deep_sort tracking
This commit is contained in:
parent
4d842583f0
commit
954619b0a5
13
yolov5/deep_sort_pytorch/.gitignore
vendored
Normal file
13
yolov5/deep_sort_pytorch/.gitignore
vendored
Normal file
@ -0,0 +1,13 @@
|
||||
# Folders
|
||||
__pycache__/
|
||||
build/
|
||||
*.egg-info
|
||||
|
||||
|
||||
# Files
|
||||
*.weights
|
||||
*.t7
|
||||
*.mp4
|
||||
*.avi
|
||||
*.so
|
||||
*.txt
|
21
yolov5/deep_sort_pytorch/LICENSE
Normal file
21
yolov5/deep_sort_pytorch/LICENSE
Normal file
@ -0,0 +1,21 @@
|
||||
MIT License
|
||||
|
||||
Copyright (c) 2020 Ziqiang
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
of this software and associated documentation files (the "Software"), to deal
|
||||
in the Software without restriction, including without limitation the rights
|
||||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
copies of the Software, and to permit persons to whom the Software is
|
||||
furnished to do so, subject to the following conditions:
|
||||
|
||||
The above copyright notice and this permission notice shall be included in all
|
||||
copies or substantial portions of the Software.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
SOFTWARE.
|
137
yolov5/deep_sort_pytorch/README.md
Normal file
137
yolov5/deep_sort_pytorch/README.md
Normal file
@ -0,0 +1,137 @@
|
||||
# Deep Sort with PyTorch
|
||||
|
||||
![](demo/demo.gif)
|
||||
|
||||
## Update(1-1-2020)
|
||||
Changes
|
||||
- fix bugs
|
||||
- refactor code
|
||||
- accerate detection by adding nms on gpu
|
||||
|
||||
## Latest Update(07-22)
|
||||
Changes
|
||||
- bug fix (Thanks @JieChen91 and @yingsen1 for bug reporting).
|
||||
- using batch for feature extracting for each frame, which lead to a small speed up.
|
||||
- code improvement.
|
||||
|
||||
Futher improvement direction
|
||||
- Train detector on specific dataset rather than the official one.
|
||||
- Retrain REID model on pedestrain dataset for better performance.
|
||||
- Replace YOLOv3 detector with advanced ones.
|
||||
|
||||
**Any contributions to this repository is welcome!**
|
||||
|
||||
|
||||
## Introduction
|
||||
This is an implement of MOT tracking algorithm deep sort. Deep sort is basicly the same with sort but added a CNN model to extract features in image of human part bounded by a detector. This CNN model is indeed a RE-ID model and the detector used in [PAPER](https://arxiv.org/abs/1703.07402) is FasterRCNN , and the original source code is [HERE](https://github.com/nwojke/deep_sort).
|
||||
However in original code, the CNN model is implemented with tensorflow, which I'm not familier with. SO I re-implemented the CNN feature extraction model with PyTorch, and changed the CNN model a little bit. Also, I use **YOLOv3** to generate bboxes instead of FasterRCNN.
|
||||
|
||||
## Dependencies
|
||||
- python 3 (python2 not sure)
|
||||
- numpy
|
||||
- scipy
|
||||
- opencv-python
|
||||
- sklearn
|
||||
- torch >= 0.4
|
||||
- torchvision >= 0.1
|
||||
- pillow
|
||||
- vizer
|
||||
- edict
|
||||
|
||||
## Quick Start
|
||||
0. Check all dependencies installed
|
||||
```bash
|
||||
pip install -r requirements.txt
|
||||
```
|
||||
for user in china, you can specify pypi source to accelerate install like:
|
||||
```bash
|
||||
pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple
|
||||
```
|
||||
|
||||
1. Clone this repository
|
||||
```
|
||||
git clone git@github.com:ZQPei/deep_sort_pytorch.git
|
||||
```
|
||||
|
||||
2. Download YOLOv3 parameters
|
||||
```
|
||||
cd detector/YOLOv3/weight/
|
||||
wget https://pjreddie.com/media/files/yolov3.weights
|
||||
wget https://pjreddie.com/media/files/yolov3-tiny.weights
|
||||
cd ../../../
|
||||
```
|
||||
|
||||
3. Download deepsort parameters ckpt.t7
|
||||
```
|
||||
cd deep_sort/deep/checkpoint
|
||||
# download ckpt.t7 from
|
||||
https://drive.google.com/drive/folders/1xhG0kRH1EX5B9_Iz8gQJb7UNnn_riXi6 to this folder
|
||||
cd ../../../
|
||||
```
|
||||
|
||||
4. Compile nms module
|
||||
```bash
|
||||
cd detector/YOLOv3/nms
|
||||
sh build.sh
|
||||
cd ../../..
|
||||
```
|
||||
|
||||
Notice:
|
||||
If compiling failed, the simplist way is to **Upgrade your pytorch >= 1.1 and torchvision >= 0.3" and you can avoid the troublesome compiling problems which are most likely caused by either `gcc version too low` or `libraries missing`.
|
||||
|
||||
5. Run demo
|
||||
```
|
||||
usage: python yolov3_deepsort.py VIDEO_PATH
|
||||
[--help]
|
||||
[--frame_interval FRAME_INTERVAL]
|
||||
[--config_detection CONFIG_DETECTION]
|
||||
[--config_deepsort CONFIG_DEEPSORT]
|
||||
[--display]
|
||||
[--display_width DISPLAY_WIDTH]
|
||||
[--display_height DISPLAY_HEIGHT]
|
||||
[--save_path SAVE_PATH]
|
||||
[--cpu]
|
||||
|
||||
# yolov3 + deepsort
|
||||
python yolov3_deepsort.py [VIDEO_PATH]
|
||||
|
||||
# yolov3_tiny + deepsort
|
||||
python yolov3_deepsort.py [VIDEO_PATH] --config_detection ./configs/yolov3_tiny.yaml
|
||||
|
||||
# yolov3 + deepsort on webcam
|
||||
python3 yolov3_deepsort.py /dev/video0 --camera 0
|
||||
|
||||
# yolov3_tiny + deepsort on webcam
|
||||
python3 yolov3_deepsort.py /dev/video0 --config_detection ./configs/yolov3_tiny.yaml --camera 0
|
||||
```
|
||||
Use `--display` to enable display.
|
||||
Results will be saved to `./output/results.avi` and `./output/results.txt`.
|
||||
|
||||
All files above can also be accessed from BaiduDisk!
|
||||
linker:[BaiduDisk](https://pan.baidu.com/s/1YJ1iPpdFTlUyLFoonYvozg)
|
||||
passwd:fbuw
|
||||
|
||||
## Training the RE-ID model
|
||||
The original model used in paper is in original_model.py, and its parameter here [original_ckpt.t7](https://drive.google.com/drive/folders/1xhG0kRH1EX5B9_Iz8gQJb7UNnn_riXi6).
|
||||
|
||||
To train the model, first you need download [Market1501](http://www.liangzheng.com.cn/Project/project_reid.html) dataset or [Mars](http://www.liangzheng.com.cn/Project/project_mars.html) dataset.
|
||||
|
||||
Then you can try [train.py](deep_sort/deep/train.py) to train your own parameter and evaluate it using [test.py](deep_sort/deep/test.py) and [evaluate.py](deep_sort/deep/evalute.py).
|
||||
![train.jpg](deep_sort/deep/train.jpg)
|
||||
|
||||
## Demo videos and images
|
||||
[demo.avi](https://drive.google.com/drive/folders/1xhG0kRH1EX5B9_Iz8gQJb7UNnn_riXi6)
|
||||
[demo2.avi](https://drive.google.com/drive/folders/1xhG0kRH1EX5B9_Iz8gQJb7UNnn_riXi6)
|
||||
|
||||
![1.jpg](demo/1.jpg)
|
||||
![2.jpg](demo/2.jpg)
|
||||
|
||||
|
||||
## References
|
||||
- paper: [Simple Online and Realtime Tracking with a Deep Association Metric](https://arxiv.org/abs/1703.07402)
|
||||
|
||||
- code: [nwojke/deep_sort](https://github.com/nwojke/deep_sort)
|
||||
|
||||
- paper: [YOLOv3](https://pjreddie.com/media/files/papers/YOLOv3.pdf)
|
||||
|
||||
- code: [Joseph Redmon/yolov3](https://pjreddie.com/darknet/yolo/)
|
10
yolov5/deep_sort_pytorch/configs/deep_sort.yaml
Normal file
10
yolov5/deep_sort_pytorch/configs/deep_sort.yaml
Normal file
@ -0,0 +1,10 @@
|
||||
DEEPSORT:
|
||||
REID_CKPT: "deep_sort_pytorch/deep_sort/deep/checkpoint/ckpt.t7"
|
||||
MAX_DIST: 0.3
|
||||
MIN_CONFIDENCE: 0.3
|
||||
NMS_MAX_OVERLAP: 0.5
|
||||
MAX_IOU_DISTANCE: 0.7
|
||||
MAX_AGE: 70
|
||||
N_INIT: 3
|
||||
NN_BUDGET: 100
|
||||
|
3
yolov5/deep_sort_pytorch/deep_sort/README.md
Normal file
3
yolov5/deep_sort_pytorch/deep_sort/README.md
Normal file
@ -0,0 +1,3 @@
|
||||
# Deep Sort
|
||||
|
||||
This is the implemention of deep sort with pytorch.
|
21
yolov5/deep_sort_pytorch/deep_sort/__init__.py
Normal file
21
yolov5/deep_sort_pytorch/deep_sort/__init__.py
Normal file
@ -0,0 +1,21 @@
|
||||
from .deep_sort import DeepSort
|
||||
|
||||
|
||||
__all__ = ['DeepSort', 'build_tracker']
|
||||
|
||||
|
||||
def build_tracker(cfg, use_cuda):
|
||||
return DeepSort(cfg.DEEPSORT.REID_CKPT,
|
||||
max_dist=cfg.DEEPSORT.MAX_DIST, min_confidence=cfg.DEEPSORT.MIN_CONFIDENCE,
|
||||
nms_max_overlap=cfg.DEEPSORT.NMS_MAX_OVERLAP, max_iou_distance=cfg.DEEPSORT.MAX_IOU_DISTANCE,
|
||||
max_age=cfg.DEEPSORT.MAX_AGE, n_init=cfg.DEEPSORT.N_INIT, nn_budget=cfg.DEEPSORT.NN_BUDGET, use_cuda=use_cuda)
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
0
yolov5/deep_sort_pytorch/deep_sort/deep/__init__.py
Normal file
0
yolov5/deep_sort_pytorch/deep_sort/deep/__init__.py
Normal file
13
yolov5/deep_sort_pytorch/deep_sort/deep/evaluate.py
Normal file
13
yolov5/deep_sort_pytorch/deep_sort/deep/evaluate.py
Normal file
@ -0,0 +1,13 @@
|
||||
import torch
|
||||
|
||||
features = torch.load("features.pth")
|
||||
qf = features["qf"]
|
||||
ql = features["ql"]
|
||||
gf = features["gf"]
|
||||
gl = features["gl"]
|
||||
|
||||
scores = qf.mm(gf.t())
|
||||
res = scores.topk(5, dim=1)[1][:, 0]
|
||||
top1correct = gl[res].eq(ql).sum().item()
|
||||
|
||||
print("Acc top1:{:.3f}".format(top1correct / ql.size(0)))
|
54
yolov5/deep_sort_pytorch/deep_sort/deep/feature_extractor.py
Normal file
54
yolov5/deep_sort_pytorch/deep_sort/deep/feature_extractor.py
Normal file
@ -0,0 +1,54 @@
|
||||
import torch
|
||||
import torchvision.transforms as transforms
|
||||
import numpy as np
|
||||
import cv2
|
||||
import logging
|
||||
|
||||
from .model import Net
|
||||
|
||||
|
||||
class Extractor(object):
|
||||
def __init__(self, model_path, use_cuda=True):
|
||||
self.net = Net(reid=True)
|
||||
self.device = "cuda" if torch.cuda.is_available() and use_cuda else "cpu"
|
||||
state_dict = torch.load(model_path, map_location=lambda storage, loc: storage)[
|
||||
'net_dict']
|
||||
self.net.load_state_dict(state_dict)
|
||||
logger = logging.getLogger("root.tracker")
|
||||
logger.info("Loading weights from {}... Done!".format(model_path))
|
||||
self.net.to(self.device)
|
||||
self.size = (64, 128)
|
||||
self.norm = transforms.Compose([
|
||||
transforms.ToTensor(),
|
||||
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
|
||||
])
|
||||
|
||||
def _preprocess(self, im_crops):
|
||||
"""
|
||||
TODO:
|
||||
1. to float with scale from 0 to 1
|
||||
2. resize to (64, 128) as Market1501 dataset did
|
||||
3. concatenate to a numpy array
|
||||
3. to torch Tensor
|
||||
4. normalize
|
||||
"""
|
||||
def _resize(im, size):
|
||||
return cv2.resize(im.astype(np.float32)/255., size)
|
||||
|
||||
im_batch = torch.cat([self.norm(_resize(im, self.size)).unsqueeze(
|
||||
0) for im in im_crops], dim=0).float()
|
||||
return im_batch
|
||||
|
||||
def __call__(self, im_crops):
|
||||
im_batch = self._preprocess(im_crops)
|
||||
with torch.no_grad():
|
||||
im_batch = im_batch.to(self.device)
|
||||
features = self.net(im_batch)
|
||||
return features.cpu().numpy()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
img = cv2.imread("demo.jpg")[:, :, (2, 1, 0)]
|
||||
extr = Extractor("checkpoint/ckpt.t7")
|
||||
feature = extr(img)
|
||||
print(feature.shape)
|
109
yolov5/deep_sort_pytorch/deep_sort/deep/model.py
Normal file
109
yolov5/deep_sort_pytorch/deep_sort/deep/model.py
Normal file
@ -0,0 +1,109 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
|
||||
class BasicBlock(nn.Module):
|
||||
def __init__(self, c_in, c_out, is_downsample=False):
|
||||
super(BasicBlock, self).__init__()
|
||||
self.is_downsample = is_downsample
|
||||
if is_downsample:
|
||||
self.conv1 = nn.Conv2d(
|
||||
c_in, c_out, 3, stride=2, padding=1, bias=False)
|
||||
else:
|
||||
self.conv1 = nn.Conv2d(
|
||||
c_in, c_out, 3, stride=1, padding=1, bias=False)
|
||||
self.bn1 = nn.BatchNorm2d(c_out)
|
||||
self.relu = nn.ReLU(True)
|
||||
self.conv2 = nn.Conv2d(c_out, c_out, 3, stride=1,
|
||||
padding=1, bias=False)
|
||||
self.bn2 = nn.BatchNorm2d(c_out)
|
||||
if is_downsample:
|
||||
self.downsample = nn.Sequential(
|
||||
nn.Conv2d(c_in, c_out, 1, stride=2, bias=False),
|
||||
nn.BatchNorm2d(c_out)
|
||||
)
|
||||
elif c_in != c_out:
|
||||
self.downsample = nn.Sequential(
|
||||
nn.Conv2d(c_in, c_out, 1, stride=1, bias=False),
|
||||
nn.BatchNorm2d(c_out)
|
||||
)
|
||||
self.is_downsample = True
|
||||
|
||||
def forward(self, x):
|
||||
y = self.conv1(x)
|
||||
y = self.bn1(y)
|
||||
y = self.relu(y)
|
||||
y = self.conv2(y)
|
||||
y = self.bn2(y)
|
||||
if self.is_downsample:
|
||||
x = self.downsample(x)
|
||||
return F.relu(x.add(y), True)
|
||||
|
||||
|
||||
def make_layers(c_in, c_out, repeat_times, is_downsample=False):
|
||||
blocks = []
|
||||
for i in range(repeat_times):
|
||||
if i == 0:
|
||||
blocks += [BasicBlock(c_in, c_out, is_downsample=is_downsample), ]
