596 lines
30 KiB
Python
596 lines
30 KiB
Python
|
import argparse
|
||
|
import logging
|
||
|
import math
|
||
|
import os
|
||
|
import random
|
||
|
import time
|
||
|
from pathlib import Path
|
||
|
from threading import Thread
|
||
|
from warnings import warn
|
||
|
|
||
|
import numpy as np
|
||
|
import torch.distributed as dist
|
||
|
import torch.nn as nn
|
||
|
import torch.nn.functional as F
|
||
|
import torch.optim as optim
|
||
|
import torch.optim.lr_scheduler as lr_scheduler
|
||
|
import torch.utils.data
|
||
|
import yaml
|
||
|
from torch.cuda import amp
|
||
|
from torch.nn.parallel import DistributedDataParallel as DDP
|
||
|
from torch.utils.tensorboard import SummaryWriter
|
||
|
from tqdm import tqdm
|
||
|
|
||
|
import test # import test.py to get mAP after each epoch
|
||
|
from models.experimental import attempt_load
|
||
|
from models.yolo import Model
|
||
|
from utils.autoanchor import check_anchors
|
||
|
from utils.datasets import create_dataloader
|
||
|
from utils.general import labels_to_class_weights, increment_path, labels_to_image_weights, init_seeds, \
|
||
|
fitness, strip_optimizer, get_latest_run, check_dataset, check_file, check_git_status, check_img_size, \
|
||
|
print_mutation, set_logging
|
||
|
from utils.google_utils import attempt_download
|
||
|
from utils.loss import compute_loss
|
||
|
from utils.plots import plot_images, plot_labels, plot_results, plot_evolution
|
||
|
from utils.torch_utils import ModelEMA, select_device, intersect_dicts, torch_distributed_zero_first
|
||
|
|
||
|
logger = logging.getLogger(__name__)
|
||
|
|
||
|
try:
|
||
|
import wandb
|
||
|
except ImportError:
|
||
|
wandb = None
|
||
|
logger.info("Install Weights & Biases for experiment logging via 'pip install wandb' (recommended)")
|
||
|
|
||
|
|
||
|
def train(hyp, opt, device, tb_writer=None, wandb=None):
|
||
|
logger.info(f'Hyperparameters {hyp}')
|
||
|
save_dir, epochs, batch_size, total_batch_size, weights, rank = \
|
||
|
Path(opt.save_dir), opt.epochs, opt.batch_size, opt.total_batch_size, opt.weights, opt.global_rank
|
||
|
|
||
|
# Directories
|
||
|
wdir = save_dir / 'weights'
|
||
|
wdir.mkdir(parents=True, exist_ok=True) # make dir
|
||
|
last = wdir / 'last.pt'
|
||
|
best = wdir / 'best.pt'
|
||
|
results_file = save_dir / 'results.txt'
|
||
|
|
||
|
# Save run settings
|
||
|
with open(save_dir / 'hyp.yaml', 'w') as f:
|
||
|
yaml.dump(hyp, f, sort_keys=False)
|
||
|
with open(save_dir / 'opt.yaml', 'w') as f:
|
||
|
yaml.dump(vars(opt), f, sort_keys=False)
|
||
|
|
||
|
# Configure
|
||
|
plots = not opt.evolve # create plots
|
||
|
cuda = device.type != 'cpu'
|
||
|
init_seeds(2 + rank)
|
||
|
with open(opt.data) as f:
|
||
|
data_dict = yaml.load(f, Loader=yaml.FullLoader) # data dict
|
||
|
with torch_distributed_zero_first(rank):
|
||
|
check_dataset(data_dict) # check
|
||
|
train_path = data_dict['train']
|
||
|
test_path = data_dict['val']
|
||
|
nc = 1 if opt.single_cls else int(data_dict['nc']) # number of classes
|
||
|
names = ['item'] if opt.single_cls and len(data_dict['names']) != 1 else data_dict['names'] # class names
|
||
|
assert len(names) == nc, '%g names found for nc=%g dataset in %s' % (len(names), nc, opt.data) # check
|
||
|
|
||
|
# Model
|
||
|
pretrained = weights.endswith('.pt')
|
||
|
if pretrained:
|
||
|
with torch_distributed_zero_first(rank):
|
||
|
attempt_download(weights) # download if not found locally
|
||
|
ckpt = torch.load(weights, map_location=device) # load checkpoint
|
||
|
if hyp.get('anchors'):
|
||
|
ckpt['model'].yaml['anchors'] = round(hyp['anchors']) # force autoanchor
