Compare commits
1 Commits
master
...
roberta_ba
Author | SHA1 | Date | |
---|---|---|---|
|
049966f426 |
8
0-get-models.sh
Executable file
8
0-get-models.sh
Executable file
@ -0,0 +1,8 @@
|
|||||||
|
#!/usr/bin/env bash
|
||||||
|
|
||||||
|
set -e
|
||||||
|
set -x
|
||||||
|
|
||||||
|
wget https://github.com/sdadas/polish-roberta/releases/download/models/roberta_base_fairseq.zip
|
||||||
|
|
||||||
|
unzip roberta_base_fairseq.zip -d roberta_base_fairseq
|
10
1-create-data.sh
Executable file
10
1-create-data.sh
Executable file
@ -0,0 +1,10 @@
|
|||||||
|
#!/usr/bin/env bash
|
||||||
|
|
||||||
|
set -e
|
||||||
|
set -x
|
||||||
|
|
||||||
|
spm_encode --model=roberta_base_fairseq/sentencepiece.bpe.model < data/train/in.tsv > data/train.input0.spm
|
||||||
|
spm_encode --model=roberta_base_fairseq/sentencepiece.bpe.model < data/dev-0/in.tsv > data/dev.input.spm
|
||||||
|
|
||||||
|
cp data/dev-0/expected.tsv data/dev.label
|
||||||
|
cp data/train/expected.tsv data/train.label
|
18
2-preproc.sh
Executable file
18
2-preproc.sh
Executable file
@ -0,0 +1,18 @@
|
|||||||
|
#!/usr/bin/env bash
|
||||||
|
|
||||||
|
set -e
|
||||||
|
set -x
|
||||||
|
|
||||||
|
fairseq-preprocess \
|
||||||
|
--only-source \
|
||||||
|
--trainpref "data/train.input0.spm" \
|
||||||
|
--validpref "data/dev.input0.spm" \
|
||||||
|
--destdir "data-bin/input0" \
|
||||||
|
--workers 4 --srcdict roberta_base_fairseq/dict.txt
|
||||||
|
|
||||||
|
fairseq-preprocess \
|
||||||
|
--only-source \
|
||||||
|
--trainpref "data/train.label" \
|
||||||
|
--validpref "data/dev.label" \
|
||||||
|
--destdir "data-bin/label" \
|
||||||
|
--workers 4
|
31
3-train.py
Executable file
31
3-train.py
Executable file
@ -0,0 +1,31 @@
|
|||||||
|
#!/usr/bin/env bash
|
||||||
|
|
||||||
|
TOTAL_NUM_UPDATES=1000000000000000 # 10 epochs through IMDB for bsz 32
|
||||||
|
WARMUP_UPDATES=216085 # 6 percent of the number of updates
|
||||||
|
LR=1e-05 # Peak LR for polynomial LR scheduler.
|
||||||
|
HEAD_NAME=hesaid # Custom name for the classification head.
|
||||||
|
NUM_CLASSES=2 # Number of classes for the classification task.
|
||||||
|
MAX_SENTENCES=35 # Batch size.