|
||||
else:
|
||||
blocks += [BasicBlock(c_out, c_out), ]
|
||||
return nn.Sequential(*blocks)
|
||||
|
||||
|
||||
class Net(nn.Module):
|
||||
def __init__(self, num_classes=751, reid=False):
|
||||
super(Net, self).__init__()
|
||||
# 3 128 64
|
||||
self.conv = nn.Sequential(
|
||||
nn.Conv2d(3, 64, 3, stride=1, padding=1),
|
||||
nn.BatchNorm2d(64),
|
||||
nn.ReLU(inplace=True),
|
||||
# nn.Conv2d(32,32,3,stride=1,padding=1),
|
||||
# nn.BatchNorm2d(32),
|
||||
# nn.ReLU(inplace=True),
|
||||
nn.MaxPool2d(3, 2, padding=1),
|
||||
)
|
||||
# 32 64 32
|
||||
self.layer1 = make_layers(64, 64, 2, False)
|
||||
# 32 64 32
|
||||
self.layer2 = make_layers(64, 128, 2, True)
|
||||
# 64 32 16
|
||||
self.layer3 = make_layers(128, 256, 2, True)
|
||||
# 128 16 8
|
||||
self.layer4 = make_layers(256, 512, 2, True)
|
||||
# 256 8 4
|
||||
self.avgpool = nn.AvgPool2d((8, 4), 1)
|
||||
# 256 1 1
|
||||
self.reid = reid
|
||||
self.classifier = nn.Sequential(
|
||||
nn.Linear(512, 256),
|
||||
nn.BatchNorm1d(256),
|
||||
nn.ReLU(inplace=True),
|
||||
nn.Dropout(),
|
||||
nn.Linear(256, num_classes),
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.conv(x)
|
||||
x = self.layer1(x)
|
||||
x = self.layer2(x)
|
||||
x = self.layer3(x)
|
||||
x = self.layer4(x)
|
||||
x = self.avgpool(x)
|
||||
x = x.view(x.size(0), -1)
|
||||
# B x 128
|
||||
if self.reid:
|
||||
x = x.div(x.norm(p=2, dim=1, keepdim=True))
|
||||
return x
|
||||
# classifier
|
||||
x = self.classifier(x)
|
||||
return x
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
net = Net()
|
||||
x = torch.randn(4, 3, 128, 64)
|
||||
y = net(x)
|
||||
import ipdb
|
||||
ipdb.set_trace()
|
111
yolov5/deep_sort_pytorch/deep_sort/deep/original_model.py
Normal file
111
yolov5/deep_sort_pytorch/deep_sort/deep/original_model.py
Normal file
@ -0,0 +1,111 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
|
||||
class BasicBlock(nn.Module):
|
||||
def __init__(self, c_in, c_out, is_downsample=False):
|
||||
super(BasicBlock, self).__init__()
|
||||
self.is_downsample = is_downsample
|
||||
if is_downsample:
|
||||
self.conv1 = nn.Conv2d(
|
||||
c_in, c_out, 3, stride=2, padding=1, bias=False)
|
||||
else:
|
||||
self.conv1 = nn.Conv2d(
|
||||
c_in, c_out, 3, stride=1, padding=1, bias=False)
|
||||
self.bn1 = nn.BatchNorm2d(c_out)
|
||||
self.relu = nn.ReLU(True)
|
||||
self.conv2 = nn.Conv2d(c_out, c_out, 3, stride=1,
|
||||
padding=1, bias=False)
|
||||
self.bn2 = nn.BatchNorm2d(c_out)
|
||||
if is_downsample:
|
||||
self.downsample = nn.Sequential(
|
||||
nn.Conv2d(c_in, c_out, 1, stride=2, bias=False),
|
||||
nn.BatchNorm2d(c_out)
|
||||
)
|
||||
elif c_in != c_out:
|
||||
self.downsample = nn.Sequential(
|
||||
nn.Conv2d(c_in, c_out, 1, stride=1, bias=False),
|
||||
nn.BatchNorm2d(c_out)
|
||||
)
|
||||
self.is_downsample = True
|
||||
|
||||
def forward(self, x):
|
||||
y = self.conv1(x)
|
||||
y = self.bn1(y)
|
||||
y = self.relu(y)
|
||||
y = self.conv2(y)
|
||||
y = self.bn2(y)
|
||||
if self.is_downsample:
|
||||
x = self.downsample(x)
|
||||
return F.relu(x.add(y), True)
|
||||
|
||||
|
||||
def make_layers(c_in, c_out, repeat_times, is_downsample=False):
|
||||
blocks = []
|
||||
for i in range(repeat_times):
|
||||
if i == 0:
|
||||
blocks += [BasicBlock(c_in, c_out, is_downsample=is_downsample), ]
|
||||
else:
|
||||
blocks += [BasicBlock(c_out, c_out), ]
|
||||
return nn.Sequential(*blocks)
|
||||
|
||||
|
||||
class Net(nn.Module):
|
||||
def __init__(self, num_classes=625, reid=False):
|
||||
super(Net, self).__init__()
|
||||
# 3 128 64
|
||||
self.conv = nn.Sequential(
|
||||
nn.Conv2d(3, 32, 3, stride=1, padding=1),
|
||||
nn.BatchNorm2d(32),
|
||||
nn.ELU(inplace=True),
|
||||
nn.Conv2d(32, 32, 3, stride=1, padding=1),
|
||||
nn.BatchNorm2d(32),
|
||||
nn.ELU(inplace=True),
|
||||
nn.MaxPool2d(3, 2, padding=1),
|
||||
)
|
||||
# 32 64 32
|
||||
self.layer1 = make_layers(32, 32, 2, False)
|
||||
# 32 64 32
|
||||
self.layer2 = make_layers(32, 64, 2, True)
|
||||
# 64 32 16
|
||||
self.layer3 = make_layers(64, 128, 2, True)
|
||||
# 128 16 8
|
||||
self.dense = nn.Sequential(
|
||||
nn.Dropout(p=0.6),
|
||||
nn.Linear(128*16*8, 128),
|
||||
nn.BatchNorm1d(128),
|
||||
nn.ELU(inplace=True)
|
||||
)
|
||||
# 256 1 1
|
||||
self.reid = reid
|
||||
self.batch_norm = nn.BatchNorm1d(128)
|
||||
self.classifier = nn.Sequential(
|
||||
nn.Linear(128, num_classes),
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.conv(x)
|
||||
x = self.layer1(x)
|
||||
x = self.layer2(x)
|
||||
x = self.layer3(x)
|
||||
|
||||
x = x.view(x.size(0), -1)
|
||||
if self.reid:
|
||||
x = self.dense[0](x)
|
||||
x = self.dense[1](x)
|
||||
x = x.div(x.norm(p=2, dim=1, keepdim=True))
|
||||
return x
|
||||
x = self.dense(x)
|
||||
# B x 128
|
||||
# classifier
|
||||
x = self.classifier(x)
|
||||
return x
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
net = Net(reid=True)
|
||||
x = torch.randn(4, 3, 128, 64)
|
||||
y = net(x)
|
||||
import ipdb
|
||||
ipdb.set_trace()
|
80
yolov5/deep_sort_pytorch/deep_sort/deep/test.py
Normal file
80
yolov5/deep_sort_pytorch/deep_sort/deep/test.py
Normal file
@ -0,0 +1,80 @@
|
||||
import torch
|
||||
import torch.backends.cudnn as cudnn
|
||||
import torchvision
|
||||
|
||||
import argparse
|
||||
import os
|
||||
|
||||
from model import Net
|
||||
|
||||
parser = argparse.ArgumentParser(description="Train on market1501")
|
||||
parser.add_argument("--data-dir", default='data', type=str)
|
||||
parser.add_argument("--no-cuda", action="store_true")
|
||||
parser.add_argument("--gpu-id", default=0, type=int)
|
||||
args = parser.parse_args()
|
||||
|
||||
# device
|
||||
device = "cuda:{}".format(
|
||||
args.gpu_id) if torch.cuda.is_available() and not args.no_cuda else "cpu"
|
||||
if torch.cuda.is_available() and not args.no_cuda:
|
||||
cudnn.benchmark = True
|
||||
|
||||
# data loader
|
||||
root = args.data_dir
|
||||
query_dir = os.path.join(root, "query")
|
||||
gallery_dir = os.path.join(root, "gallery")
|
||||
transform = torchvision.transforms.Compose([
|
||||
torchvision.transforms.Resize((128, 64)),
|
||||
torchvision.transforms.ToTensor(),
|
||||
torchvision.transforms.Normalize(
|
||||
[0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
||||
])
|
||||
queryloader = torch.utils.data.DataLoader(
|
||||
torchvision.datasets.ImageFolder(query_dir, transform=transform),
|
||||
batch_size=64, shuffle=False
|
||||
)
|
||||
galleryloader = torch.utils.data.DataLoader(
|
||||
torchvision.datasets.ImageFolder(gallery_dir, transform=transform),
|
||||
batch_size=64, shuffle=False
|
||||
)
|
||||
|
||||
# net definition
|
||||
net = Net(reid=True)
|
||||
assert os.path.isfile(
|
||||
"./checkpoint/ckpt.t7"), "Error: no checkpoint file found!"
|
||||
print('Loading from checkpoint/ckpt.t7')
|
||||
checkpoint = torch.load("./checkpoint/ckpt.t7")
|
||||
net_dict = checkpoint['net_dict']
|
||||
net.load_state_dict(net_dict, strict=False)
|
||||
net.eval()
|
||||
net.to(device)
|
||||
|
||||
# compute features
|
||||
query_features = torch.tensor([]).float()
|
||||
query_labels = torch.tensor([]).long()
|
||||
gallery_features = torch.tensor([]).float()
|
||||
gallery_labels = torch.tensor([]).long()
|
||||
|
||||
with torch.no_grad():
|
||||
for idx, (inputs, labels) in enumerate(queryloader):
|
||||
inputs = inputs.to(device)
|
||||
features = net(inputs).cpu()
|
||||
query_features = torch.cat((query_features, features), dim=0)
|
||||
query_labels = torch.cat((query_labels, labels))
|
||||
|
||||
for idx, (inputs, labels) in enumerate(galleryloader):
|
||||
inputs = inputs.to(device)
|
||||
features = net(inputs).cpu()
|
||||
gallery_features = torch.cat((gallery_features, features), dim=0)
|
||||
gallery_labels = torch.cat((gallery_labels, labels))
|
||||
|
||||
gallery_labels -= 2
|
||||
|
||||
# save features
|
||||
features = {
|
||||
"qf": query_features,
|
||||
"ql": query_labels,
|
||||
"gf": gallery_features,
|
||||
"gl": gallery_labels
|
||||
}
|
||||
torch.save(features, "features.pth")
|
206
yolov5/deep_sort_pytorch/deep_sort/deep/train.py
Normal file
206
yolov5/deep_sort_pytorch/deep_sort/deep/train.py
Normal file
@ -0,0 +1,206 @@
|
||||
import argparse
|
||||
import os
|
||||
import time
|
||||
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
import torch
|
||||
import torch.backends.cudnn as cudnn
|
||||
import torchvision
|
||||
|
||||
from model import Net
|
||||
|
||||
parser = argparse.ArgumentParser(description="Train on market1501")
|
||||
parser.add_argument("--data-dir", default='data', type=str)
|
||||
parser.add_argument("--no-cuda", action="store_true")
|
||||
parser.add_argument("--gpu-id", default=0, type=int)
|
||||
parser.add_argument("--lr", default=0.1, type=float)
|
||||
parser.add_argument("--interval", '-i', default=20, type=int)
|
||||
parser.add_argument('--resume', '-r', action='store_true')
|
||||
args = parser.parse_args()
|
||||
|
||||
# device
|
||||
device = "cuda:{}".format(
|
||||
args.gpu_id) if torch.cuda.is_available() and not args.no_cuda else "cpu"
|
||||
if torch.cuda.is_available() and not args.no_cuda:
|
||||
cudnn.benchmark = True
|
||||
|
||||
# data loading
|
||||
root = args.data_dir
|
||||
train_dir = os.path.join(root, "train")
|
||||
test_dir = os.path.join(root, "test")
|
||||
transform_train = torchvision.transforms.Compose([
|
||||
torchvision.transforms.RandomCrop((128, 64), padding=4),
|
||||
torchvision.transforms.RandomHorizontalFlip(),
|
||||
torchvision.transforms.ToTensor(),
|
||||
torchvision.transforms.Normalize(
|
||||
[0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
||||
])
|
||||
transform_test = torchvision.transforms.Compose([
|
||||
torchvision.transforms.Resize((128, 64)),
|
||||
torchvision.transforms.ToTensor(),
|
||||
torchvision.transforms.Normalize(
|
||||
[0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
||||
])
|
||||
trainloader = torch.utils.data.DataLoader(
|
||||
torchvision.datasets.ImageFolder(train_dir, transform=transform_train),
|
||||
batch_size=64, shuffle=True
|
||||
)
|
||||
testloader = torch.utils.data.DataLoader(
|
||||
torchvision.datasets.ImageFolder(test_dir, transform=transform_test),
|
||||
batch_size=64, shuffle=True
|
||||
)
|
||||
num_classes = max(len(trainloader.dataset.classes),
|
||||
len(testloader.dataset.classes))
|
||||
|
||||
# net definition
|
||||
start_epoch = 0
|
||||
net = Net(num_classes=num_classes)
|
||||
if args.resume:
|
||||
assert os.path.isfile(
|
||||
"./checkpoint/ckpt.t7"), "Error: no checkpoint file found!"
|
||||
print('Loading from checkpoint/ckpt.t7')
|
||||
checkpoint = torch.load("./checkpoint/ckpt.t7")
|
||||
# import ipdb; ipdb.set_trace()
|
||||
net_dict = checkpoint['net_dict']
|
||||
net.load_state_dict(net_dict)
|
||||
best_acc = checkpoint['acc']
|
||||
start_epoch = checkpoint['epoch']
|
||||
net.to(device)
|
||||
|
||||
# loss and optimizer
|
||||
criterion = torch.nn.CrossEntropyLoss()
|
||||
optimizer = torch.optim.SGD(
|
||||
net.parameters(), args.lr, momentum=0.9, weight_decay=5e-4)
|
||||
best_acc = 0.
|
||||
|
||||
# train function for each epoch
|
||||
|
||||
|
||||
def train(epoch):
|
||||
print("\nEpoch : %d" % (epoch+1))
|
||||
net.train()
|
||||
training_loss = 0.
|
||||
train_loss = 0.
|
||||
correct = 0
|
||||
total = 0
|
||||
interval = args.interval
|
||||
start = time.time()
|
||||
for idx, (inputs, labels) in enumerate(trainloader):
|
||||
# forward
|
||||
inputs, labels = inputs.to(device), labels.to(device)
|
||||
outputs = net(inputs)
|
||||
loss = criterion(outputs, labels)
|
||||
|
||||
# backward
|
||||
optimizer.zero_grad()
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
|
||||
# accumurating
|
||||
training_loss += loss.item()
|
||||
train_loss += loss.item()
|
||||
correct += outputs.max(dim=1)[1].eq(labels).sum().item()
|
||||
total += labels.size(0)
|
||||
|
||||
# print
|
||||
if (idx+1) % interval == 0:
|
||||
end = time.time()
|
||||
print("[progress:{:.1f}%]time:{:.2f}s Loss:{:.5f} Correct:{}/{} Acc:{:.3f}%".format(
|
||||
100.*(idx+1)/len(trainloader), end-start, training_loss /
|
||||
interval, correct, total, 100.*correct/total
|
||||
))
|
||||
training_loss = 0.
|
||||
start = time.time()
|
||||
|
||||
return train_loss/len(trainloader), 1. - correct/total
|
||||
|
||||
|
||||
def test(epoch):
|
||||
global best_acc
|
||||
net.eval()
|
||||
test_loss = 0.