|
||
|
model = Model(opt.cfg or ckpt['model'].yaml, ch=3, nc=nc).to(device) # create
|
||
|
exclude = ['anchor'] if opt.cfg or hyp.get('anchors') else [] # exclude keys
|
||
|
state_dict = ckpt['model'].float().state_dict() # to FP32
|
||
|
state_dict = intersect_dicts(state_dict, model.state_dict(), exclude=exclude) # intersect
|
||
|
model.load_state_dict(state_dict, strict=False) # load
|
||
|
logger.info('Transferred %g/%g items from %s' % (len(state_dict), len(model.state_dict()), weights)) # report
|
||
|
else:
|
||
|
model = Model(opt.cfg, ch=3, nc=nc).to(device) # create
|
||
|
|
||
|
# Freeze
|
||
|
freeze = [] # parameter names to freeze (full or partial)
|
||
|
for k, v in model.named_parameters():
|
||
|
v.requires_grad = True # train all layers
|
||
|
if any(x in k for x in freeze):
|
||
|
print('freezing %s' % k)
|
||
|
v.requires_grad = False
|
||
|
|
||
|
# Optimizer
|
||
|
nbs = 64 # nominal batch size
|
||
|
accumulate = max(round(nbs / total_batch_size), 1) # accumulate loss before optimizing
|
||
|
hyp['weight_decay'] *= total_batch_size * accumulate / nbs # scale weight_decay
|
||
|
|
||
|
pg0, pg1, pg2 = [], [], [] # optimizer parameter groups
|
||
|
for k, v in model.named_modules():
|
||
|
if hasattr(v, 'bias') and isinstance(v.bias, nn.Parameter):
|
||
|
pg2.append(v.bias) # biases
|
||
|
if isinstance(v, nn.BatchNorm2d):
|
||
|
pg0.append(v.weight) # no decay
|
||
|
elif hasattr(v, 'weight') and isinstance(v.weight, nn.Parameter):
|
||
|
pg1.append(v.weight) # apply decay
|
||
|
|
||
|
if opt.adam:
|
||
|
optimizer = optim.Adam(pg0, lr=hyp['lr0'], betas=(hyp['momentum'], 0.999)) # adjust beta1 to momentum
|
||
|
else:
|
||
|
optimizer = optim.SGD(pg0, lr=hyp['lr0'], momentum=hyp['momentum'], nesterov=True)
|
||
|
|
||
|
optimizer.add_param_group({'params': pg1, 'weight_decay': hyp['weight_decay']}) # add pg1 with weight_decay
|
||
|
optimizer.add_param_group({'params': pg2}) # add pg2 (biases)
|
||
|
logger.info('Optimizer groups: %g .bias, %g conv.weight, %g other' % (len(pg2), len(pg1), len(pg0)))
|
||
|
del pg0, pg1, pg2
|
||
|
|
||
|
# Scheduler https://arxiv.org/pdf/1812.01187.pdf
|
||
|
# https://pytorch.org/docs/stable/_modules/torch/optim/lr_scheduler.html#OneCycleLR
|
||
|
lf = lambda x: ((1 + math.cos(x * math.pi / epochs)) / 2) * (1 - hyp['lrf']) + hyp['lrf'] # cosine
|
||
|
scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
|
||
|
# plot_lr_scheduler(optimizer, scheduler, epochs)
|
||
|
|
||
|
# Logging
|
||
|
if wandb and wandb.run is None:
|
||
|
opt.hyp = hyp # add hyperparameters
|
||
|
wandb_run = wandb.init(config=opt, resume="allow",
|
||
|
project='YOLOv5' if opt.project == 'runs/train' else Path(opt.project).stem,
|
||
|
name=save_dir.stem,
|
||
|
id=ckpt.get('wandb_id') if 'ckpt' in locals() else None)
|
||
|
loggers = {'wandb': wandb} # loggers dict
|
||
|
|
||
|
# Resume
|
||
|
start_epoch, best_fitness = 0, 0.0
|
||
|
if pretrained:
|
||
|
# Optimizer
|
||
|
if ckpt['optimizer'] is not None:
|
||
|
optimizer.load_state_dict(ckpt['optimizer'])
|
||
|
best_fitness = ckpt['best_fitness']
|
||
|
|
||
|
# Results
|
||
|
if ckpt.get('training_results') is not None:
|
||
|
with open(results_file, 'w') as file:
|
||
|
file.write(ckpt['training_results']) # write results.txt
|
||
|
|
||
|
# Epochs
|
||
|
start_epoch = ckpt['epoch'] + 1
|
||
|
if opt.resume:
|
||
|
assert start_epoch > 0, '%s training to %g epochs is finished, nothing to resume.' % (weights, epochs)
|
||
|
if epochs < start_epoch:
|
||
|
logger.info('%s has been trained for %g epochs. Fine-tuning for %g additional epochs.' %
|
||
|