|
||||||
|
ROBERTA_PATH="roberta_base_fairseq/model.pt"
|
||||||
|
|
||||||
|
fairseq-train data-bin/ \
|
||||||
|
--restore-file $ROBERTA_PATH \
|
||||||
|
--max-positions 512 \
|
||||||
|
--max-sentences $MAX_SENTENCES \
|
||||||
|
--max-tokens 8192 \
|
||||||
|
--task sentence_prediction \
|
||||||
|
--reset-optimizer --reset-dataloader --reset-meters \
|
||||||
|
--required-batch-size-multiple 2 \
|
||||||
|
--init-token 0 --separator-token 2 \
|
||||||
|
--arch roberta_base \
|
||||||
|
--criterion sentence_prediction \
|
||||||
|
--classification-head-name $HEAD_NAME \
|
||||||
|
--num-classes $NUM_CLASSES \
|
||||||
|
--dropout 0.1 --attention-dropout 0.1 \
|
||||||
|
--weight-decay 0.1 --optimizer adam --adam-betas "(0.9, 0.98)" --adam-eps 1e-06 \
|
||||||
|
--clip-norm 0.0 \
|
||||||
|
--lr-scheduler polynomial_decay --lr $LR --total-num-update $TOTAL_NUM_UPDATES --warmup-updates $WARMUP_UPDATES \
|
||||||
|
--max-epoch 5 --log-format tqdm --log-interval 1 --save-interval-updates 15000 --keep-interval-updates 5 --skip-invalid-size-inputs-valid-test \
|
||||||
|
--best-checkpoint-metric accuracy --maximize-best-checkpoint-metric \
|
||||||
|
--find-unused-parameters \
|
||||||
|
--update-freq 1
|
52
4-eval.py
Executable file
52
4-eval.py
Executable file
@ -0,0 +1,52 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# -*- coding: utf-8 -*-
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from fairseq.models.roberta import RobertaModel
|
||||||
|
from tqdm import tqdm
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
roberta = RobertaModel.from_pretrained(
|
||||||
|
model_name_or_path='checkpoints',
|
||||||
|
data_name_or_path='data-bin',
|
||||||
|
sentencepiece_vocab='roberta_base_fairseq/sentencepiece.bpe.model',
|
||||||
|
checkpoint_file='checkpoint_best.pt',
|
||||||
|
bpe='sentencepiece',
|
||||||
|
)
|
||||||
|
|
||||||
|
roberta.cuda()
|
||||||
|
roberta.eval()
|
||||||
|
|
||||||
|
max_seq = 512
|
||||||
|
batch_size = 5
|
||||||
|
pad_index = roberta.task.source_dictionary.pad()
|
||||||
|
|
||||||
|
for dir_test in ['dev-0', 'dev-1', 'test-A']:
|
||||||
|
lines = []
|
||||||
|
with open(f'data/{dir_test}/in.tsv', 'rt') as f:
|
||||||
|
for line in tqdm(f, desc=f'Reading {dir_test}'):
|
||||||
|
line = roberta.encode(line.rstrip('\n'))[:max_seq]
|
||||||
|
lines.append(line)
|
||||||
|
|
||||||
|
predictions = []
|
||||||
|
for i in tqdm(range(0, len(lines), batch_size), desc='Processing'):
|
||||||
|
batch_text = lines[i: i + batch_size]
|
||||||
|
# Get max length of batch
|
||||||
|
max_len = max([tokens.size(0) for tokens in batch_text])
|
||||||
|
|
||||||
|
# Create empty tensor with padding index
|
||||||
|
input_tensor = torch.LongTensor(len(batch_text), max_len).fill_(pad_index)
|
||||||
|
# Fill tensor with tokens
|
||||||
|
for i, tokens in enumerate(batch_text):
|
||||||
|
input_tensor[i][:tokens.size(0)] = tokens
|
||||||
|
|
||||||
|
with torch.no_grad():
|
||||||
|
raw_prediction = roberta.predict('hesaid', input_tensor)
|
||||||
|
# Get probability for second class (M class)
|
||||||
|
out_tensor = torch.exp(raw_prediction[:, 1])
|
||||||
|
for line_prediction in out_tensor:
|
||||||
|
# Get probability for first class
|
||||||
|
predictions.append(line_prediction.item())
|
||||||
|
|
||||||
|
with open(f'data/{dir_test}/out.tsv', 'wt') as fw:
|
||||||
|
fw.write('\n'.join([f'{p:.8f}' for p in predictions]))
|
137314
dev-0/out.tsv
Normal file
137314
dev-0/out.tsv
Normal file
File diff suppressed because it is too large
Load Diff
156606
dev-1/out.tsv
Normal file
156606
dev-1/out.tsv
Normal file
File diff suppressed because it is too large
Load Diff
134618
test-A/out.tsv
Normal file
134618
test-A/out.tsv
Normal file
File diff suppressed because it is too large
Load Diff
Loading…
Reference in New Issue
Block a user