|
||||
correct = 0
|
||||
total = 0
|
||||
start = time.time()
|
||||
with torch.no_grad():
|
||||
for idx, (inputs, labels) in enumerate(testloader):
|
||||
inputs, labels = inputs.to(device), labels.to(device)
|
||||
outputs = net(inputs)
|
||||
loss = criterion(outputs, labels)
|
||||
|
||||
test_loss += loss.item()
|
||||
correct += outputs.max(dim=1)[1].eq(labels).sum().item()
|
||||
total += labels.size(0)
|
||||
|
||||
print("Testing ...")
|
||||
end = time.time()
|
||||
print("[progress:{:.1f}%]time:{:.2f}s Loss:{:.5f} Correct:{}/{} Acc:{:.3f}%".format(
|
||||
100.*(idx+1)/len(testloader), end-start, test_loss /
|
||||
len(testloader), correct, total, 100.*correct/total
|
||||
))
|
||||
|
||||
# saving checkpoint
|
||||
acc = 100.*correct/total
|
||||
if acc > best_acc:
|
||||
best_acc = acc
|
||||
print("Saving parameters to checkpoint/ckpt.t7")
|
||||
checkpoint = {
|
||||
'net_dict': net.state_dict(),
|
||||
'acc': acc,
|
||||
'epoch': epoch,
|
||||
}
|
||||
if not os.path.isdir('checkpoint'):
|
||||
os.mkdir('checkpoint')
|
||||
torch.save(checkpoint, './checkpoint/ckpt.t7')
|
||||
|
||||
return test_loss/len(testloader), 1. - correct/total
|
||||
|
||||
|
||||
# plot figure
|
||||
x_epoch = []
|
||||
record = {'train_loss': [], 'train_err': [], 'test_loss': [], 'test_err': []}
|
||||
fig = plt.figure()
|
||||
ax0 = fig.add_subplot(121, title="loss")
|
||||
ax1 = fig.add_subplot(122, title="top1err")
|
||||
|
||||
|
||||
def draw_curve(epoch, train_loss, train_err, test_loss, test_err):
|
||||
global record
|
||||
record['train_loss'].append(train_loss)
|
||||
record['train_err'].append(train_err)
|
||||
record['test_loss'].append(test_loss)
|
||||
record['test_err'].append(test_err)
|
||||
|
||||
x_epoch.append(epoch)
|
||||
ax0.plot(x_epoch, record['train_loss'], 'bo-', label='train')
|
||||
ax0.plot(x_epoch, record['test_loss'], 'ro-', label='val')
|
||||
ax1.plot(x_epoch, record['train_err'], 'bo-', label='train')
|
||||
ax1.plot(x_epoch, record['test_err'], 'ro-', label='val')
|
||||
if epoch == 0:
|
||||
ax0.legend()
|
||||
ax1.legend()
|
||||
fig.savefig("train.jpg")
|
||||
|
||||
# lr decay
|
||||
|
||||
|
||||
def lr_decay():
|
||||
global optimizer
|
||||
for params in optimizer.param_groups:
|
||||
params['lr'] *= 0.1
|
||||
lr = params['lr']
|
||||
print("Learning rate adjusted to {}".format(lr))
|
||||
|
||||
|
||||
def main():
|
||||
for epoch in range(start_epoch, start_epoch+40):
|
||||
train_loss, train_err = train(epoch)
|
||||
test_loss, test_err = test(epoch)
|
||||
draw_curve(epoch, train_loss, train_err, test_loss, test_err)
|
||||
if (epoch+1) % 20 == 0:
|
||||
lr_decay()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
117
yolov5/deep_sort_pytorch/deep_sort/deep_sort.py
Normal file
117
yolov5/deep_sort_pytorch/deep_sort/deep_sort.py
Normal file
@ -0,0 +1,117 @@
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
from .deep.feature_extractor import Extractor
|
||||
from .sort.nn_matching import NearestNeighborDistanceMetric
|
||||
from .sort.preprocessing import non_max_suppression
|
||||
from .sort.detection import Detection
|
||||
from .sort.tracker import Tracker
|
||||
|
||||
|
||||
__all__ = ['DeepSort']
|
||||
|
||||
|
||||
class DeepSort(object):
|
||||
def __init__(self, model_path, max_dist=0.2, min_confidence=0.3, nms_max_overlap=1.0, max_iou_distance=0.7, max_age=70, n_init=3, nn_budget=100, use_cuda=True):
|
||||
self.min_confidence = min_confidence
|
||||
self.nms_max_overlap = nms_max_overlap
|
||||
|
||||
self.extractor = Extractor(model_path, use_cuda=use_cuda)
|
||||
|
||||
max_cosine_distance = max_dist
|
||||
nn_budget = 100
|
||||
metric = NearestNeighborDistanceMetric(
|
||||
"cosine", max_cosine_distance, nn_budget)
|
||||
self.tracker = Tracker(
|
||||
metric, max_iou_distance=max_iou_distance, max_age=max_age, n_init=n_init)
|
||||
|
||||
def update(self, bbox_xywh, confidences, ori_img):
|
||||
self.height, self.width = ori_img.shape[:2]
|
||||
# generate detections
|
||||
features = self._get_features(bbox_xywh, ori_img)
|
||||
bbox_tlwh = self._xywh_to_tlwh(bbox_xywh)
|
||||
detections = [Detection(bbox_tlwh[i], conf, features[i]) for i, conf in enumerate(
|
||||
confidences) if conf > self.min_confidence]
|
||||
|
||||
# run on non-maximum supression
|
||||
boxes = np.array([d.tlwh for d in detections])
|
||||
scores = np.array([d.confidence for d in detections])
|
||||
indices = non_max_suppression(boxes, self.nms_max_overlap, scores)
|
||||
detections = [detections[i] for i in indices]
|
||||
|
||||
# update tracker
|
||||
self.tracker.predict()
|
||||
self.tracker.update(detections)
|
||||
|
||||
# output bbox identities
|
||||
outputs = []
|
||||
for track in self.tracker.tracks:
|
||||
if not track.is_confirmed() or track.time_since_update > 1:
|
||||
continue
|
||||
box = track.to_tlwh()
|
||||
x1, y1, x2, y2 = self._tlwh_to_xyxy(box)
|
||||
track_id = track.track_id
|
||||
outputs.append(np.array([x1, y1, x2, y2, track_id], dtype=np.int))
|
||||
if len(outputs) > 0:
|
||||
outputs = np.stack(outputs, axis=0)
|
||||
return outputs
|
||||
|
||||
"""
|
||||
TODO:
|
||||
Convert bbox from xc_yc_w_h to xtl_ytl_w_h
|
||||
Thanks JieChen91@github.com for reporting this bug!
|
||||
"""
|
||||
@staticmethod
|
||||
def _xywh_to_tlwh(bbox_xywh):
|
||||
if isinstance(bbox_xywh, np.ndarray):
|
||||
bbox_tlwh = bbox_xywh.copy()
|
||||
elif isinstance(bbox_xywh, torch.Tensor):
|
||||
bbox_tlwh = bbox_xywh.clone()
|
||||
bbox_tlwh[:, 0] = bbox_xywh[:, 0] - bbox_xywh[:, 2] / 2.
|
||||
bbox_tlwh[:, 1] = bbox_xywh[:, 1] - bbox_xywh[:, 3] / 2.
|
||||
return bbox_tlwh
|
||||
|
||||
def _xywh_to_xyxy(self, bbox_xywh):
|
||||
x, y, w, h = bbox_xywh
|
||||
x1 = max(int(x - w / 2), 0)
|
||||
x2 = min(int(x + w / 2), self.width - 1)
|
||||
y1 = max(int(y - h / 2), 0)
|
||||
y2 = min(int(y + h / 2), self.height - 1)
|
||||
return x1, y1, x2, y2
|
||||
|
||||
def _tlwh_to_xyxy(self, bbox_tlwh):
|
||||
"""
|
||||
TODO:
|
||||
Convert bbox from xtl_ytl_w_h to xc_yc_w_h
|
||||
Thanks JieChen91@github.com for reporting this bug!
|
||||
"""
|
||||
x, y, w, h = bbox_tlwh
|
||||
x1 = max(int(x), 0)
|
||||
x2 = min(int(x+w), self.width - 1)
|
||||
y1 = max(int(y), 0)
|
||||
y2 = min(int(y+h), self.height - 1)
|
||||
return x1, y1, x2, y2
|
||||
|
||||
def increment_ages(self):
|
||||
self.tracker.increment_ages()
|
||||
|
||||
def _xyxy_to_tlwh(self, bbox_xyxy):
|
||||
x1, y1, x2, y2 = bbox_xyxy
|
||||
|
||||
t = x1
|
||||
l = y1
|
||||
w = int(x2 - x1)
|
||||
h = int(y2 - y1)
|
||||
return t, l, w, h
|
||||
|
||||
def _get_features(self, bbox_xywh, ori_img):
|
||||
im_crops = []
|
||||
for box in bbox_xywh:
|
||||
x1, y1, x2, y2 = self._xywh_to_xyxy(box)
|
||||
im = ori_img[y1:y2, x1:x2]
|
||||
im_crops.append(im)
|
||||
if im_crops:
|
||||
features = self.extractor(im_crops)
|
||||
else:
|
||||
features = np.array([])
|
||||
return features
|
0
yolov5/deep_sort_pytorch/deep_sort/sort/__init__.py
Normal file
0
yolov5/deep_sort_pytorch/deep_sort/sort/__init__.py
Normal file
49
yolov5/deep_sort_pytorch/deep_sort/sort/detection.py
Normal file
49
yolov5/deep_sort_pytorch/deep_sort/sort/detection.py
Normal file
@ -0,0 +1,49 @@
|
||||
# vim: expandtab:ts=4:sw=4
|
||||
import numpy as np
|
||||
|
||||
|
||||
class Detection(object):
|
||||
"""
|
||||
This class represents a bounding box detection in a single image.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
tlwh : array_like
|
||||
Bounding box in format `(x, y, w, h)`.
|
||||
confidence : float
|
||||
Detector confidence score.
|
||||
feature : array_like
|
||||
A feature vector that describes the object contained in this image.
|
||||
|
||||
Attributes
|
||||
----------
|
||||
tlwh : ndarray
|
||||
Bounding box in format `(top left x, top left y, width, height)`.
|
||||
confidence : ndarray
|
||||
Detector confidence score.
|
||||
feature : ndarray | NoneType
|
||||
A feature vector that describes the object contained in this image.
|
||||
|
||||
"""
|
||||
|
||||
def __init__(self, tlwh, confidence, feature):
|
||||
self.tlwh = np.asarray(tlwh, dtype=np.float)
|
||||
self.confidence = float(confidence)
|
||||
self.feature = np.asarray(feature, dtype=np.float32)
|
||||
|
||||
def to_tlbr(self):
|
||||
"""Convert bounding box to format `(min x, min y, max x, max y)`, i.e.,
|
||||
`(top left, bottom right)`.
|
||||
"""
|
||||
ret = self.tlwh.copy()
|
||||
ret[2:] += ret[:2]
|
||||
return ret
|
||||
|
||||
def to_xyah(self):
|
||||
"""Convert bounding box to format `(center x, center y, aspect ratio,
|
||||
height)`, where the aspect ratio is `width / height`.
|
||||
"""
|
||||
ret = self.tlwh.copy()
|
||||
ret[:2] += ret[2:] / 2
|
||||
ret[2] /= ret[3]
|
||||
return ret
|
82
yolov5/deep_sort_pytorch/deep_sort/sort/iou_matching.py
Normal file
82
yolov5/deep_sort_pytorch/deep_sort/sort/iou_matching.py
Normal file
@ -0,0 +1,82 @@
|
||||
# vim: expandtab:ts=4:sw=4
|
||||
from __future__ import absolute_import
|
||||
import numpy as np
|
||||
from . import linear_assignment
|
||||
|
||||
|
||||
def iou(bbox, candidates):
|
||||
"""Computer intersection over union.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
bbox : ndarray
|
||||
A bounding box in format `(top left x, top left y, width, height)`.
|
||||
candidates : ndarray
|
||||
A matrix of candidate bounding boxes (one per row) in the same format
|
||||
as `bbox`.
|
||||
|
||||
Returns
|
||||
-------
|
||||
ndarray
|
||||
The intersection over union in [0, 1] between the `bbox` and each
|
||||
candidate. A higher score means a larger fraction of the `bbox` is
|
||||
occluded by the candidate.
|
||||
|
||||
"""
|
||||
bbox_tl, bbox_br = bbox[:2], bbox[:2] + bbox[2:]
|
||||
candidates_tl = candidates[:, :2]
|
||||
candidates_br = candidates[:, :2] + candidates[:, 2:]
|
||||
|
||||
tl = np.c_[np.maximum(bbox_tl[0], candidates_tl[:, 0])[:, np.newaxis],
|
||||
np.maximum(bbox_tl[1], candidates_tl[:, 1])[:, np.newaxis]]
|
||||
br = np.c_[np.minimum(bbox_br[0], candidates_br[:, 0])[:, np.newaxis],
|
||||
np.minimum(bbox_br[1], candidates_br[:, 1])[:, np.newaxis]]
|
||||
wh = np.maximum(0., br - tl)
|
||||
|
||||
area_intersection = wh.prod(axis=1)
|
||||
area_bbox = bbox[2:].prod()
|
||||
area_candidates = candidates[:, 2:].prod(axis=1)
|
||||
return area_intersection / (area_bbox + area_candidates - area_intersection)
|
||||
|
||||
|
||||
def iou_cost(tracks, detections, track_indices=None,
|
||||
detection_indices=None):
|
||||
"""An intersection over union distance metric.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
tracks : List[deep_sort.track.Track]
|
||||
A list of tracks.
|
||||
detections : List[deep_sort.detection.Detection]
|
||||
A list of detections.
|
||||
track_indices : Optional[List[int]]
|
||||
A list of indices to tracks that should be matched. Defaults to
|
||||
all `tracks`.
|
||||
detection_indices : Optional[List[int]]
|
||||
A list of indices to detections that should be matched. Defaults
|
||||
to all `detections`.
|
||||
|
||||
Returns
|
||||
-------
|
||||
ndarray
|
||||
Returns a cost matrix of shape
|
||||
len(track_indices), len(detection_indices) where entry (i, j) is
|
||||
`1 - iou(tracks[track_indices[i]], detections[detection_indices[j]])`.
|
||||
|
||||
"""
|
||||
if track_indices is None:
|
||||
track_indices = np.arange(len(tracks))
|
||||
if detection_indices is None:
|
||||
detection_indices = np.arange(len(detections))
|
||||
|
||||
cost_matrix = np.zeros((len(track_indices), len(detection_indices)))
|
||||
for row, track_idx in enumerate(track_indices):
|
||||
if tracks[track_idx].time_since_update > 1:
|
||||
cost_matrix[row, :] = linear_assignment.INFTY_COST
|
||||
continue
|
||||
|
||||
bbox = tracks[track_idx].to_tlwh()
|
||||
candidates = np.asarray(
|
||||
[detections[i].tlwh for i in detection_indices])
|
||||
cost_matrix[row, :] = 1. - iou(bbox, candidates)
|
||||
return cost_matrix
|
229
yolov5/deep_sort_pytorch/deep_sort/sort/kalman_filter.py
Normal file
229
yolov5/deep_sort_pytorch/deep_sort/sort/kalman_filter.py
Normal file
@ -0,0 +1,229 @@
|
||||
# vim: expandtab:ts=4:sw=4
|
||||
import numpy as np
|
||||
import scipy.linalg
|
||||
|
||||
|
||||
"""
|
||||
Table for the 0.95 quantile of the chi-square distribution with N degrees of
|
||||
freedom (contains values for N=1, ..., 9). Taken from MATLAB/Octave's chi2inv
|
||||
function and used as Mahalanobis gating threshold.
|
||||
"""
|
||||
chi2inv95 = {
|
||||
1: 3.8415,
|
||||
2: 5.9915,
|
||||
3: 7.8147,
|
||||
4: 9.4877,
|
||||
5: 11.070,
|
||||
6: 12.592,
|
||||
7: 14.067,
|
||||
8: 15.507,
|
||||
9: 16.919}
|
||||
|
||||
|
||||
class KalmanFilter(object):
|
||||
"""
|
||||
A simple Kalman filter for tracking bounding boxes in image space.