(weights, ckpt['epoch'], epochs))
|
||
|
epochs += ckpt['epoch'] # finetune additional epochs
|
||
|
|
||
|
del ckpt, state_dict
|
||
|
|
||
|
# Image sizes
|
||
|
gs = int(max(model.stride)) # grid size (max stride)
|
||
|
imgsz, imgsz_test = [check_img_size(x, gs) for x in opt.img_size] # verify imgsz are gs-multiples
|
||
|
|
||
|
# DP mode
|
||
|
if cuda and rank == -1 and torch.cuda.device_count() > 1:
|
||
|
model = torch.nn.DataParallel(model)
|
||
|
|
||
|
# SyncBatchNorm
|
||
|
if opt.sync_bn and cuda and rank != -1:
|
||
|
model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)
|
||
|
logger.info('Using SyncBatchNorm()')
|
||
|
|
||
|
# EMA
|
||
|
ema = ModelEMA(model) if rank in [-1, 0] else None
|
||
|
|
||
|
# DDP mode
|
||
|
if cuda and rank != -1:
|
||
|
model = DDP(model, device_ids=[opt.local_rank], output_device=opt.local_rank)
|
||
|
|
||
|
# Trainloader
|
||
|
dataloader, dataset = create_dataloader(train_path, imgsz, batch_size, gs, opt,
|
||
|
hyp=hyp, augment=True, cache=opt.cache_images, rect=opt.rect, rank=rank,
|
||
|
world_size=opt.world_size, workers=opt.workers,
|
||
|
image_weights=opt.image_weights)
|
||
|
mlc = np.concatenate(dataset.labels, 0)[:, 0].max() # max label class
|
||
|
nb = len(dataloader) # number of batches
|
||
|
assert mlc < nc, 'Label class %g exceeds nc=%g in %s. Possible class labels are 0-%g' % (mlc, nc, opt.data, nc - 1)
|
||
|
|
||
|
# Process 0
|
||
|
if rank in [-1, 0]:
|
||
|
ema.updates = start_epoch * nb // accumulate # set EMA updates
|
||
|
testloader = create_dataloader(test_path, imgsz_test, total_batch_size, gs, opt, # testloader
|
||
|
hyp=hyp, cache=opt.cache_images and not opt.notest, rect=True,
|
||
|
rank=-1, world_size=opt.world_size, workers=opt.workers, pad=0.5)[0]
|
||
|
|
||
|
if not opt.resume:
|
||
|
labels = np.concatenate(dataset.labels, 0)
|
||
|
c = torch.tensor(labels[:, 0]) # classes
|
||
|
# cf = torch.bincount(c.long(), minlength=nc) + 1. # frequency
|
||
|
# model._initialize_biases(cf.to(device))
|
||
|
if plots:
|
||
|
plot_labels(labels, save_dir, loggers)
|
||
|
if tb_writer:
|
||
|
tb_writer.add_histogram('classes', c, 0)
|
||
|
|
||
|
# Anchors
|
||
|
if not opt.noautoanchor:
|
||
|
check_anchors(dataset, model=model, thr=hyp['anchor_t'], imgsz=imgsz)
|
||
|
|
||
|
# Model parameters
|
||
|
hyp['cls'] *= nc / 80. # scale coco-tuned hyp['cls'] to current dataset
|
||
|
model.nc = nc # attach number of classes to model
|
||
|
model.hyp = hyp # attach hyperparameters to model
|
||
|
model.gr = 1.0 # iou loss ratio (obj_loss = 1.0 or iou)
|
||
|
model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) * nc # attach class weights
|
||
|
model.names = names
|
||
|
|
||
|
# Start training
|
||
|
t0 = time.time()
|
||
|
nw = max(round(hyp['warmup_epochs'] * nb), 1000) # number of warmup iterations, max(3 epochs, 1k iterations)
|
||
|
# nw = min(nw, (epochs - start_epoch) / 2 * nb) # limit warmup to < 1/2 of training
|
||
|
maps = np.zeros(nc) # mAP per class
|
||
|
results = (0, 0, 0, 0, 0, 0, 0) # P, R, mAP@.5, mAP@.5-.95, val_loss(box, obj, cls)
|
||
|
scheduler.last_epoch = start_epoch - 1 # do not move
|
||
|
scaler = amp.GradScaler(enabled=cuda)
|
||
|
logger.info('Image sizes %g train, %g test\n'
|
||
|
'Using %g dataloader workers\nLogging results to %s\n'
|
||
|
'Starting training for %g epochs...' % (imgsz, imgsz_test, dataloader.num_workers, save_dir, epochs))
|
||
|
for epoch in range(start_epoch, epochs): # epoch ------------------------------------------------------------------
|
||
|
model.train()
|
||
|
|
||
|
# Update image weights (optional)
|
||
|
if opt.image_weights:
