56 lines
1.9 KiB
Docker
56 lines
1.9 KiB
Docker
|
# Start FROM Nvidia PyTorch image https://ngc.nvidia.com/catalog/containers/nvidia:pytorch
|
||
|
FROM nvcr.io/nvidia/pytorch:20.12-py3
|
||
|
|
||
|
# Install linux packages
|
||
|
RUN apt update && apt install -y screen libgl1-mesa-glx
|
||
|
|
||
|
# Install python dependencies
|
||
|
RUN pip install --upgrade pip
|
||
|
COPY requirements.txt .
|
||
|
RUN pip install -r requirements.txt
|
||
|
RUN pip install gsutil
|
||
|
|
||
|
# Create working directory
|
||
|
RUN mkdir -p /usr/src/app
|
||
|
WORKDIR /usr/src/app
|
||
|
|
||
|
# Copy contents
|
||
|
COPY . /usr/src/app
|
||
|
|
||
|
# Copy weights
|
||
|
#RUN python3 -c "from models import *; \
|
||
|
#attempt_download('weights/yolov5s.pt'); \
|
||
|
#attempt_download('weights/yolov5m.pt'); \
|
||
|
#attempt_download('weights/yolov5l.pt')"
|
||
|
|
||
|
|
||
|
# --------------------------------------------------- Extras Below ---------------------------------------------------
|
||
|
|
||
|
# Build and Push
|
||
|
# t=ultralytics/yolov5:latest && sudo docker build -t $t . && sudo docker push $t
|
||
|
# for v in {300..303}; do t=ultralytics/coco:v$v && sudo docker build -t $t . && sudo docker push $t; done
|
||
|
|
||
|
# Pull and Run
|
||
|
# t=ultralytics/yolov5:latest && sudo docker pull $t && sudo docker run -it --ipc=host --gpus all $t
|
||
|
|
||
|
# Pull and Run with local directory access
|
||
|
# t=ultralytics/yolov5:latest && sudo docker pull $t && sudo docker run -it --ipc=host --gpus all -v "$(pwd)"/coco:/usr/src/coco $t
|
||
|
|
||
|
# Kill all
|
||
|
# sudo docker kill $(sudo docker ps -q)
|
||
|
|
||
|
# Kill all image-based
|
||
|
# sudo docker kill $(sudo docker ps -a -q --filter ancestor=ultralytics/yolov5:latest)
|
||
|
|
||
|
# Bash into running container
|
||
|
# sudo docker container exec -it ba65811811ab bash
|
||
|
|
||
|
# Bash into stopped container
|
||
|
# sudo docker commit 092b16b25c5b usr/resume && sudo docker run -it --gpus all --ipc=host -v "$(pwd)"/coco:/usr/src/coco --entrypoint=sh usr/resume
|
||
|
|
||
|
# Send weights to GCP
|
||
|
# python -c "from utils.general import *; strip_optimizer('runs/train/exp0_*/weights/best.pt', 'tmp.pt')" && gsutil cp tmp.pt gs://*.pt
|
||
|
|
||
|
# Clean up
|
||
|
# docker system prune -a --volumes
|