|
||||
|
||||
The 8-dimensional state space
|
||||
|
||||
x, y, a, h, vx, vy, va, vh
|
||||
|
||||
contains the bounding box center position (x, y), aspect ratio a, height h,
|
||||
and their respective velocities.
|
||||
|
||||
Object motion follows a constant velocity model. The bounding box location
|
||||
(x, y, a, h) is taken as direct observation of the state space (linear
|
||||
observation model).
|
||||
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
ndim, dt = 4, 1.
|
||||
|
||||
# Create Kalman filter model matrices.
|
||||
self._motion_mat = np.eye(2 * ndim, 2 * ndim)
|
||||
for i in range(ndim):
|
||||
self._motion_mat[i, ndim + i] = dt
|
||||
self._update_mat = np.eye(ndim, 2 * ndim)
|
||||
|
||||
# Motion and observation uncertainty are chosen relative to the current
|
||||
# state estimate. These weights control the amount of uncertainty in
|
||||
# the model. This is a bit hacky.
|
||||
self._std_weight_position = 1. / 20
|
||||
self._std_weight_velocity = 1. / 160
|
||||
|
||||
def initiate(self, measurement):
|
||||
"""Create track from unassociated measurement.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
measurement : ndarray
|
||||
Bounding box coordinates (x, y, a, h) with center position (x, y),
|
||||
aspect ratio a, and height h.
|
||||
|
||||
Returns
|
||||
-------
|
||||
(ndarray, ndarray)
|
||||
Returns the mean vector (8 dimensional) and covariance matrix (8x8
|
||||
dimensional) of the new track. Unobserved velocities are initialized
|
||||
to 0 mean.
|
||||
|
||||
"""
|
||||
mean_pos = measurement
|
||||
mean_vel = np.zeros_like(mean_pos)
|
||||
mean = np.r_[mean_pos, mean_vel]
|
||||
|
||||
std = [
|
||||
2 * self._std_weight_position * measurement[3],
|
||||
2 * self._std_weight_position * measurement[3],
|
||||
1e-2,
|
||||
2 * self._std_weight_position * measurement[3],
|
||||
10 * self._std_weight_velocity * measurement[3],
|
||||
10 * self._std_weight_velocity * measurement[3],
|
||||
1e-5,
|
||||
10 * self._std_weight_velocity * measurement[3]]
|
||||
covariance = np.diag(np.square(std))
|
||||
return mean, covariance
|
||||
|
||||
def predict(self, mean, covariance):
|
||||
"""Run Kalman filter prediction step.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
mean : ndarray
|
||||
The 8 dimensional mean vector of the object state at the previous
|
||||
time step.
|
||||
covariance : ndarray
|
||||
The 8x8 dimensional covariance matrix of the object state at the
|
||||
previous time step.
|
||||
|
||||
Returns
|
||||
-------
|
||||
(ndarray, ndarray)
|
||||
Returns the mean vector and covariance matrix of the predicted
|
||||
state. Unobserved velocities are initialized to 0 mean.
|
||||
|
||||
"""
|
||||
std_pos = [
|
||||
self._std_weight_position * mean[3],
|
||||
self._std_weight_position * mean[3],
|
||||
1e-2,
|
||||
self._std_weight_position * mean[3]]
|
||||
std_vel = [
|
||||
self._std_weight_velocity * mean[3],
|
||||
self._std_weight_velocity * mean[3],
|
||||
1e-5,
|
||||
self._std_weight_velocity * mean[3]]
|
||||
motion_cov = np.diag(np.square(np.r_[std_pos, std_vel]))
|
||||
|
||||
mean = np.dot(self._motion_mat, mean)
|
||||
covariance = np.linalg.multi_dot((
|
||||
self._motion_mat, covariance, self._motion_mat.T)) + motion_cov
|
||||
|
||||
return mean, covariance
|
||||
|
||||
def project(self, mean, covariance):
|
||||
"""Project state distribution to measurement space.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
mean : ndarray
|
||||
The state's mean vector (8 dimensional array).
|
||||
covariance : ndarray
|
||||
The state's covariance matrix (8x8 dimensional).
|
||||
|
||||
Returns
|
||||
-------
|
||||
(ndarray, ndarray)
|
||||
Returns the projected mean and covariance matrix of the given state
|
||||
estimate.
|
||||
|
||||
"""
|
||||
std = [
|
||||
self._std_weight_position * mean[3],
|
||||
self._std_weight_position * mean[3],
|
||||
1e-1,
|
||||
self._std_weight_position * mean[3]]
|
||||
innovation_cov = np.diag(np.square(std))
|
||||
|
||||
mean = np.dot(self._update_mat, mean)
|
||||
covariance = np.linalg.multi_dot((
|
||||
self._update_mat, covariance, self._update_mat.T))
|
||||
return mean, covariance + innovation_cov
|
||||
|
||||
def update(self, mean, covariance, measurement):
|
||||
"""Run Kalman filter correction step.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
mean : ndarray
|
||||
The predicted state's mean vector (8 dimensional).
|
||||
covariance : ndarray
|
||||
The state's covariance matrix (8x8 dimensional).
|
||||
measurement : ndarray
|
||||
The 4 dimensional measurement vector (x, y, a, h), where (x, y)
|
||||
is the center position, a the aspect ratio, and h the height of the
|
||||
bounding box.
|
||||
|
||||
Returns
|
||||
-------
|
||||
(ndarray, ndarray)
|
||||
Returns the measurement-corrected state distribution.
|
||||
|
||||
"""
|
||||
projected_mean, projected_cov = self.project(mean, covariance)
|
||||
|
||||
chol_factor, lower = scipy.linalg.cho_factor(
|
||||
projected_cov, lower=True, check_finite=False)
|
||||
kalman_gain = scipy.linalg.cho_solve(
|
||||
(chol_factor, lower), np.dot(covariance, self._update_mat.T).T,
|
||||
check_finite=False).T
|
||||
innovation = measurement - projected_mean
|
||||
|
||||
new_mean = mean + np.dot(innovation, kalman_gain.T)
|
||||
new_covariance = covariance - np.linalg.multi_dot((
|
||||
kalman_gain, projected_cov, kalman_gain.T))
|
||||
return new_mean, new_covariance
|
||||
|
||||
def gating_distance(self, mean, covariance, measurements,
|
||||
only_position=False):
|
||||
"""Compute gating distance between state distribution and measurements.
|
||||
|
||||
A suitable distance threshold can be obtained from `chi2inv95`. If
|
||||
`only_position` is False, the chi-square distribution has 4 degrees of
|
||||
freedom, otherwise 2.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
mean : ndarray
|
||||
Mean vector over the state distribution (8 dimensional).
|
||||
covariance : ndarray
|
||||
Covariance of the state distribution (8x8 dimensional).
|
||||
measurements : ndarray
|
||||
An Nx4 dimensional matrix of N measurements, each in
|
||||
format (x, y, a, h) where (x, y) is the bounding box center
|
||||
position, a the aspect ratio, and h the height.
|
||||
only_position : Optional[bool]
|
||||
If True, distance computation is done with respect to the bounding
|
||||
box center position only.
|
||||
|
||||
Returns
|
||||
-------
|
||||
ndarray
|
||||
Returns an array of length N, where the i-th element contains the
|
||||
squared Mahalanobis distance between (mean, covariance) and
|
||||
`measurements[i]`.
|
||||
|
||||
"""
|
||||
mean, covariance = self.project(mean, covariance)
|
||||
if only_position:
|
||||
mean, covariance = mean[:2], covariance[:2, :2]
|
||||
measurements = measurements[:, :2]
|
||||
|
||||
cholesky_factor = np.linalg.cholesky(covariance)
|
||||
d = measurements - mean
|
||||
z = scipy.linalg.solve_triangular(
|
||||
cholesky_factor, d.T, lower=True, check_finite=False,
|
||||
overwrite_b=True)
|
||||
squared_maha = np.sum(z * z, axis=0)
|
||||
return squared_maha
|
192
yolov5/deep_sort_pytorch/deep_sort/sort/linear_assignment.py
Normal file
192
yolov5/deep_sort_pytorch/deep_sort/sort/linear_assignment.py
Normal file
@ -0,0 +1,192 @@
|
||||
# vim: expandtab:ts=4:sw=4
|
||||
from __future__ import absolute_import
|
||||
import numpy as np
|
||||
# from sklearn.utils.linear_assignment_ import linear_assignment
|
||||
from scipy.optimize import linear_sum_assignment as linear_assignment
|
||||
from . import kalman_filter
|
||||
|
||||
|
||||
INFTY_COST = 1e+5
|
||||
|
||||
|
||||
def min_cost_matching(
|
||||
distance_metric, max_distance, tracks, detections, track_indices=None,
|
||||
detection_indices=None):
|
||||
"""Solve linear assignment problem.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
distance_metric : Callable[List[Track], List[Detection], List[int], List[int]) -> ndarray
|
||||
The distance metric is given a list of tracks and detections as well as
|
||||
a list of N track indices and M detection indices. The metric should
|
||||
return the NxM dimensional cost matrix, where element (i, j) is the
|
||||
association cost between the i-th track in the given track indices and
|
||||
the j-th detection in the given detection_indices.
|
||||
max_distance : float
|
||||
Gating threshold. Associations with cost larger than this value are
|
||||
disregarded.
|
||||
tracks : List[track.Track]
|
||||
A list of predicted tracks at the current time step.
|
||||
detections : List[detection.Detection]
|
||||
A list of detections at the current time step.
|
||||
track_indices : List[int]
|
||||
List of track indices that maps rows in `cost_matrix` to tracks in
|
||||
`tracks` (see description above).
|
||||
detection_indices : List[int]
|
||||
List of detection indices that maps columns in `cost_matrix` to
|
||||
detections in `detections` (see description above).
|
||||
|
||||
Returns
|
||||
-------
|
||||
(List[(int, int)], List[int], List[int])
|
||||
Returns a tuple with the following three entries:
|
||||
* A list of matched track and detection indices.
|
||||
* A list of unmatched track indices.
|
||||
* A list of unmatched detection indices.
|
||||
|
||||
"""
|
||||
if track_indices is None:
|
||||
track_indices = np.arange(len(tracks))
|
||||
if detection_indices is None:
|
||||
detection_indices = np.arange(len(detections))
|
||||
|
||||
if len(detection_indices) == 0 or len(track_indices) == 0:
|
||||
return [], track_indices, detection_indices # Nothing to match.
|
||||
|
||||
cost_matrix = distance_metric(
|
||||
tracks, detections, track_indices, detection_indices)
|
||||
cost_matrix[cost_matrix > max_distance] = max_distance + 1e-5
|
||||
|
||||
row_indices, col_indices = linear_assignment(cost_matrix)
|
||||
|
||||
matches, unmatched_tracks, unmatched_detections = [], [], []
|
||||
for col, detection_idx in enumerate(detection_indices):
|
||||
if col not in col_indices:
|
||||
unmatched_detections.append(detection_idx)
|
||||
for row, track_idx in enumerate(track_indices):
|
||||
if row not in row_indices:
|
||||
unmatched_tracks.append(track_idx)
|
||||
for row, col in zip(row_indices, col_indices):
|
||||
track_idx = track_indices[row]
|
||||
detection_idx = detection_indices[col]
|
||||
if cost_matrix[row, col] > max_distance:
|
||||
unmatched_tracks.append(track_idx)
|
||||
unmatched_detections.append(detection_idx)
|
||||
else:
|
||||
matches.append((track_idx, detection_idx))
|
||||
return matches, unmatched_tracks, unmatched_detections
|
||||
|
||||
|
||||
def matching_cascade(
|
||||
distance_metric, max_distance, cascade_depth, tracks, detections,
|
||||
track_indices=None, detection_indices=None):
|
||||
"""Run matching cascade.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
distance_metric : Callable[List[Track], List[Detection], List[int], List[int]) -> ndarray
|
||||
The distance metric is given a list of tracks and detections as well as
|
||||
a list of N track indices and M detection indices. The metric should
|
||||
return the NxM dimensional cost matrix, where element (i, j) is the
|
||||
association cost between the i-th track in the given track indices and
|
||||
the j-th detection in the given detection indices.
|
||||
max_distance : float
|
||||
Gating threshold. Associations with cost larger than this value are
|
||||
disregarded.
|
||||
cascade_depth: int
|
||||
The cascade depth, should be se to the maximum track age.
|
||||
tracks : List[track.Track]
|
||||
A list of predicted tracks at the current time step.
|
||||
detections : List[detection.Detection]
|
||||
A list of detections at the current time step.
|
||||
track_indices : Optional[List[int]]
|
||||
List of track indices that maps rows in `cost_matrix` to tracks in
|
||||
`tracks` (see description above). Defaults to all tracks.
|
||||
detection_indices : Optional[List[int]]
|
||||
List of detection indices that maps columns in `cost_matrix` to
|
||||
detections in `detections` (see description above). Defaults to all
|
||||
detections.
|
||||
|
||||
Returns
|
||||
-------
|
||||
(List[(int, int)], List[int], List[int])
|
||||
Returns a tuple with the following three entries:
|
||||
* A list of matched track and detection indices.
|
||||
* A list of unmatched track indices.
|
||||
* A list of unmatched detection indices.
|
||||
|
||||
"""
|
||||
if track_indices is None:
|
||||
track_indices = list(range(len(tracks)))
|
||||
if detection_indices is None:
|
||||
detection_indices = list(range(len(detections)))
|
||||
|
||||
unmatched_detections = detection_indices
|
||||
matches = []
|
||||
for level in range(cascade_depth):
|
||||
if len(unmatched_detections) == 0: # No detections left
|
||||
break
|
||||
|
||||
track_indices_l = [
|
||||
k for k in track_indices
|
||||
if tracks[k].time_since_update == 1 + level
|
||||
]
|
||||
if len(track_indices_l) == 0: # Nothing to match at this level
|
||||
continue
|
||||
|
||||
matches_l, _, unmatched_detections = \
|
||||
min_cost_matching(
|
||||
distance_metric, max_distance, tracks, detections,
|
||||
track_indices_l, unmatched_detections)
|
||||
matches += matches_l
|
||||
unmatched_tracks = list(set(track_indices) - set(k for k, _ in matches))
|
||||
return matches, unmatched_tracks, unmatched_detections
|
||||
|
||||
|
||||
def gate_cost_matrix(
|
||||
kf, cost_matrix, tracks, detections, track_indices, detection_indices,
|
||||
gated_cost=INFTY_COST, only_position=False):
|
||||
"""Invalidate infeasible entries in cost matrix based on the state
|
||||
distributions obtained by Kalman filtering.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
kf : The Kalman filter.
|
||||
cost_matrix : ndarray
|
||||
The NxM dimensional cost matrix, where N is the number of track indices
|
||||
and M is the number of detection indices, such that entry (i, j) is the
|
||||
association cost between `tracks[track_indices[i]]` and
|
||||
`detections[detection_indices[j]]`.
|
||||
tracks : List[track.Track]
|
||||
A list of predicted tracks at the current time step.
|
||||
detections : List[detection.Detection]
|
||||
A list of detections at the current time step.
|
||||
track_indices : List[int]
|
||||
List of track indices that maps rows in `cost_matrix` to tracks in
|
||||
`tracks` (see description above).
|
||||
detection_indices : List[int]
|
||||
List of detection indices that maps columns in `cost_matrix` to
|
||||
detections in `detections` (see description above).
|
||||
gated_cost : Optional[float]
|
||||
Entries in the cost matrix corresponding to infeasible associations are
|
||||
set this value. Defaults to a very large value.
|
||||
only_position : Optional[bool]
|
||||
If True, only the x, y position of the state distribution is considered
|
||||
during gating. Defaults to False.
|
||||
|
||||
Returns
|
||||
-------
|
||||
ndarray
|
||||
Returns the modified cost matrix.