|
||
|
# Generate indices
|
||
|
if rank in [-1, 0]:
|
||
|
cw = model.class_weights.cpu().numpy() * (1 - maps) ** 2 / nc # class weights
|
||
|
iw = labels_to_image_weights(dataset.labels, nc=nc, class_weights=cw) # image weights
|
||
|
dataset.indices = random.choices(range(dataset.n), weights=iw, k=dataset.n) # rand weighted idx
|
||
|
# Broadcast if DDP
|
||
|
if rank != -1:
|
||
|
indices = (torch.tensor(dataset.indices) if rank == 0 else torch.zeros(dataset.n)).int()
|
||
|
dist.broadcast(indices, 0)
|
||
|
if rank != 0:
|
||
|
dataset.indices = indices.cpu().numpy()
|
||
|
|
||
|
# Update mosaic border
|
||
|
# b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
|
||
|
# dataset.mosaic_border = [b - imgsz, -b] # height, width borders
|
||
|
|
||
|
mloss = torch.zeros(4, device=device) # mean losses
|
||
|
if rank != -1:
|
||
|
dataloader.sampler.set_epoch(epoch)
|
||
|
pbar = enumerate(dataloader)
|
||
|
logger.info(('\n' + '%10s' * 8) % ('Epoch', 'gpu_mem', 'box', 'obj', 'cls', 'total', 'targets', 'img_size'))
|
||
|
if rank in [-1, 0]:
|
||
|
pbar = tqdm(pbar, total=nb) # progress bar
|
||
|
optimizer.zero_grad()
|
||
|
for i, (imgs, targets, paths, _) in pbar: # batch -------------------------------------------------------------
|
||
|
ni = i + nb * epoch # number integrated batches (since train start)
|
||
|
imgs = imgs.to(device, non_blocking=True).float() / 255.0 # uint8 to float32, 0-255 to 0.0-1.0
|
||
|
|
||
|
# Warmup
|
||
|
if ni <= nw:
|
||
|
xi = [0, nw] # x interp
|
||
|
# model.gr = np.interp(ni, xi, [0.0, 1.0]) # iou loss ratio (obj_loss = 1.0 or iou)
|
||
|
accumulate = max(1, np.interp(ni, xi, [1, nbs / total_batch_size]).round())
|
||
|
for j, x in enumerate(optimizer.param_groups):
|
||
|
# bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
|
||
|
x['lr'] = np.interp(ni, xi, [hyp['warmup_bias_lr'] if j == 2 else 0.0, x['initial_lr'] * lf(epoch)])
|
||
|
if 'momentum' in x:
|
||
|
x['momentum'] = np.interp(ni, xi, [hyp['warmup_momentum'], hyp['momentum']])
|
||
|
|
||
|
# Multi-scale
|
||
|
if opt.multi_scale:
|
||
|
sz = random.randrange(imgsz * 0.5, imgsz * 1.5 + gs) // gs * gs # size
|
||
|
sf = sz / max(imgs.shape[2:]) # scale factor
|
||
|
if sf != 1:
|
||
|
ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]] # new shape (stretched to gs-multiple)
|
||
|
imgs = F.interpolate(imgs, size=ns, mode='bilinear', align_corners=False)
|
||
|
|
||
|
# Forward
|
||
|
with amp.autocast(enabled=cuda):
|
||
|
pred = model(imgs) # forward
|
||
|
loss, loss_items = compute_loss(pred, targets.to(device), model) # loss scaled by batch_size
|
||
|
if rank != -1:
|
||
|
loss *= opt.world_size # gradient averaged between devices in DDP mode
|
||
|
|
||
|
# Backward
|
||
|
scaler.scale(loss).backward()
|
||
|
|
||
|
# Optimize
|
||
|
if ni % accumulate == 0:
|
||
|
scaler.step(optimizer) # optimizer.step
|
||
|
scaler.update()
|
||
|
optimizer.zero_grad()
|
||
|
if ema:
|
||
|
ema.update(model)
|
||
|
|
||
|
# Print
|
||
|
if rank in [-1, 0]:
|
||
|
mloss = (mloss * i + loss_items) / (i + 1) # update mean losses
|
||
|
mem = '%.3gG' % (torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0) # (GB)
|
||
|
s = ('%10s' * 2 + '%10.4g' * 6) % (
|
||
|
'%g/%g' % (epoch, epochs - 1), mem, *mloss, targets.shape[0], imgs.shape[-1])
|
||
|
pbar.set_description(s)
|
||
|
|
||
|
# Plot
|
||
|
if plots and ni < 3:
|
||
|
f = save_dir / f'train_batch{ni}.jpg' # filename
|
||
|
Thread(target=plot_images, args=(imgs, targets, paths, f), daemon=True).start()
|
||
|
# if tb_writer:
|
||
|
# tb_writer.add_image(f, result, dataformats='HWC', global_step=epoch)
|
