predictions = []
for i in tqdm(range(0, len(lines), batch_size), desc='Processing'):
batch_text = lines[i: i + batch_size]
# Get max length of batch
max_len = max([tokens.size(0) for tokens in batch_text])
# Create empty tensor with padding index
input_tensor = torch.LongTensor(len(batch_text), max_len).fill_(pad_index)
# Fill tensor with tokens
for i, tokens in enumerate(batch_text):
input_tensor[i][:tokens.size(0)] = tokens
with torch.no_grad():
raw_prediction = roberta.predict('sentence_classification_head', input_tensor)
# Get probability for second class (M class)
out_tensor = torch.exp(raw_prediction[:, 1])
for line_prediction in out_tensor:
# Get probability for first class
predictions.append(line_prediction.item())
with open(f'data/{dir_test}/out.tsv', 'wt') as fw:
fw.write('\n'.join([f'{p:.8f}' for p in predictions]))

137314
dev-0/out.tsv Normal file

File diff suppressed because it is too large Load Diff

156606
dev-1/out.tsv Normal file

File diff suppressed because it is too large Load Diff

49996
dict-mlm.txt Normal file

File diff suppressed because it is too large Load Diff

134618
test-A/out.tsv Normal file

File diff suppressed because it is too large Load Diff

BIN
vocab_spm_bpe.model Normal file

Binary file not shown.