|
||||
|
||||
"""
|
||||
gating_dim = 2 if only_position else 4
|
||||
gating_threshold = kalman_filter.chi2inv95[gating_dim]
|
||||
measurements = np.asarray(
|
||||
[detections[i].to_xyah() for i in detection_indices])
|
||||
for row, track_idx in enumerate(track_indices):
|
||||
track = tracks[track_idx]
|
||||
gating_distance = kf.gating_distance(
|
||||
track.mean, track.covariance, measurements, only_position)
|
||||
cost_matrix[row, gating_distance > gating_threshold] = gated_cost
|
||||
return cost_matrix
|
176
yolov5/deep_sort_pytorch/deep_sort/sort/nn_matching.py
Normal file
176
yolov5/deep_sort_pytorch/deep_sort/sort/nn_matching.py
Normal file
@ -0,0 +1,176 @@
|
||||
# vim: expandtab:ts=4:sw=4
|
||||
import numpy as np
|
||||
|
||||
|
||||
def _pdist(a, b):
|
||||
"""Compute pair-wise squared distance between points in `a` and `b`.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
a : array_like
|
||||
An NxM matrix of N samples of dimensionality M.
|
||||
b : array_like
|
||||
An LxM matrix of L samples of dimensionality M.
|
||||
|
||||
Returns
|
||||
-------
|
||||
ndarray
|
||||
Returns a matrix of size len(a), len(b) such that eleement (i, j)
|
||||
contains the squared distance between `a[i]` and `b[j]`.
|
||||
|
||||
"""
|
||||
a, b = np.asarray(a), np.asarray(b)
|
||||
if len(a) == 0 or len(b) == 0:
|
||||
return np.zeros((len(a), len(b)))
|
||||
a2, b2 = np.square(a).sum(axis=1), np.square(b).sum(axis=1)
|
||||
r2 = -2. * np.dot(a, b.T) + a2[:, None] + b2[None, :]
|
||||
r2 = np.clip(r2, 0., float(np.inf))
|
||||
return r2
|
||||
|
||||
|
||||
def _cosine_distance(a, b, data_is_normalized=False):
|
||||
"""Compute pair-wise cosine distance between points in `a` and `b`.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
a : array_like
|
||||
An NxM matrix of N samples of dimensionality M.
|
||||
b : array_like
|
||||
An LxM matrix of L samples of dimensionality M.
|
||||
data_is_normalized : Optional[bool]
|
||||
If True, assumes rows in a and b are unit length vectors.
|
||||
Otherwise, a and b are explicitly normalized to lenght 1.
|
||||
|
||||
Returns
|
||||
-------
|
||||
ndarray
|
||||
Returns a matrix of size len(a), len(b) such that eleement (i, j)
|
||||
contains the squared distance between `a[i]` and `b[j]`.
|
||||
|
||||
"""
|
||||
if not data_is_normalized:
|
||||
a = np.asarray(a) / np.linalg.norm(a, axis=1, keepdims=True)
|
||||
b = np.asarray(b) / np.linalg.norm(b, axis=1, keepdims=True)
|
||||
return 1. - np.dot(a, b.T)
|
||||
|
||||
|
||||
def _nn_euclidean_distance(x, y):
|
||||
""" Helper function for nearest neighbor distance metric (Euclidean).
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x : ndarray
|
||||
A matrix of N row-vectors (sample points).
|
||||
y : ndarray
|
||||
A matrix of M row-vectors (query points).
|
||||
|
||||
Returns
|
||||
-------
|
||||
ndarray
|
||||
A vector of length M that contains for each entry in `y` the
|
||||
smallest Euclidean distance to a sample in `x`.
|
||||
|
||||
"""
|
||||
distances = _pdist(x, y)
|
||||
return np.maximum(0.0, distances.min(axis=0))
|
||||
|
||||
|
||||
def _nn_cosine_distance(x, y):
|
||||
""" Helper function for nearest neighbor distance metric (cosine).
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x : ndarray
|
||||
A matrix of N row-vectors (sample points).
|
||||
y : ndarray
|
||||
A matrix of M row-vectors (query points).
|
||||
|
||||
Returns
|
||||
-------
|
||||
ndarray
|
||||
A vector of length M that contains for each entry in `y` the
|
||||
smallest cosine distance to a sample in `x`.
|
||||
|
||||
"""
|
||||
distances = _cosine_distance(x, y)
|
||||
return distances.min(axis=0)
|
||||
|
||||
|
||||
class NearestNeighborDistanceMetric(object):
|
||||
"""
|
||||
A nearest neighbor distance metric that, for each target, returns
|
||||
the closest distance to any sample that has been observed so far.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
metric : str
|
||||
Either "euclidean" or "cosine".
|
||||
matching_threshold: float
|
||||
The matching threshold. Samples with larger distance are considered an
|
||||
invalid match.
|
||||
budget : Optional[int]
|
||||
If not None, fix samples per class to at most this number. Removes
|
||||
the oldest samples when the budget is reached.
|
||||
|
||||
Attributes
|
||||
----------
|
||||
samples : Dict[int -> List[ndarray]]
|
||||
A dictionary that maps from target identities to the list of samples
|
||||
that have been observed so far.
|
||||
|
||||
"""
|
||||
|
||||
def __init__(self, metric, matching_threshold, budget=None):
|
||||
|
||||
if metric == "euclidean":
|
||||
self._metric = _nn_euclidean_distance
|
||||
elif metric == "cosine":
|
||||
self._metric = _nn_cosine_distance
|
||||
else:
|
||||
raise ValueError(
|
||||
"Invalid metric; must be either 'euclidean' or 'cosine'")
|
||||
self.matching_threshold = matching_threshold
|
||||
self.budget = budget
|
||||
self.samples = {}
|
||||
|
||||
def partial_fit(self, features, targets, active_targets):
|
||||
"""Update the distance metric with new data.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
features : ndarray
|
||||
An NxM matrix of N features of dimensionality M.
|
||||
targets : ndarray
|
||||
An integer array of associated target identities.
|
||||
active_targets : List[int]
|
||||
A list of targets that are currently present in the scene.
|
||||
|
||||
"""
|
||||
for feature, target in zip(features, targets):
|
||||
self.samples.setdefault(target, []).append(feature)
|
||||
if self.budget is not None:
|
||||
self.samples[target] = self.samples[target][-self.budget:]
|
||||
self.samples = {k: self.samples[k] for k in active_targets}
|
||||
|
||||
def distance(self, features, targets):
|
||||
"""Compute distance between features and targets.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
features : ndarray
|
||||
An NxM matrix of N features of dimensionality M.
|
||||
targets : List[int]
|
||||
A list of targets to match the given `features` against.
|
||||
|
||||
Returns
|
||||
-------
|
||||
ndarray
|
||||
Returns a cost matrix of shape len(targets), len(features), where
|
||||
element (i, j) contains the closest squared distance between
|
||||
`targets[i]` and `features[j]`.
|
||||
|
||||
"""
|
||||
cost_matrix = np.zeros((len(targets), len(features)))
|
||||
for i, target in enumerate(targets):
|
||||
cost_matrix[i, :] = self._metric(self.samples[target], features)
|
||||
return cost_matrix
|
73
yolov5/deep_sort_pytorch/deep_sort/sort/preprocessing.py
Normal file
73
yolov5/deep_sort_pytorch/deep_sort/sort/preprocessing.py
Normal file
@ -0,0 +1,73 @@
|
||||
# vim: expandtab:ts=4:sw=4
|
||||
import numpy as np
|
||||
import cv2
|
||||
|
||||
|
||||
def non_max_suppression(boxes, max_bbox_overlap, scores=None):
|
||||
"""Suppress overlapping detections.
|
||||
|
||||
Original code from [1]_ has been adapted to include confidence score.
|
||||
|
||||
.. [1] http://www.pyimagesearch.com/2015/02/16/
|
||||
faster-non-maximum-suppression-python/
|
||||
|
||||
Examples
|
||||
--------
|
||||
|
||||
>>> boxes = [d.roi for d in detections]
|
||||
>>> scores = [d.confidence for d in detections]
|
||||
>>> indices = non_max_suppression(boxes, max_bbox_overlap, scores)
|
||||
>>> detections = [detections[i] for i in indices]
|
||||
|
||||
Parameters
|
||||
----------
|
||||
boxes : ndarray
|
||||
Array of ROIs (x, y, width, height).
|
||||
max_bbox_overlap : float
|
||||
ROIs that overlap more than this values are suppressed.
|
||||
scores : Optional[array_like]
|
||||
Detector confidence score.
|
||||
|
||||
Returns
|
||||
-------
|
||||
List[int]
|
||||
Returns indices of detections that have survived non-maxima suppression.
|
||||
|
||||
"""
|
||||
if len(boxes) == 0:
|
||||
return []
|
||||
|
||||
boxes = boxes.astype(np.float)
|
||||
pick = []
|
||||
|
||||
x1 = boxes[:, 0]
|
||||
y1 = boxes[:, 1]
|
||||
x2 = boxes[:, 2] + boxes[:, 0]
|
||||
y2 = boxes[:, 3] + boxes[:, 1]
|
||||
|
||||
area = (x2 - x1 + 1) * (y2 - y1 + 1)
|
||||
if scores is not None:
|
||||
idxs = np.argsort(scores)
|
||||
else:
|
||||
idxs = np.argsort(y2)
|
||||
|
||||
while len(idxs) > 0:
|
||||
last = len(idxs) - 1
|
||||
i = idxs[last]
|
||||
pick.append(i)
|
||||
|
||||
xx1 = np.maximum(x1[i], x1[idxs[:last]])
|
||||
yy1 = np.maximum(y1[i], y1[idxs[:last]])
|
||||
xx2 = np.minimum(x2[i], x2[idxs[:last]])
|
||||
yy2 = np.minimum(y2[i], y2[idxs[:last]])
|
||||
|
||||
w = np.maximum(0, xx2 - xx1 + 1)
|
||||
h = np.maximum(0, yy2 - yy1 + 1)
|
||||
|
||||
overlap = (w * h) / area[idxs[:last]]
|
||||
|
||||
idxs = np.delete(
|
||||
idxs, np.concatenate(
|
||||
([last], np.where(overlap > max_bbox_overlap)[0])))
|
||||
|
||||
return pick
|
169
yolov5/deep_sort_pytorch/deep_sort/sort/track.py
Normal file
169
yolov5/deep_sort_pytorch/deep_sort/sort/track.py
Normal file
@ -0,0 +1,169 @@
|
||||
# vim: expandtab:ts=4:sw=4
|
||||
|
||||
|
||||
class TrackState:
|
||||
"""
|
||||
Enumeration type for the single target track state. Newly created tracks are
|
||||
classified as `tentative` until enough evidence has been collected. Then,
|
||||
the track state is changed to `confirmed`. Tracks that are no longer alive
|
||||
are classified as `deleted` to mark them for removal from the set of active
|
||||
tracks.
|
||||
|
||||
"""
|
||||
|
||||
Tentative = 1
|
||||
Confirmed = 2
|
||||
Deleted = 3
|
||||
|
||||
|
||||
class Track:
|
||||
"""
|
||||
A single target track with state space `(x, y, a, h)` and associated
|
||||
velocities, where `(x, y)` is the center of the bounding box, `a` is the
|
||||
aspect ratio and `h` is the height.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
mean : ndarray
|
||||
Mean vector of the initial state distribution.
|
||||
covariance : ndarray
|
||||
Covariance matrix of the initial state distribution.
|
||||
track_id : int
|
||||
A unique track identifier.
|
||||
n_init : int
|
||||
Number of consecutive detections before the track is confirmed. The
|
||||
track state is set to `Deleted` if a miss occurs within the first
|
||||
`n_init` frames.
|
||||
max_age : int
|
||||
The maximum number of consecutive misses before the track state is
|
||||
set to `Deleted`.
|
||||
feature : Optional[ndarray]
|
||||
Feature vector of the detection this track originates from. If not None,
|
||||
this feature is added to the `features` cache.
|
||||
|
||||
Attributes
|
||||
----------
|
||||
mean : ndarray
|
||||
Mean vector of the initial state distribution.
|
||||
covariance : ndarray
|
||||
Covariance matrix of the initial state distribution.
|
||||
track_id : int
|
||||
A unique track identifier.
|
||||
hits : int
|
||||
Total number of measurement updates.
|
||||
age : int
|
||||
Total number of frames since first occurance.
|
||||
time_since_update : int
|
||||
Total number of frames since last measurement update.
|
||||
state : TrackState
|
||||
The current track state.
|
||||
features : List[ndarray]
|
||||
A cache of features. On each measurement update, the associated feature
|
||||
vector is added to this list.
|
||||
|
||||
"""
|
||||
|
||||
def __init__(self, mean, covariance, track_id, n_init, max_age,
|
||||
feature=None):
|
||||
self.mean = mean
|
||||
self.covariance = covariance
|
||||
self.track_id = track_id
|
||||
self.hits = 1
|
||||
self.age = 1
|
||||
self.time_since_update = 0
|
||||
|
||||
self.state = TrackState.Tentative
|
||||
self.features = []
|
||||
if feature is not None:
|
||||
self.features.append(feature)
|
||||
|
||||
self._n_init = n_init
|
||||
self._max_age = max_age
|
||||
|
||||
def to_tlwh(self):
|
||||
"""Get current position in bounding box format `(top left x, top left y,
|
||||
width, height)`.
|
||||
|
||||
Returns
|
||||
-------
|
||||
ndarray
|
||||
The bounding box.
|
||||
|
||||
"""
|
||||
ret = self.mean[:4].copy()
|
||||
ret[2] *= ret[3]
|
||||
ret[:2] -= ret[2:] / 2
|
||||
return ret
|
||||
|
||||
def to_tlbr(self):
|
||||
"""Get current position in bounding box format `(min x, miny, max x,
|
||||
max y)`.
|
||||
|
||||
Returns
|
||||
-------
|
||||
ndarray
|
||||
The bounding box.
|
||||
|
||||
"""
|
||||
ret = self.to_tlwh()
|
||||
ret[2:] = ret[:2] + ret[2:]
|
||||
return ret
|
||||
|
||||
def increment_age(self):
|
||||
self.age += 1
|
||||
self.time_since_update += 1
|
||||
|
||||
def predict(self, kf):
|
||||
"""Propagate the state distribution to the current time step using a
|
||||
Kalman filter prediction step.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
kf : kalman_filter.KalmanFilter
|
||||
The Kalman filter.
|
||||
|
||||
"""
|
||||
self.mean, self.covariance = kf.predict(self.mean, self.covariance)
|
||||
self.increment_age()
|
||||
|
||||
def update(self, kf, detection):
|
||||
"""Perform Kalman filter measurement update step and update the feature
|
||||
cache.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
kf : kalman_filter.KalmanFilter
|
||||
The Kalman filter.
|
||||
detection : Detection
|
||||
The associated detection.
|
||||
|
||||
"""
|
||||
self.mean, self.covariance = kf.update(
|
||||
self.mean, self.covariance, detection.to_xyah())
|
||||
self.features.append(detection.feature)
|
||||
|
||||
self.hits += 1
|
||||
self.time_since_update = 0
|
||||
if self.state == TrackState.Tentative and self.hits >= self._n_init:
|
||||
self.state = TrackState.Confirmed
|
||||
|
||||
def mark_missed(self):
|
||||
"""Mark this track as missed (no association at the current time step).
|
||||
"""
|
||||
if self.state == TrackState.Tentative:
|
||||
self.state = TrackState.Deleted
|
||||
elif self.time_since_update > self._max_age:
|
||||
self.state = TrackState.Deleted
|
||||
|
||||
def is_tentative(self):
|
||||
"""Returns True if this track is tentative (unconfirmed).
|
||||
"""
|
||||
return self.state == TrackState.Tentative
|
||||
|
||||
def is_confirmed(self):
|
||||
"""Returns True if this track is confirmed."""
|
||||
return self.state == TrackState.Confirmed
|
||||
|
||||
def is_deleted(self):
|
||||
"""Returns True if this track is dead and should be deleted."""