||
|
# tb_writer.add_graph(model, imgs) # add model to tensorboard
|
||
|
elif plots and ni == 3 and wandb:
|
||
|
wandb.log({"Mosaics": [wandb.Image(str(x), caption=x.name) for x in save_dir.glob('train*.jpg')]})
|
||
|
|
||
|
# end batch ------------------------------------------------------------------------------------------------
|
||
|
# end epoch ----------------------------------------------------------------------------------------------------
|
||
|
|
||
|
# Scheduler
|
||
|
lr = [x['lr'] for x in optimizer.param_groups] # for tensorboard
|
||
|
scheduler.step()
|
||
|
|
||
|
# DDP process 0 or single-GPU
|
||
|
if rank in [-1, 0]:
|
||
|
# mAP
|
||
|
if ema:
|
||
|
ema.update_attr(model, include=['yaml', 'nc', 'hyp', 'gr', 'names', 'stride', 'class_weights'])
|
||
|
final_epoch = epoch + 1 == epochs
|
||
|
if not opt.notest or final_epoch: # Calculate mAP
|
||
|
results, maps, times = test.test(opt.data,
|
||
|
batch_size=total_batch_size,
|
||
|
imgsz=imgsz_test,
|
||
|
model=ema.ema,
|
||
|
single_cls=opt.single_cls,
|
||
|
dataloader=testloader,
|
||
|
save_dir=save_dir,
|
||
|
plots=plots and final_epoch,
|
||
|
log_imgs=opt.log_imgs if wandb else 0)
|
||
|
|
||
|
# Write
|
||
|
with open(results_file, 'a') as f:
|
||
|
f.write(s + '%10.4g' * 7 % results + '\n') # P, R, mAP@.5, mAP@.5-.95, val_loss(box, obj, cls)
|
||
|
if len(opt.name) and opt.bucket:
|
||
|
os.system('gsutil cp %s gs://%s/results/results%s.txt' % (results_file, opt.bucket, opt.name))
|
||
|
|
||
|
# Log
|
||
|
tags = ['train/box_loss', 'train/obj_loss', 'train/cls_loss', # train loss
|
||
|
'metrics/precision', 'metrics/recall', 'metrics/mAP_0.5', 'metrics/mAP_0.5:0.95',
|
||
|
'val/box_loss', 'val/obj_loss', 'val/cls_loss', # val loss
|
||
|
'x/lr0', 'x/lr1', 'x/lr2'] # params
|
||
|
for x, tag in zip(list(mloss[:-1]) + list(results) + lr, tags):
|
||
|
if tb_writer:
|
||
|
tb_writer.add_scalar(tag, x, epoch) # tensorboard
|
||
|
if wandb:
|
||
|
wandb.log({tag: x}) # W&B
|
||
|
|
||
|
# Update best mAP
|
||
|
fi = fitness(np.array(results).reshape(1, -1)) # weighted combination of [P, R, mAP@.5, mAP@.5-.95]
|
||
|
if fi > best_fitness:
|
||
|
best_fitness = fi
|
||
|
|
||
|
# Save model
|
||
|
save = (not opt.nosave) or (final_epoch and not opt.evolve)
|
||
|
if save:
|
||
|
with open(results_file, 'r') as f: # create checkpoint
|
||
|
ckpt = {'epoch': epoch,
|
||
|
'best_fitness': best_fitness,
|
||
|
'training_results': f.read(),
|
||
|
'model': ema.ema,
|
||
|
'optimizer': None if final_epoch else optimizer.state_dict(),
|
||
|
'wandb_id': wandb_run.id if wandb else None}
|
||
|
|
||
|
# Save last, best and delete
|
||
|
torch.save(ckpt, last)
|
||
|
if best_fitness == fi:
|
||
|
torch.save(ckpt, best)
|
||
|
del ckpt
|
||
|
# end epoch ----------------------------------------------------------------------------------------------------
|
||
|
# end training
|
||
|
|
||
|
if rank in [-1, 0]:
|
||
|
# Strip optimizers
|
||
|
final = best if best.exists() else last # final model
|
||
|
for f in [last, best]:
|
||
|
if f.exists():
|
||
|
strip_optimizer(f) # strip optimizers
|
||
|
if opt.bucket:
|
||
|
os.system(f'gsutil cp {final} gs://{opt.bucket}/weights') # upload
|
||
|
|
||
|
# Plots
|
||
|
if plots:
|
||
|
plot_results(save_dir=save_dir) # save as results.png
|
||
|
if wandb:
|
||
|
files = ['results.png', 'precision_recall_curve.png', 'confusion_matrix.png']
|
||
|
wandb.log({"Results": [wandb.Image(str(save_dir / f), caption=f) for f in files
|
||
|
if (save_dir / f).exists()]})
|
||
|
if opt.log_artifacts:
|
||
|
