Compare commits

...

1 Commits

Author SHA1 Message Date
Karol Kaczmarek
6756e6e54c from scratch RoBERTa classifier (only) 2020-06-13 22:13:00 +02:00
12 changed files with 907190 additions and 0 deletions

11
1-create-data.sh Executable file
View File

@ -0,0 +1,11 @@
#!/usr/bin/env bash
set -e
set -x
# Create spm vocab
# spm_train --input=train/in.tsv --model_prefix=vocab_spm_bpe --model_type=bpe --vocab_size=50000 --pad_id 1 --bos_id 2 --eos_id 3
spm_encode --model vocab_spm_bpe.model < data/train/in.tsv > data/train.txt
spm_encode --model vocab_spm_bpe.model < data/dev-0/in.tsv > data/valid.txt
spm_encode --model vocab_spm_bpe.model < data/test-A/in.tsv > data/test.txt

19
2-preproc-classifier.sh Executable file
View File

@ -0,0 +1,19 @@
#!/usr/bin/env bash
set -e
set -x
TEXT=data/
fairseq-preprocess \
--only-source --nwordssrc 50000 \
--trainpref $TEXT/train.txt \
--validpref $TEXT/valid.txt \
--destdir data-bin/classifier-spm-bpe/input0 \
--workers 8
fairseq-preprocess \
--only-source \
--trainpref $TEXT/train/expected.tsv \
--validpref $TEXT/dev-0/expected.tsv \
--destdir data-bin/classifier-spm-bpe/label \
--workers 8

35
3-train.sh Executable file
View File

@ -0,0 +1,35 @@
#!/usr/bin/env bash
set -e
set -x
TOTAL_NUM_UPDATES=600_000 # Total number of training steps == 10 epoch (1 peoch = 60_000)
WARMUP_UPDATES=24_000 # Warmup the learning rate over this many updates
PEAK_LR=0.0001 # Peak learning rate, adjust as needed
HEAD_NAME='he_she' # Custom name for the classification head.
TOKENS_PER_SAMPLE=256 # Max sequence length
NUM_CLASSES=2 # Number of classes for the classification task.
MAX_SENTENCES=50 # Batch size.
UPDATE_FREQ=1 # Increase the batch size
MODEL_PATH='checkpoints/lm_roberta_small/checkpoint_best.pt'
DATA_DIR=data-bin/classifier-spm-bpe
fairseq-train $DATA_DIR \
--restore-file "$MODEL_PATH" \
--fp16 --max-sentences $MAX_SENTENCES --max-positions $TOKENS_PER_SAMPLE --update-freq $UPDATE_FREQ \
--max-tokens 32768 --save-dir checkpoints/lm_roberta_small_finetune \
--task sentence_prediction \
--reset-optimizer --reset-dataloader --reset-meters \
--required-batch-size-multiple 1 \
--init-token 0 --separator-token 2 \
--arch roberta \
--criterion sentence_prediction \
--num-classes $NUM_CLASSES \
--dropout 0.1 --attention-dropout 0.1 --encoder-layers 8 --encoder-embed-dim 512 --encoder-ffn-embed-dim 2048 --encoder-attention-heads 8 \
--weight-decay 0.1 --clip-norm 0.0 \
--optimizer adam --adam-betas "(0.9, 0.98)" --adam-eps 1e-06 \
--lr-scheduler polynomial_decay --lr $PEAK_LR --total-num-update $TOTAL_NUM_UPDATES --warmup-updates $WARMUP_UPDATES \
--max-epoch 10 --log-format tqdm --log-interval 1 --save-interval-updates 15000 --keep-interval-updates 5 --skip-invalid-size-inputs-valid-test \
--best-checkpoint-metric accuracy --maximize-best-checkpoint-metric \
--find-unused-parameters

53
4-eval.py Executable file
View File

@ -0,0 +1,53 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import torch
from fairseq.models.roberta import RobertaModel
from tqdm import tqdm
if __name__ == '__main__':
for model_epoch in ['epoch10', 'epoch20']:
roberta = RobertaModel.from_pretrained(
model_name_or_path=f'checkpoints/classifier_roberta_small_{model_epoch}',
data_name_or_path='data-bin/classifier-spm-bpe',
sentencepiece_vocab='vocab_spm_bpe.model',
checkpoint_file='checkpoint_best.pt',
bpe='sentencepiece',
)
roberta.cuda()
roberta.eval()
max_seq = 256
batch_size = 15
pad_index = roberta.task.source_dictionary.pad()
for dir_test in ['dev-0', 'dev-1', 'test-A']:
lines = []
with open(f'data/{dir_test}/in.tsv', 'rt') as f:
for line in tqdm(f, desc=f'Reading {dir_test}'):
line = roberta.encode(line.rstrip('\n'))[:max_seq]
lines.append(line)
predictions = []
for i in tqdm(range(0, len(lines), batch_size), desc='Processing'):
batch_text = lines[i: i + batch_size]
# Get max length of batch
max_len = max([tokens.size(0) for tokens in batch_text])
# Create empty tensor with padding index
input_tensor = torch.LongTensor(len(batch_text), max_len).fill_(pad_index)
# Fill tensor with tokens
for i, tokens in enumerate(batch_text):
input_tensor[i][:tokens.size(0)] = tokens
with torch.no_grad():
raw_prediction = roberta.predict('sentence_classification_head', input_tensor)
# Get probability for second class (M class)
out_tensor = torch.exp(raw_prediction[:, 1])
for line_prediction in out_tensor:
# Get probability for first class
predictions.append(line_prediction.item())
with open(f'data/{dir_test}/out-epoch={model_epoch}.tsv', 'wt') as fw:
fw.write('\n'.join([f'{p:.8f}' for p in predictions]))

137314
dev-0/out-epoch=epoch10.tsv Normal file

File diff suppressed because it is too large Load Diff

137314
dev-0/out-epoch=epoch20.tsv Normal file

File diff suppressed because it is too large Load Diff

156606
dev-1/out-epoch=epoch10.tsv Normal file

File diff suppressed because it is too large Load Diff

156606
dev-1/out-epoch=epoch20.tsv Normal file

File diff suppressed because it is too large Load Diff

49996
dict.txt Normal file

File diff suppressed because it is too large Load Diff

134618
test-A/out-epoch=epoch10.tsv Normal file

File diff suppressed because it is too large Load Diff

134618
test-A/out-epoch=epoch20.tsv Normal file

File diff suppressed because it is too large Load Diff

BIN
vocab_spm_bpe.model Normal file

Binary file not shown.