|
||||
return self.state == TrackState.Deleted
|
143
yolov5/deep_sort_pytorch/deep_sort/sort/tracker.py
Normal file
143
yolov5/deep_sort_pytorch/deep_sort/sort/tracker.py
Normal file
@ -0,0 +1,143 @@
|
||||
# vim: expandtab:ts=4:sw=4
|
||||
from __future__ import absolute_import
|
||||
import numpy as np
|
||||
from . import kalman_filter
|
||||
from . import linear_assignment
|
||||
from . import iou_matching
|
||||
from .track import Track
|
||||
|
||||
|
||||
class Tracker:
|
||||
"""
|
||||
This is the multi-target tracker.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
metric : nn_matching.NearestNeighborDistanceMetric
|
||||
A distance metric for measurement-to-track association.
|
||||
max_age : int
|
||||
Maximum number of missed misses before a track is deleted.
|
||||
n_init : int
|
||||
Number of consecutive detections before the track is confirmed. The
|
||||
track state is set to `Deleted` if a miss occurs within the first
|
||||
`n_init` frames.
|
||||
|
||||
Attributes
|
||||
----------
|
||||
metric : nn_matching.NearestNeighborDistanceMetric
|
||||
The distance metric used for measurement to track association.
|
||||
max_age : int
|
||||
Maximum number of missed misses before a track is deleted.
|
||||
n_init : int
|
||||
Number of frames that a track remains in initialization phase.
|
||||
kf : kalman_filter.KalmanFilter
|
||||
A Kalman filter to filter target trajectories in image space.
|
||||
tracks : List[Track]
|
||||
The list of active tracks at the current time step.
|
||||
|
||||
"""
|
||||
|
||||
def __init__(self, metric, max_iou_distance=0.7, max_age=70, n_init=3):
|
||||
self.metric = metric
|
||||
self.max_iou_distance = max_iou_distance
|
||||
self.max_age = max_age
|
||||
self.n_init = n_init
|
||||
|
||||
self.kf = kalman_filter.KalmanFilter()
|
||||
self.tracks = []
|
||||
self._next_id = 1
|
||||
|
||||
def predict(self):
|
||||
"""Propagate track state distributions one time step forward.
|
||||
|
||||
This function should be called once every time step, before `update`.
|
||||
"""
|
||||
for track in self.tracks:
|
||||
track.predict(self.kf)
|
||||
|
||||
def increment_ages(self):
|
||||
for track in self.tracks:
|
||||
track.increment_age()
|
||||
track.mark_missed()
|
||||
|
||||
def update(self, detections):
|
||||
"""Perform measurement update and track management.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
detections : List[deep_sort.detection.Detection]
|
||||
A list of detections at the current time step.
|
||||
|
||||
"""
|
||||
# Run matching cascade.
|
||||
matches, unmatched_tracks, unmatched_detections = \
|
||||
self._match(detections)
|
||||
|
||||
# Update track set.
|
||||
for track_idx, detection_idx in matches:
|
||||
self.tracks[track_idx].update(
|
||||
self.kf, detections[detection_idx])
|
||||
for track_idx in unmatched_tracks:
|
||||
self.tracks[track_idx].mark_missed()
|
||||
for detection_idx in unmatched_detections:
|
||||
self._initiate_track(detections[detection_idx])
|
||||
self.tracks = [t for t in self.tracks if not t.is_deleted()]
|
||||
|
||||
# Update distance metric.
|
||||
active_targets = [t.track_id for t in self.tracks if t.is_confirmed()]
|
||||
features, targets = [], []
|
||||
for track in self.tracks:
|
||||
if not track.is_confirmed():
|
||||
continue
|
||||
features += track.features
|
||||
targets += [track.track_id for _ in track.features]
|
||||
track.features = []
|
||||
self.metric.partial_fit(
|
||||
np.asarray(features), np.asarray(targets), active_targets)
|
||||
|
||||
def _match(self, detections):
|
||||
|
||||
def gated_metric(tracks, dets, track_indices, detection_indices):
|
||||
features = np.array([dets[i].feature for i in detection_indices])
|
||||
targets = np.array([tracks[i].track_id for i in track_indices])
|
||||
cost_matrix = self.metric.distance(features, targets)
|
||||
cost_matrix = linear_assignment.gate_cost_matrix(
|
||||
self.kf, cost_matrix, tracks, dets, track_indices,
|
||||
detection_indices)
|
||||
|
||||
return cost_matrix
|
||||
|
||||
# Split track set into confirmed and unconfirmed tracks.
|
||||
confirmed_tracks = [
|
||||
i for i, t in enumerate(self.tracks) if t.is_confirmed()]
|
||||
unconfirmed_tracks = [
|
||||
i for i, t in enumerate(self.tracks) if not t.is_confirmed()]
|
||||
|
||||
# Associate confirmed tracks using appearance features.
|
||||
matches_a, unmatched_tracks_a, unmatched_detections = \
|
||||
linear_assignment.matching_cascade(
|
||||
gated_metric, self.metric.matching_threshold, self.max_age,
|
||||
self.tracks, detections, confirmed_tracks)
|
||||
|
||||
# Associate remaining tracks together with unconfirmed tracks using IOU.
|
||||
iou_track_candidates = unconfirmed_tracks + [
|
||||
k for k in unmatched_tracks_a if
|
||||
self.tracks[k].time_since_update == 1]
|
||||
unmatched_tracks_a = [
|
||||
k for k in unmatched_tracks_a if
|
||||
self.tracks[k].time_since_update != 1]
|
||||
matches_b, unmatched_tracks_b, unmatched_detections = \
|
||||
linear_assignment.min_cost_matching(
|
||||
iou_matching.iou_cost, self.max_iou_distance, self.tracks,
|
||||
detections, iou_track_candidates, unmatched_detections)
|
||||
|
||||
matches = matches_a + matches_b
|
||||
unmatched_tracks = list(set(unmatched_tracks_a + unmatched_tracks_b))
|
||||
return matches, unmatched_tracks, unmatched_detections
|
||||
|
||||
def _initiate_track(self, detection):
|
||||
mean, covariance = self.kf.initiate(detection.to_xyah())
|
||||
self.tracks.append(Track(
|
||||
mean, covariance, self._next_id, self.n_init, self.max_age,
|
||||
detection.feature))
|
||||
self._next_id += 1
|
0
yolov5/deep_sort_pytorch/utils/__init__.py
Normal file
0
yolov5/deep_sort_pytorch/utils/__init__.py
Normal file
13
yolov5/deep_sort_pytorch/utils/asserts.py
Normal file
13
yolov5/deep_sort_pytorch/utils/asserts.py
Normal file
@ -0,0 +1,13 @@
|
||||
from os import environ
|
||||
|
||||
|
||||
def assert_in(file, files_to_check):
|
||||
if file not in files_to_check:
|
||||
raise AssertionError("{} does not exist in the list".format(str(file)))
|
||||
return True
|
||||
|
||||
|
||||
def assert_in_env(check_list: list):
|
||||
for item in check_list:
|
||||
assert_in(item, environ.keys())
|
||||
return True
|
36
yolov5/deep_sort_pytorch/utils/draw.py
Normal file
36
yolov5/deep_sort_pytorch/utils/draw.py
Normal file
@ -0,0 +1,36 @@
|
||||
import numpy as np
|
||||
import cv2
|
||||
|
||||
palette = (2 ** 11 - 1, 2 ** 15 - 1, 2 ** 20 - 1)
|
||||
|
||||
|
||||
def compute_color_for_labels(label):
|
||||
"""
|
||||
Simple function that adds fixed color depending on the class
|
||||
"""
|
||||
color = [int((p * (label ** 2 - label + 1)) % 255) for p in palette]
|
||||
return tuple(color)
|
||||
|
||||
|
||||
def draw_boxes(img, bbox, identities=None, offset=(0,0)):
|
||||
for i,box in enumerate(bbox):
|
||||
x1,y1,x2,y2 = [int(i) for i in box]
|
||||
x1 += offset[0]
|
||||
x2 += offset[0]
|
||||
y1 += offset[1]
|
||||
y2 += offset[1]
|
||||
# box text and bar
|
||||
id = int(identities[i]) if identities is not None else 0
|
||||
color = compute_color_for_labels(id)
|
||||
label = '{}{:d}'.format("", id)
|
||||
t_size = cv2.getTextSize(label, cv2.FONT_HERSHEY_PLAIN, 2 , 2)[0]
|
||||
cv2.rectangle(img,(x1, y1),(x2,y2),color,3)
|
||||
cv2.rectangle(img,(x1, y1),(x1+t_size[0]+3,y1+t_size[1]+4), color,-1)
|
||||
cv2.putText(img,label,(x1,y1+t_size[1]+4), cv2.FONT_HERSHEY_PLAIN, 2, [255,255,255], 2)
|
||||
return img
|
||||
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
for i in range(82):
|
||||
print(compute_color_for_labels(i))
|
103
yolov5/deep_sort_pytorch/utils/evaluation.py
Normal file
103
yolov5/deep_sort_pytorch/utils/evaluation.py
Normal file
@ -0,0 +1,103 @@
|
||||
import os
|
||||
import numpy as np
|
||||
import copy
|
||||
import motmetrics as mm
|
||||
mm.lap.default_solver = 'lap'
|
||||
from utils.io import read_results, unzip_objs
|
||||
|
||||
|
||||
class Evaluator(object):
|
||||
|
||||
def __init__(self, data_root, seq_name, data_type):
|
||||
self.data_root = data_root
|
||||
self.seq_name = seq_name
|
||||
self.data_type = data_type
|
||||
|
||||
self.load_annotations()
|
||||
self.reset_accumulator()
|
||||
|
||||
def load_annotations(self):
|
||||
assert self.data_type == 'mot'
|
||||
|
||||
gt_filename = os.path.join(self.data_root, self.seq_name, 'gt', 'gt.txt')
|
||||
self.gt_frame_dict = read_results(gt_filename, self.data_type, is_gt=True)
|
||||
self.gt_ignore_frame_dict = read_results(gt_filename, self.data_type, is_ignore=True)
|
||||
|
||||
def reset_accumulator(self):
|
||||
self.acc = mm.MOTAccumulator(auto_id=True)
|
||||
|
||||
def eval_frame(self, frame_id, trk_tlwhs, trk_ids, rtn_events=False):
|
||||
# results
|
||||
trk_tlwhs = np.copy(trk_tlwhs)
|
||||
trk_ids = np.copy(trk_ids)
|
||||
|
||||
# gts
|
||||
gt_objs = self.gt_frame_dict.get(frame_id, [])
|
||||
gt_tlwhs, gt_ids = unzip_objs(gt_objs)[:2]
|
||||
|
||||
# ignore boxes
|
||||
ignore_objs = self.gt_ignore_frame_dict.get(frame_id, [])
|
||||
ignore_tlwhs = unzip_objs(ignore_objs)[0]
|
||||
|
||||
|
||||
# remove ignored results
|
||||
keep = np.ones(len(trk_tlwhs), dtype=bool)
|
||||
iou_distance = mm.distances.iou_matrix(ignore_tlwhs, trk_tlwhs, max_iou=0.5)
|
||||
if len(iou_distance) > 0:
|
||||
match_is, match_js = mm.lap.linear_sum_assignment(iou_distance)
|
||||
match_is, match_js = map(lambda a: np.asarray(a, dtype=int), [match_is, match_js])
|
||||
match_ious = iou_distance[match_is, match_js]
|
||||
|
||||
match_js = np.asarray(match_js, dtype=int)
|
||||
match_js = match_js[np.logical_not(np.isnan(match_ious))]
|
||||
keep[match_js] = False
|
||||
trk_tlwhs = trk_tlwhs[keep]
|
||||
trk_ids = trk_ids[keep]
|
||||
|
||||
# get distance matrix
|
||||
iou_distance = mm.distances.iou_matrix(gt_tlwhs, trk_tlwhs, max_iou=0.5)
|
||||
|
||||
# acc
|
||||
self.acc.update(gt_ids, trk_ids, iou_distance)
|
||||
|
||||
if rtn_events and iou_distance.size > 0 and hasattr(self.acc, 'last_mot_events'):
|
||||
events = self.acc.last_mot_events # only supported by https://github.com/longcw/py-motmetrics
|
||||
else:
|
||||
events = None
|
||||
return events
|
||||
|
||||
def eval_file(self, filename):
|
||||
self.reset_accumulator()
|
||||
|
||||
result_frame_dict = read_results(filename, self.data_type, is_gt=False)
|
||||
frames = sorted(list(set(self.gt_frame_dict.keys()) | set(result_frame_dict.keys())))
|
||||
for frame_id in frames:
|
||||
trk_objs = result_frame_dict.get(frame_id, [])
|
||||
trk_tlwhs, trk_ids = unzip_objs(trk_objs)[:2]
|
||||
self.eval_frame(frame_id, trk_tlwhs, trk_ids, rtn_events=False)
|
||||
|
||||
return self.acc
|
||||
|
||||
@staticmethod
|
||||
def get_summary(accs, names, metrics=('mota', 'num_switches', 'idp', 'idr', 'idf1', 'precision', 'recall')):
|
||||
names = copy.deepcopy(names)
|
||||
if metrics is None:
|
||||
metrics = mm.metrics.motchallenge_metrics
|
||||
metrics = copy.deepcopy(metrics)
|
||||
|
||||
mh = mm.metrics.create()
|
||||
summary = mh.compute_many(
|
||||
accs,
|
||||
metrics=metrics,
|
||||
names=names,
|
||||
generate_overall=True
|
||||
)
|
||||
|
||||
return summary
|
||||
|
||||
@staticmethod
|
||||
def save_summary(summary, filename):
|
||||
import pandas as pd
|
||||
writer = pd.ExcelWriter(filename)
|
||||
summary.to_excel(writer)
|
||||
writer.save()
|
133
yolov5/deep_sort_pytorch/utils/io.py
Normal file
133
yolov5/deep_sort_pytorch/utils/io.py
Normal file
@ -0,0 +1,133 @@
|
||||
import os
|
||||
from typing import Dict
|
||||
import numpy as np
|
||||
|
||||
# from utils.log import get_logger
|
||||
|
||||
|
||||
def write_results(filename, results, data_type):
|
||||
if data_type == 'mot':
|
||||
save_format = '{frame},{id},{x1},{y1},{w},{h},-1,-1,-1,-1\n'
|
||||
elif data_type == 'kitti':
|
||||
save_format = '{frame} {id} pedestrian 0 0 -10 {x1} {y1} {x2} {y2} -10 -10 -10 -1000 -1000 -1000 -10\n'
|
||||
else:
|
||||
raise ValueError(data_type)
|
||||
|
||||
with open(filename, 'w') as f:
|
||||
for frame_id, tlwhs, track_ids in results:
|
||||
if data_type == 'kitti':
|
||||
frame_id -= 1
|
||||
for tlwh, track_id in zip(tlwhs, track_ids):
|
||||
if track_id < 0:
|
||||
continue
|
||||
x1, y1, w, h = tlwh
|
||||
x2, y2 = x1 + w, y1 + h
|
||||
line = save_format.format(frame=frame_id, id=track_id, x1=x1, y1=y1, x2=x2, y2=y2, w=w, h=h)
|
||||
f.write(line)
|
||||
|
||||
|
||||
# def write_results(filename, results_dict: Dict, data_type: str):
|
||||
# if not filename:
|
||||
# return
|
||||
# path = os.path.dirname(filename)
|
||||
# if not os.path.exists(path):
|
||||
# os.makedirs(path)
|
||||
|
||||
# if data_type in ('mot', 'mcmot', 'lab'):
|
||||
# save_format = '{frame},{id},{x1},{y1},{w},{h},1,-1,-1,-1\n'
|
||||
# elif data_type == 'kitti':
|
||||
# save_format = '{frame} {id} pedestrian -1 -1 -10 {x1} {y1} {x2} {y2} -1 -1 -1 -1000 -1000 -1000 -10 {score}\n'
|
||||
# else:
|