wandb.log_artifact(artifact_or_path=str(final), type='model', name=save_dir.stem)
|
||
|
|
||
|
# Test best.pt
|
||
|
logger.info('%g epochs completed in %.3f hours.\n' % (epoch - start_epoch + 1, (time.time() - t0) / 3600))
|
||
|
if opt.data.endswith('coco.yaml') and nc == 80: # if COCO
|
||
|
for conf, iou, save_json in ([0.25, 0.45, False], [0.001, 0.65, True]): # speed, mAP tests
|
||
|
results, _, _ = test.test(opt.data,
|
||
|
batch_size=total_batch_size,
|
||
|
imgsz=imgsz_test,
|
||
|
conf_thres=conf,
|
||
|
iou_thres=iou,
|
||
|
model=attempt_load(final, device).half(),
|
||
|
single_cls=opt.single_cls,
|
||
|
dataloader=testloader,
|
||
|
save_dir=save_dir,
|
||
|
save_json=save_json,
|
||
|
plots=False)
|
||
|
|
||
|
else:
|
||
|
dist.destroy_process_group()
|
||
|
|
||
|
wandb.run.finish() if wandb and wandb.run else None
|
||
|
torch.cuda.empty_cache()
|
||
|
return results
|
||
|
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
parser = argparse.ArgumentParser()
|
||
|
parser.add_argument('--weights', type=str, default='yolov5s.pt', help='initial weights path')
|
||
|
parser.add_argument('--cfg', type=str, default='', help='model.yaml path')
|
||
|
parser.add_argument('--data', type=str, default='data/coco128.yaml', help='data.yaml path')
|
||
|
parser.add_argument('--hyp', type=str, default='data/hyp.scratch.yaml', help='hyperparameters path')
|
||
|
parser.add_argument('--epochs', type=int, default=300)
|
||
|
parser.add_argument('--batch-size', type=int, default=16, help='total batch size for all GPUs')
|
||
|
parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='[train, test] image sizes')
|
||
|
parser.add_argument('--rect', action='store_true', help='rectangular training')
|
||
|
parser.add_argument('--resume', nargs='?', const=True, default=False, help='resume most recent training')
|
||
|
parser.add_argument('--nosave', action='store_true', help='only save final checkpoint')
|
||
|
parser.add_argument('--notest', action='store_true', help='only test final epoch')
|
||
|
parser.add_argument('--noautoanchor', action='store_true', help='disable autoanchor check')
|
||
|
parser.add_argument('--evolve', action='store_true', help='evolve hyperparameters')
|
||
|
parser.add_argument('--bucket', type=str, default='', help='gsutil bucket')
|
||
|
parser.add_argument('--cache-images', action='store_true', help='cache images for faster training')
|
||
|
parser.add_argument('--image-weights', action='store_true', help='use weighted image selection for training')
|
||
|
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
|
||
|
parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%')
|
||
|
parser.add_argument('--single-cls', action='store_true', help='train multi-class data as single-class')
|
||
|
parser.add_argument('--adam', action='store_true', help='use torch.optim.Adam() optimizer')
|
||
|
parser.add_argument('--sync-bn', action='store_true', help='use SyncBatchNorm, only available in DDP mode')
|
||
|
parser.add_argument('--local_rank', type=int, default=-1, help='DDP parameter, do not modify')
|
||
|
parser.add_argument('--log-imgs', type=int, default=16, help='number of images for W&B logging, max 100')
|
||
|
parser.add_argument('--log-artifacts', action='store_true', help='log artifacts, i.e. final trained model')
|
||
|
parser.add_argument('--workers', type=int, default=8, help='maximum number of dataloader workers')
|
||
|
parser.add_argument('--project', default='runs/train', help='save to project/name')
|
||
|
parser.add_argument('--name', default='exp', help='save to project/name')
|
||
|
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
|
||
|
opt = parser.parse_args()
|
||
|
|
||
|
# Set DDP variables
|
||
|
opt.total_batch_size = opt.batch_size
|
||
|
opt.world_size = int(os.environ['WORLD_SIZE']) if 'WORLD_SIZE' in os.environ else 1
|
||
|
opt.global_rank = int(os.environ['RANK']) if 'RANK' in os.environ else -1
|
||
|
set_logging(opt.global_rank)
|
||
|
if opt.global_rank in [-1, 0]:
|
||
|
check_git_status()
|
||
|
|
||
|
# Resume
|
||
|
if opt.resume: # resume an interrupted run
|
||
|
ckpt = opt.resume if isinstance(opt.resume, str) else get_latest_run() # specified or most recent path
|
||
|
assert os.path.isfile(ckpt), 'ERROR: --resume checkpoint does not exist'
|
||
|
apriori = opt.global_rank, opt.local_rank
|
||
|
with open(Path(ckpt).parent.parent / 'opt.yaml') as f:
|
||
|
opt = argparse.Namespace(**yaml.load(f, Loader=yaml.FullLoader)) # replace
|
||
|
opt.cfg, opt.weights, opt.resume, opt.global_rank, opt.local_rank = '', ckpt, True, *apriori # reinstate
|
||
|
logger.info('Resuming training from %s' % ckpt)
|
||
|
else:
|
||
|
# opt.hyp = opt.hyp or ('hyp.finetune.yaml' if opt.weights else 'hyp.scratch.yaml')
|
||
|
opt.data, opt.cfg, opt.hyp = check_file(opt.data), check_file(opt.cfg), check_file(opt.hyp) # check files
|
||
|
assert len(opt.cfg) or len(opt.weights), 'either --cfg or --weights must be specified'
|
||
|
opt.img_size.extend([opt.img_size[-1]] * (2 - len(opt.img_size))) # extend to 2 sizes (train, test)
|
||
|
opt.name = 'evolve' if opt.evolve else opt.name
|
||
|
opt.save_dir = increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok | opt.evolve) # increment run
|
||
|
|
||
|
# DDP mode
|
||
|
device = select_device(opt.device, batch_size=opt.batch_size)
|
||
|
if opt.local_rank != -1:
|
||
|
assert torch.cuda.device_count() > opt.local_rank
|
||
|
torch.cuda.set_device(opt.local_rank)
|
||
|
device = torch.device('cuda', opt.local_rank)
|
||
|
dist.init_process_group(backend='nccl', init_method='env://') # distributed backend
|
||
|
assert opt.batch_size % opt.world_size == 0, '--batch-size must be multiple of CUDA device count'
|
||
|
opt.batch_size = opt.total_batch_size // opt.world_size
|
||
|
|
||
|
# Hyperparameters
|
||
|
with open(opt.hyp) as f:
|
||
|
hyp = yaml.load(f, Loader=yaml.FullLoader) # load hyps
|
||
|
if 'box' not in hyp:
|
||
|
warn('Compatibility: %s missing "box" which was renamed from "giou" in %s' %
|
||
|
(opt.hyp, 'https://github.com/ultralytics/yolov5/pull/1120'))
|
||
|
hyp['box'] = hyp.pop('giou')
|
||
|
|
||
|
# Train
|
||
|
logger.info(opt)
|
||
|
if not opt.evolve:
|
||
|
tb_writer = None # init loggers
|
||
|
if opt.global_rank in [-1, 0]:
|
||
|
logger.info(f'Start Tensorboard with "tensorboard --logdir {opt.project}", view at http://localhost:6006/')
|
||
|
tb_writer = SummaryWriter(opt.save_dir) # Tensorboard
|
||
|
train(hyp, opt, device, tb_writer, wandb)
|
||
|
|
||
|
# Evolve hyperparameters (optional)
|
||
|
else:
|
||
|
# Hyperparameter evolution metadata (mutation scale 0-1, lower_limit, upper_limit)
|
||
|
meta = {'lr0': (1, 1e-5, 1e-1), # initial learning rate (SGD=1E-2, Adam=1E-3)
|
||
|
'lrf': (1, 0.01, 1.0), # final OneCycleLR learning rate (lr0 * lrf)
|
||
|
'momentum': (0.3, 0.6, 0.98), # SGD momentum/Adam beta1
|
||
|
'weight_decay': (1, 0.0, 0.001), # optimizer weight decay
|
||
|
'warmup_epochs': (1, 0.0, 5.0), # warmup epochs (fractions ok)
|
||
|
'warmup_momentum': (1, 0.0, 0.95), # warmup initial momentum
|
||
|
'warmup_bias_lr': (1, 0.0, 0.2), # warmup initial bias lr
|
||
|
'box': (1, 0.02, 0.2), # box loss gain
|
||
|
'cls': (1, 0.2, 4.0), # cls loss gain
|
||
|
'cls_pw': (1, 0.5, 2.0), # cls BCELoss positive_weight