||||
# raise ValueError(data_type)
|
||||
|
||||
# with open(filename, 'w') as f:
|
||||
# for frame_id, frame_data in results_dict.items():
|
||||
# if data_type == 'kitti':
|
||||
# frame_id -= 1
|
||||
# for tlwh, track_id in frame_data:
|
||||
# if track_id < 0:
|
||||
# continue
|
||||
# x1, y1, w, h = tlwh
|
||||
# x2, y2 = x1 + w, y1 + h
|
||||
# line = save_format.format(frame=frame_id, id=track_id, x1=x1, y1=y1, x2=x2, y2=y2, w=w, h=h, score=1.0)
|
||||
# f.write(line)
|
||||
# logger.info('Save results to {}'.format(filename))
|
||||
|
||||
|
||||
def read_results(filename, data_type: str, is_gt=False, is_ignore=False):
|
||||
if data_type in ('mot', 'lab'):
|
||||
read_fun = read_mot_results
|
||||
else:
|
||||
raise ValueError('Unknown data type: {}'.format(data_type))
|
||||
|
||||
return read_fun(filename, is_gt, is_ignore)
|
||||
|
||||
|
||||
"""
|
||||
labels={'ped', ... % 1
|
||||
'person_on_vhcl', ... % 2
|
||||
'car', ... % 3
|
||||
'bicycle', ... % 4
|
||||
'mbike', ... % 5
|
||||
'non_mot_vhcl', ... % 6
|
||||
'static_person', ... % 7
|
||||
'distractor', ... % 8
|
||||
'occluder', ... % 9
|
||||
'occluder_on_grnd', ... %10
|
||||
'occluder_full', ... % 11
|
||||
'reflection', ... % 12
|
||||
'crowd' ... % 13
|
||||
};
|
||||
"""
|
||||
|
||||
|
||||
def read_mot_results(filename, is_gt, is_ignore):
|
||||
valid_labels = {1}
|
||||
ignore_labels = {2, 7, 8, 12}
|
||||
results_dict = dict()
|
||||
if os.path.isfile(filename):
|
||||
with open(filename, 'r') as f:
|
||||
for line in f.readlines():
|
||||
linelist = line.split(',')
|
||||
if len(linelist) < 7:
|
||||
continue
|
||||
fid = int(linelist[0])
|
||||
if fid < 1:
|
||||
continue
|
||||
results_dict.setdefault(fid, list())
|
||||
|
||||
if is_gt:
|
||||
if 'MOT16-' in filename or 'MOT17-' in filename:
|
||||
label = int(float(linelist[7]))
|
||||
mark = int(float(linelist[6]))
|
||||
if mark == 0 or label not in valid_labels:
|
||||
continue
|
||||
score = 1
|
||||
elif is_ignore:
|
||||
if 'MOT16-' in filename or 'MOT17-' in filename:
|
||||
label = int(float(linelist[7]))
|
||||
vis_ratio = float(linelist[8])
|
||||
if label not in ignore_labels and vis_ratio >= 0:
|
||||
continue
|
||||
else:
|
||||
continue
|
||||
score = 1
|
||||
else:
|
||||
score = float(linelist[6])
|
||||
|
||||
tlwh = tuple(map(float, linelist[2:6]))
|
||||
target_id = int(linelist[1])
|
||||
|
||||
results_dict[fid].append((tlwh, target_id, score))
|
||||
|
||||
return results_dict
|
||||
|
||||
|
||||
def unzip_objs(objs):
|
||||
if len(objs) > 0:
|
||||
tlwhs, ids, scores = zip(*objs)
|
||||
else:
|
||||
tlwhs, ids, scores = [], [], []
|
||||
tlwhs = np.asarray(tlwhs, dtype=float).reshape(-1, 4)
|
||||
|
||||
return tlwhs, ids, scores
|
383
yolov5/deep_sort_pytorch/utils/json_logger.py
Normal file
383
yolov5/deep_sort_pytorch/utils/json_logger.py
Normal file
@ -0,0 +1,383 @@
|
||||
"""
|
||||
References:
|
||||
https://medium.com/analytics-vidhya/creating-a-custom-logging-mechanism-for-real-time-object-detection-using-tdd-4ca2cfcd0a2f
|
||||
"""
|
||||
import json
|
||||
from os import makedirs
|
||||
from os.path import exists, join
|
||||
from datetime import datetime
|
||||
|
||||
|
||||
class JsonMeta(object):
|
||||
HOURS = 3
|
||||
MINUTES = 59
|
||||
SECONDS = 59
|
||||
PATH_TO_SAVE = 'LOGS'
|
||||
DEFAULT_FILE_NAME = 'remaining'
|
||||
|
||||
|
||||
class BaseJsonLogger(object):
|
||||
"""
|
||||
This is the base class that returns __dict__ of its own
|
||||
it also returns the dicts of objects in the attributes that are list instances
|
||||
|
||||
"""
|
||||
|
||||
def dic(self):
|
||||
# returns dicts of objects
|
||||
out = {}
|
||||
for k, v in self.__dict__.items():
|
||||
if hasattr(v, 'dic'):
|
||||
out[k] = v.dic()
|
||||
elif isinstance(v, list):
|
||||
out[k] = self.list(v)
|
||||
else:
|
||||
out[k] = v
|
||||
return out
|
||||
|
||||
@staticmethod
|
||||
def list(values):
|
||||
# applies the dic method on items in the list
|
||||
return [v.dic() if hasattr(v, 'dic') else v for v in values]
|
||||
|
||||
|
||||
class Label(BaseJsonLogger):
|
||||
"""
|
||||
For each bounding box there are various categories with confidences. Label class keeps track of that information.
|
||||
"""
|
||||
|
||||
def __init__(self, category: str, confidence: float):
|
||||
self.category = category
|
||||
self.confidence = confidence
|
||||
|
||||
|
||||
class Bbox(BaseJsonLogger):
|
||||
"""
|
||||
This module stores the information for each frame and use them in JsonParser
|
||||
Attributes:
|
||||
labels (list): List of label module.
|
||||
top (int):
|
||||
left (int):
|
||||
width (int):
|
||||
height (int):
|
||||
|
||||
Args:
|
||||
bbox_id (float):
|
||||
top (int):
|
||||
left (int):
|
||||
width (int):
|
||||
height (int):
|
||||
|
||||
References:
|
||||
Check Label module for better understanding.
|
||||
|
||||
|
||||
"""
|
||||
|
||||
def __init__(self, bbox_id, top, left, width, height):
|
||||
self.labels = []
|
||||
self.bbox_id = bbox_id
|
||||
self.top = top
|
||||
self.left = left
|
||||
self.width = width
|
||||
self.height = height
|
||||
|
||||
def add_label(self, category, confidence):
|
||||
# adds category and confidence only if top_k is not exceeded.
|
||||
self.labels.append(Label(category, confidence))
|
||||
|
||||
def labels_full(self, value):
|
||||
return len(self.labels) == value
|
||||
|
||||
|
||||
class Frame(BaseJsonLogger):
|
||||
"""
|
||||
This module stores the information for each frame and use them in JsonParser
|
||||
Attributes:
|
||||
timestamp (float): The elapsed time of captured frame
|
||||
frame_id (int): The frame number of the captured video
|
||||
bboxes (list of Bbox objects): Stores the list of bbox objects.
|
||||
|
||||
References:
|
||||
Check Bbox class for better information
|
||||
|
||||
Args:
|
||||
timestamp (float):
|
||||
frame_id (int):
|
||||
|
||||
"""
|
||||
|
||||
def __init__(self, frame_id: int, timestamp: float = None):
|
||||
self.frame_id = frame_id
|
||||
self.timestamp = timestamp
|
||||
self.bboxes = []
|
||||
|
||||
def add_bbox(self, bbox_id: int, top: int, left: int, width: int, height: int):
|
||||
bboxes_ids = [bbox.bbox_id for bbox in self.bboxes]
|
||||
if bbox_id not in bboxes_ids:
|
||||
self.bboxes.append(Bbox(bbox_id, top, left, width, height))
|
||||
else:
|
||||
raise ValueError("Frame with id: {} already has a Bbox with id: {}".format(self.frame_id, bbox_id))
|
||||
|
||||
def add_label_to_bbox(self, bbox_id: int, category: str, confidence: float):
|
||||
bboxes = {bbox.id: bbox for bbox in self.bboxes}
|
||||
if bbox_id in bboxes.keys():
|
||||
res = bboxes.get(bbox_id)
|
||||
res.add_label(category, confidence)
|
||||
else:
|
||||
raise ValueError('the bbox with id: {} does not exists!'.format(bbox_id))
|
||||
|
||||
|
||||
class BboxToJsonLogger(BaseJsonLogger):
|
||||
"""
|
||||
ُ This module is designed to automate the task of logging jsons. An example json is used
|
||||
to show the contents of json file shortly
|
||||
Example:
|
||||
{
|
||||
"video_details": {
|
||||
"frame_width": 1920,
|
||||
"frame_height": 1080,
|
||||
"frame_rate": 20,
|
||||
"video_name": "/home/gpu/codes/MSD/pedestrian_2/project/public/camera1.avi"
|
||||
},
|
||||
"frames": [
|
||||
{
|
||||
"frame_id": 329,
|
||||
"timestamp": 3365.1254
|
||||
"bboxes": [
|
||||
{
|
||||
"labels": [
|
||||
{
|
||||
"category": "pedestrian",
|
||||
"confidence": 0.9
|
||||
}
|
||||
],
|
||||
"bbox_id": 0,
|
||||
"top": 1257,
|
||||
"left": 138,
|
||||
"width": 68,
|
||||
"height": 109
|
||||
}
|
||||
]
|
||||
}],
|
||||
|
||||
Attributes:
|
||||
frames (dict): It's a dictionary that maps each frame_id to json attributes.
|
||||
video_details (dict): information about video file.
|
||||
top_k_labels (int): shows the allowed number of labels
|
||||
start_time (datetime object): we use it to automate the json output by time.
|
||||
|
||||
Args:
|
||||
top_k_labels (int): shows the allowed number of labels
|
||||
|
||||
"""
|
||||
|
||||
def __init__(self, top_k_labels: int = 1):
|
||||
self.frames = {}
|
||||
self.video_details = self.video_details = dict(frame_width=None, frame_height=None, frame_rate=None,
|
||||
video_name=None)
|
||||
self.top_k_labels = top_k_labels
|
||||
self.start_time = datetime.now()
|
||||
|
||||
def set_top_k(self, value):
|
||||
self.top_k_labels = value
|
||||
|
||||
def frame_exists(self, frame_id: int) -> bool:
|
||||
"""
|
||||
Args:
|
||||
frame_id (int):
|
||||
|
||||
Returns:
|
||||
bool: true if frame_id is recognized
|
||||
"""
|
||||
return frame_id in self.frames.keys()
|
||||
|
||||
def add_frame(self, frame_id: int, timestamp: float = None) -> None:
|
||||
"""
|
||||
Args:
|
||||
frame_id (int):
|
||||
timestamp (float): opencv captured frame time property
|
||||
|
||||
Raises:
|
||||
ValueError: if frame_id would not exist in class frames attribute
|
||||
|
||||
Returns:
|
||||
None
|
||||
|
||||
"""
|
||||
if not self.frame_exists(frame_id):
|
||||
self.frames[frame_id] = Frame(frame_id, timestamp)
|
||||
else:
|
||||
raise ValueError("Frame id: {} already exists".format(frame_id))
|
||||
|
||||
def bbox_exists(self, frame_id: int, bbox_id: int) -> bool:
|
||||
"""
|
||||
Args:
|
||||
frame_id:
|
||||
bbox_id:
|
||||
|
||||
Returns:
|
||||
bool: if bbox exists in frame bboxes list
|
||||
"""
|
||||
bboxes = []
|
||||
if self.frame_exists(frame_id=frame_id):
|
||||
bboxes = [bbox.bbox_id for bbox in self.frames[frame_id].bboxes]
|
||||
return bbox_id in bboxes
|
||||
|
||||
def find_bbox(self, frame_id: int, bbox_id: int):
|
||||
"""
|
||||
|
||||
Args:
|
||||
frame_id:
|
||||
bbox_id:
|
||||
|
||||
Returns:
|
||||
bbox_id (int):
|
||||
|
||||
Raises:
|
||||
ValueError: if bbox_id does not exist in the bbox list of specific frame.
|
||||
"""
|
||||
if not self.bbox_exists(frame_id, bbox_id):
|
||||
raise ValueError("frame with id: {} does not contain bbox with id: {}".format(frame_id, bbox_id))
|
||||
bboxes = {bbox.bbox_id: bbox for bbox in self.frames[frame_id].bboxes}
|
||||
return bboxes.get(bbox_id)
|
||||
|
||||
def add_bbox_to_frame(self, frame_id: int, bbox_id: int, top: int, left: int, width: int, height: int) -> None:
|
||||
"""
|
||||
|
||||
Args:
|
||||
frame_id (int):
|
||||
bbox_id (int):
|
||||
top (int):
|
||||
left (int):
|
||||
width (int):
|
||||
height (int):
|
||||
|
||||
Returns:
|
||||
None
|
||||
|
||||
Raises:
|
||||
ValueError: if bbox_id already exist in frame information with frame_id
|
||||
ValueError: if frame_id does not exist in frames attribute
|
||||
"""
|
||||
if self.frame_exists(frame_id):
|
||||
frame = self.frames[frame_id]
|
||||
if not self.bbox_exists(frame_id, bbox_id):
|
||||
frame.add_bbox(bbox_id, top, left, width, height)
|
||||
else:
|
||||
raise ValueError(
|
||||
"frame with frame_id: {} already contains the bbox with id: {} ".format(frame_id, bbox_id))
|
||||
else:
|
||||
raise ValueError("frame with frame_id: {} does not exist".format(frame_id))
|
||||
|
||||
def add_label_to_bbox(self, frame_id: int, bbox_id: int, category: str, confidence: float):
|
||||
"""
|
||||
Args:
|
||||
frame_id:
|
||||
bbox_id:
|
||||
category:
|
||||
confidence: the confidence value returned from yolo detection
|
||||
|
||||
Returns:
|
||||
None
|
||||
|
||||
Raises:
|
||||
ValueError: if labels quota (top_k_labels) exceeds.
|
||||
"""
|
||||
bbox = self.find_bbox(frame_id, bbox_id)
|
||||
if not bbox.labels_full(self.top_k_labels):
|
||||
bbox.add_label(category, confidence)
|
||||
else:
|
||||
raise ValueError("labels in frame_id: {}, bbox_id: {} is fulled".format(frame_id, bbox_id))
|
||||
|
||||
def add_video_details(self, frame_width: int = None, frame_height: int = None, frame_rate: int = None,
|
||||
video_name: str = None):
|
||||
self.video_details['frame_width'] = frame_width
|
||||
self.video_details['frame_height'] = frame_height
|
||||
self.video_details['frame_rate'] = frame_rate
|
||||
self.video_details['video_name'] = video_name
|
||||
|
||||
def output(self):
|
||||
output = {'video_details': self.video_details}
|
||||
result = list(self.frames.values())
|
||||
output['frames'] = [item.dic() for item in result]
|
||||
return output
|
||||
|
||||
def json_output(self, output_name):
|
||||
"""
|
||||
Args:
|
||||
output_name:
|
||||
|
||||
Returns:
|
||||
None
|
||||
|
||||
Notes:
|
||||
It creates the json output with `output_name` name.
|
||||
"""
|
||||
if not output_name.endswith('.json'):
|
||||
output_name += '.json'
|
||||
with open(output_name, 'w') as file:
|
||||
json.dump(self.output(), file)
|
||||
file.close()
|
||||
|
||||
def set_start(self):
|
||||
self.start_time = datetime.now()
|
||||
|
||||
def schedule_output_by_time(self, output_dir=JsonMeta.PATH_TO_SAVE, hours: int = 0, minutes: int = 0,
|
||||
seconds: int = 60) -> None:
|
||||
"""
|
||||
Notes:
|
||||
Creates folder and then periodically stores the jsons on that address.