|
||
|
'obj': (1, 0.2, 4.0), # obj loss gain (scale with pixels)
|
||
|
'obj_pw': (1, 0.5, 2.0), # obj BCELoss positive_weight
|
||
|
'iou_t': (0, 0.1, 0.7), # IoU training threshold
|
||
|
'anchor_t': (1, 2.0, 8.0), # anchor-multiple threshold
|
||
|
'anchors': (2, 2.0, 10.0), # anchors per output grid (0 to ignore)
|
||
|
'fl_gamma': (0, 0.0, 2.0), # focal loss gamma (efficientDet default gamma=1.5)
|
||
|
'hsv_h': (1, 0.0, 0.1), # image HSV-Hue augmentation (fraction)
|
||
|
'hsv_s': (1, 0.0, 0.9), # image HSV-Saturation augmentation (fraction)
|
||
|
'hsv_v': (1, 0.0, 0.9), # image HSV-Value augmentation (fraction)
|
||
|
'degrees': (1, 0.0, 45.0), # image rotation (+/- deg)
|
||
|
'translate': (1, 0.0, 0.9), # image translation (+/- fraction)
|
||
|
'scale': (1, 0.0, 0.9), # image scale (+/- gain)
|
||
|
'shear': (1, 0.0, 10.0), # image shear (+/- deg)
|
||
|
'perspective': (0, 0.0, 0.001), # image perspective (+/- fraction), range 0-0.001
|
||
|
'flipud': (1, 0.0, 1.0), # image flip up-down (probability)
|
||
|
'fliplr': (0, 0.0, 1.0), # image flip left-right (probability)
|
||
|
'mosaic': (1, 0.0, 1.0), # image mixup (probability)
|
||
|
'mixup': (1, 0.0, 1.0)} # image mixup (probability)
|
||
|
|
||
|
assert opt.local_rank == -1, 'DDP mode not implemented for --evolve'
|
||
|
opt.notest, opt.nosave = True, True # only test/save final epoch
|
||
|
# ei = [isinstance(x, (int, float)) for x in hyp.values()] # evolvable indices
|
||
|
yaml_file = Path(opt.save_dir) / 'hyp_evolved.yaml' # save best result here
|
||
|
if opt.bucket:
|
||
|
os.system('gsutil cp gs://%s/evolve.txt .' % opt.bucket) # download evolve.txt if exists
|
||
|
|
||
|
for _ in range(300): # generations to evolve
|
||
|
if Path('evolve.txt').exists(): # if evolve.txt exists: select best hyps and mutate
|
||
|
# Select parent(s)
|
||
|
parent = 'single' # parent selection method: 'single' or 'weighted'
|
||
|
x = np.loadtxt('evolve.txt', ndmin=2)
|
||
|
n = min(5, len(x)) # number of previous results to consider
|
||
|
x = x[np.argsort(-fitness(x))][:n] # top n mutations
|
||
|
w = fitness(x) - fitness(x).min() # weights
|
||
|
if parent == 'single' or len(x) == 1:
|
||
|
# x = x[random.randint(0, n - 1)] # random selection
|
||
|
x = x[random.choices(range(n), weights=w)[0]] # weighted selection
|
||
|
elif parent == 'weighted':
|
||
|
x = (x * w.reshape(n, 1)).sum(0) / w.sum() # weighted combination
|
||
|
|
||
|
# Mutate
|
||
|
mp, s = 0.8, 0.2 # mutation probability, sigma
|
||
|
npr = np.random
|
||
|
npr.seed(int(time.time()))
|
||
|
g = np.array([x[0] for x in meta.values()]) # gains 0-1
|
||
|
ng = len(meta)
|
||
|
v = np.ones(ng)
|
||
|
while all(v == 1): # mutate until a change occurs (prevent duplicates)
|
||
|
v = (g * (npr.random(ng) < mp) * npr.randn(ng) * npr.random() * s + 1).clip(0.3, 3.0)
|
||
|
for i, k in enumerate(hyp.keys()): # plt.hist(v.ravel(), 300)
|
||
|
hyp[k] = float(x[i + 7] * v[i]) # mutate
|
||
|
|
||
|
# Constrain to limits
|
||
|
for k, v in meta.items():
|
||
|
hyp[k] = max(hyp[k], v[1]) # lower limit
|
||
|
hyp[k] = min(hyp[k], v[2]) # upper limit
|
||
|
hyp[k] = round(hyp[k], 5) # significant digits
|
||
|
|
||
|
# Train mutation
|
||
|
results = train(hyp.copy(), opt, device, wandb=wandb)
|
||
|
|
||
|
# Write mutation results
|
||
|
print_mutation(hyp.copy(), results, yaml_file, opt.bucket)
|
||
|
|
||
|
# Plot results
|
||
|
plot_evolution(yaml_file)
|
||
|
print(f'Hyperparameter evolution complete. Best results saved as: {yaml_file}\n'
|
||
|
f'Command to train a new model with these hyperparameters: $ python train.py --hyp {yaml_file}')
|