|
||||
|
||||
Args:
|
||||
output_dir (str): the directory where output files will be stored
|
||||
hours (int):
|
||||
minutes (int):
|
||||
seconds (int):
|
||||
|
||||
Returns:
|
||||
None
|
||||
|
||||
"""
|
||||
end = datetime.now()
|
||||
interval = 0
|
||||
interval += abs(min([hours, JsonMeta.HOURS]) * 3600)
|
||||
interval += abs(min([minutes, JsonMeta.MINUTES]) * 60)
|
||||
interval += abs(min([seconds, JsonMeta.SECONDS]))
|
||||
diff = (end - self.start_time).seconds
|
||||
|
||||
if diff > interval:
|
||||
output_name = self.start_time.strftime('%Y-%m-%d %H-%M-%S') + '.json'
|
||||
if not exists(output_dir):
|
||||
makedirs(output_dir)
|
||||
output = join(output_dir, output_name)
|
||||
self.json_output(output_name=output)
|
||||
self.frames = {}
|
||||
self.start_time = datetime.now()
|
||||
|
||||
def schedule_output_by_frames(self, frames_quota, frame_counter, output_dir=JsonMeta.PATH_TO_SAVE):
|
||||
"""
|
||||
saves as the number of frames quota increases higher.
|
||||
:param frames_quota:
|
||||
:param frame_counter:
|
||||
:param output_dir:
|
||||
:return:
|
||||
"""
|
||||
pass
|
||||
|
||||
def flush(self, output_dir):
|
||||
"""
|
||||
Notes:
|
||||
We use this function to output jsons whenever possible.
|
||||
like the time that we exit the while loop of opencv.
|
||||
|
||||
Args:
|
||||
output_dir:
|
||||
|
||||
Returns:
|
||||
None
|
||||
|
||||
"""
|
||||
filename = self.start_time.strftime('%Y-%m-%d %H-%M-%S') + '-remaining.json'
|
||||
output = join(output_dir, filename)
|
||||
self.json_output(output_name=output)
|
17
yolov5/deep_sort_pytorch/utils/log.py
Normal file
17
yolov5/deep_sort_pytorch/utils/log.py
Normal file
@ -0,0 +1,17 @@
|
||||
import logging
|
||||
|
||||
|
||||
def get_logger(name='root'):
|
||||
formatter = logging.Formatter(
|
||||
# fmt='%(asctime)s [%(levelname)s]: %(filename)s(%(funcName)s:%(lineno)s) >> %(message)s')
|
||||
fmt='%(asctime)s [%(levelname)s]: %(message)s', datefmt='%Y-%m-%d %H:%M:%S')
|
||||
|
||||
handler = logging.StreamHandler()
|
||||
handler.setFormatter(formatter)
|
||||
|
||||
logger = logging.getLogger(name)
|
||||
logger.setLevel(logging.INFO)
|
||||
logger.addHandler(handler)
|
||||
return logger
|
||||
|
||||
|
39
yolov5/deep_sort_pytorch/utils/parser.py
Normal file
39
yolov5/deep_sort_pytorch/utils/parser.py
Normal file
@ -0,0 +1,39 @@
|
||||
import os
|
||||
import yaml
|
||||
from easydict import EasyDict as edict
|
||||
|
||||
|
||||
class YamlParser(edict):
|
||||
"""
|
||||
This is yaml parser based on EasyDict.
|
||||
"""
|
||||
|
||||
def __init__(self, cfg_dict=None, config_file=None):
|
||||
if cfg_dict is None:
|
||||
cfg_dict = {}
|
||||
|
||||
if config_file is not None:
|
||||
assert(os.path.isfile(config_file))
|
||||
with open(config_file, 'r') as fo:
|
||||
cfg_dict.update(yaml.load(fo.read()))
|
||||
|
||||
super(YamlParser, self).__init__(cfg_dict)
|
||||
|
||||
def merge_from_file(self, config_file):
|
||||
with open(config_file, 'r') as fo:
|
||||
self.update(yaml.load(fo.read()))
|
||||
|
||||
def merge_from_dict(self, config_dict):
|
||||
self.update(config_dict)
|
||||
|
||||
|
||||
def get_config(config_file=None):
|
||||
return YamlParser(config_file=config_file)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
cfg = YamlParser(config_file="../configs/yolov3.yaml")
|
||||
cfg.merge_from_file("../configs/deep_sort.yaml")
|
||||
|
||||
import ipdb
|
||||
ipdb.set_trace()
|
39
yolov5/deep_sort_pytorch/utils/tools.py
Normal file
39
yolov5/deep_sort_pytorch/utils/tools.py
Normal file
@ -0,0 +1,39 @@
|
||||
from functools import wraps
|
||||
from time import time
|
||||
|
||||
|
||||
def is_video(ext: str):
|
||||
"""
|
||||
Returns true if ext exists in
|
||||
allowed_exts for video files.
|
||||
|
||||
Args:
|
||||
ext:
|
||||
|
||||
Returns:
|
||||
|
||||
"""
|
||||
|
||||
allowed_exts = ('.mp4', '.webm', '.ogg', '.avi', '.wmv', '.mkv', '.3gp')
|
||||
return any((ext.endswith(x) for x in allowed_exts))
|
||||
|
||||
|
||||
def tik_tok(func):
|
||||
"""
|
||||
keep track of time for each process.
|
||||
Args:
|
||||
func:
|
||||
|
||||
Returns:
|
||||
|
||||
"""
|
||||
@wraps(func)
|
||||
def _time_it(*args, **kwargs):
|
||||
start = time()
|
||||
try:
|
||||
return func(*args, **kwargs)
|
||||
finally:
|
||||
end_ = time()
|
||||
print("time: {:.03f}s, fps: {:.03f}".format(end_ - start, 1 / (end_ - start)))
|
||||
|
||||
return _time_it
|
127
yolov5/detect.py
127
yolov5/detect.py
@ -1,10 +1,13 @@
|
||||
import argparse
|
||||
import time
|
||||
import os
|
||||
from pathlib import Path
|
||||
|
||||
import cv2
|
||||
import sklearn
|
||||
import torch
|
||||
import torch.backends.cudnn as cudnn
|
||||
import numpy as np
|
||||
from numpy import random
|
||||
|
||||
from models.experimental import attempt_load
|
||||
@ -13,6 +16,52 @@ from utils.general import check_img_size, non_max_suppression, apply_classifier,
|
||||
strip_optimizer, set_logging, increment_path
|
||||
from utils.plots import plot_one_box
|
||||
from utils.torch_utils import select_device, load_classifier, time_synchronized
|
||||
from deep_sort_pytorch.utils.parser import get_config
|
||||
from deep_sort_pytorch.deep_sort import DeepSort
|
||||
|
||||
|
||||
palette = (2 ** 11 - 1, 2 ** 15 - 1, 2 ** 20 - 1)
|
||||
|
||||
|
||||
def bbox_rel(*xyxy):
|
||||
"""" Calculates the relative bounding box from absolute pixel values. """
|
||||
bbox_left = min([xyxy[0].item(), xyxy[2].item()])
|
||||
bbox_top = min([xyxy[1].item(), xyxy[3].item()])
|
||||
bbox_w = abs(xyxy[0].item() - xyxy[2].item())
|
||||
bbox_h = abs(xyxy[1].item() - xyxy[3].item())
|
||||
x_c = (bbox_left + bbox_w / 2)
|
||||
y_c = (bbox_top + bbox_h / 2)
|
||||
w = bbox_w
|
||||
h = bbox_h
|
||||
return x_c, y_c, w, h
|
||||
|
||||
|
||||
def compute_color_for_labels(label):
|
||||
"""
|
||||
Simple function that adds fixed color depending on the class
|
||||
"""
|
||||
color = [int((p * (label ** 2 - label + 1)) % 255) for p in palette]
|
||||
return tuple(color)
|
||||
|
||||
|
||||
def draw_boxes(img, bbox, identities=None, offset=(0, 0)):
|
||||
for i, box in enumerate(bbox):
|
||||
x1, y1, x2, y2 = [int(i) for i in box]
|
||||
x1 += offset[0]
|
||||
x2 += offset[0]
|
||||
y1 += offset[1]
|
||||
y2 += offset[1]
|
||||
# box text and bar
|
||||
id = int(identities[i]) if identities is not None else 0
|
||||
color = compute_color_for_labels(id)
|
||||
label = '{}{:d}'.format("", id)
|
||||
t_size = cv2.getTextSize(label, cv2.FONT_HERSHEY_PLAIN, 2, 2)[0]
|
||||
cv2.rectangle(img, (x1, y1), (x2, y2), color, 3)
|
||||
cv2.rectangle(
|
||||
img, (x1, y1), (x1 + t_size[0] + 3, y1 + t_size[1] + 4), color, -1)
|
||||
cv2.putText(img, label, (x1, y1 +
|
||||
t_size[1] + 4), cv2.FONT_HERSHEY_PLAIN, 2, [255, 255, 255], 2)
|
||||
return img
|
||||
|
||||
|
||||
def detect(save_img=False):
|
||||
@ -24,6 +73,15 @@ def detect(save_img=False):
|
||||
save_dir = Path(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok)) # increment run
|
||||
(save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
|
||||
|
||||
# DeepSort Initialize
|
||||
cfg = get_config()
|
||||
cfg.merge_from_file(opt.config_deepsort)
|
||||
deepsort = DeepSort(cfg.DEEPSORT.REID_CKPT,
|
||||
max_dist=cfg.DEEPSORT.MAX_DIST, min_confidence=cfg.DEEPSORT.MIN_CONFIDENCE,
|
||||
nms_max_overlap=cfg.DEEPSORT.NMS_MAX_OVERLAP, max_iou_distance=cfg.DEEPSORT.MAX_IOU_DISTANCE,
|
||||
max_age=cfg.DEEPSORT.MAX_AGE, n_init=cfg.DEEPSORT.N_INIT, nn_budget=cfg.DEEPSORT.NN_BUDGET,
|
||||
use_cuda=True)
|
||||
|
||||
# Initialize
|
||||
set_logging()
|
||||
device = select_device(opt.device)
|
||||
@ -51,14 +109,14 @@ def detect(save_img=False):
|
||||
save_img = True
|
||||
dataset = LoadImages(source, img_size=imgsz)
|
||||
|
||||
# Get names and colors
|
||||
# Get names
|
||||
names = model.module.names if hasattr(model, 'module') else model.names
|
||||
colors = [[random.randint(0, 255) for _ in range(3)] for _ in names]
|
||||
|
||||
# Run inference
|
||||
t0 = time.time()
|
||||
img = torch.zeros((1, 3, imgsz, imgsz), device=device) # init img
|
||||
_ = model(img.half() if half else img) if device.type != 'cpu' else None # run once
|
||||
|
||||
|
||||
for path, img, im0s, vid_cap in dataset:
|
||||
img = torch.from_numpy(img).to(device)
|
||||
img = img.half() if half else img.float() # uint8 to fp16/32
|
||||
@ -77,17 +135,15 @@ def detect(save_img=False):
|
||||
# Apply Classifier
|
||||
if classify:
|
||||
pred = apply_classifier(pred, modelc, img, im0s)
|
||||
|
||||
# Process detections
|
||||
for i, det in enumerate(pred): # detections per image
|
||||
if webcam: # batch_size >= 1
|
||||
p, s, im0, frame = path[i], '%g: ' % i, im0s[i].copy(), dataset.count
|
||||
p, s, im0, frame = Path(path[i]), '%g: ' % i, im0s[i].copy(), dataset.count
|
||||
else:
|
||||
p, s, im0, frame = path, '', im0s, getattr(dataset, 'frame', 0)
|
||||
p, s, im0, frame = Path(path), '', im0s, getattr(dataset, 'frame', 0)
|
||||
|
||||
p = Path(p) # to Path
|
||||
save_path = str(save_dir / p.name) # img.jpg
|
||||
txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}') # img.txt
|
||||
save_path = str(save_dir / p.name)
|
||||
txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}')
|
||||
s += '%gx%g ' % img.shape[2:] # print string
|
||||
gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
|
||||
if len(det):
|
||||
@ -99,7 +155,30 @@ def detect(save_img=False):
|
||||
n = (det[:, -1] == c).sum() # detections per class
|
||||
s += f'{n} {names[int(c)]}s, ' # add to string
|
||||
|
||||
# Write results
|
||||
bbox_xywh = []
|
||||
confs = []
|
||||
|
||||
# Adapt detections to deep sort input format
|
||||
for *xyxy, conf, cls in det:
|
||||
if cls == 0:
|
||||
x_c, y_c, bbox_w, bbox_h = bbox_rel(*xyxy)
|
||||
obj = [x_c, y_c, bbox_w, bbox_h]
|
||||
bbox_xywh.append(obj)
|
||||
confs.append([conf.item()])
|
||||
|
||||
xywhs = torch.Tensor(bbox_xywh)
|
||||
confss = torch.Tensor(confs)
|
||||
|
||||
# Pass detections to deepsort
|
||||
outputs = deepsort.update(xywhs, confss, im0)
|
||||
|
||||
# draw boxes for visualization
|
||||
if len(outputs) > 0:
|
||||
bbox_xyxy = outputs[:, :4]
|
||||
identities = outputs[:, -1]
|
||||
draw_boxes(im0, bbox_xyxy, identities)
|
||||
|
||||
|
||||
for *xyxy, conf, cls in reversed(det):
|
||||
if save_txt: # Write to file
|
||||
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
|
||||
@ -107,9 +186,26 @@ def detect(save_img=False):
|
||||
with open(txt_path + '.txt', 'a') as f:
|
||||
f.write(('%g ' * len(line)).rstrip() % line + '\n')
|
||||
|
||||
if save_img or view_img: # Add bbox to image
|
||||
label = f'{names[int(cls)]} {conf:.2f}'
|
||||
plot_one_box(xyxy, im0, label=label, color=colors[int(cls)], line_thickness=3)
|
||||
if cls == 32 and (save_img or view_img): # Add bbox to ball
|
||||
#label = f'{names[int(cls)]}'
|
||||
label = 'ball'
|
||||
plot_one_box(xyxy, im0, label=label, color=[0,0,0], line_thickness=2)
|
||||
|
||||
|
||||
# Write MOT compliant results to file
|
||||
""" if save_txt and len(outputs) != 0:
|
||||
for j, output in enumerate(outputs):
|
||||
bbox_left = output[0]
|
||||
bbox_top = output[1]
|
||||
bbox_w = output[2]
|
||||
bbox_h = output[3]
|
||||
identity = output[-1]
|
||||
with open(txt_path + '.txt', 'a') as f:
|
||||
f.write(('%g ' * 10 + '\n') % (j, identity, bbox_left,
|
||||
bbox_top, bbox_w, bbox_h, -1, -1, -1, -1)) # label format """
|
||||
|
||||
else:
|
||||
deepsort.increment_ages()
|
||||
|
||||
# Print time (inference + NMS)
|
||||
print(f'{s}Done. ({t2 - t1:.3f}s)')
|
||||
@ -155,13 +251,14 @@ if __name__ == '__main__':
|
||||
parser.add_argument('--view-img', action='store_true', help='display results')
|
||||
parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
|
||||
parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
|
||||
parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --class 0, or --class 0 2 3')
|
||||
parser.add_argument('--classes', nargs='+', type=int, default=[0, 32], help='filter by class: --class 0, or --class 0 2 3')
|
||||
parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
|
||||
parser.add_argument('--augment', action='store_true', help='augmented inference')
|
||||
parser.add_argument('--update', action='store_true', help='update all models')
|
||||
parser.add_argument('--project', default='runs/detect', help='save results to project/name')
|
||||
parser.add_argument('--project', default='../files/output', help='save results to project/name')
|
||||
parser.add_argument('--name', default='exp', help='save results to project/name')
|
||||
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
|
||||
parser.add_argument("--config_deepsort", type=str, default="deep_sort_pytorch/configs/deep_sort.yaml")
|
||||
opt = parser.parse_args()
|
||||
print(opt)
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user