Compare commits
74 Commits
VIS-1-VIS-
...
master
Author | SHA1 | Date | |
---|---|---|---|
179ee054a4 | |||
511c873d60 | |||
|
17194ad19b | ||
|
5a91ec638e | ||
|
315bf28e63 | ||
cc1d42e4cd | |||
|
2bb6e3fda1 | ||
|
3885dee017 | ||
2669185e60 | |||
|
980b323a1d | ||
|
c4d6e9fd66 | ||
|
418548cf65 | ||
|
b94304aa6e | ||
6cb77df335 | |||
bcf7808cba | |||
c1663bb9e7 | |||
0a204e6f74 | |||
|
002f2ae2b3 | ||
|
e5b595a86d | ||
|
0864afb2b7 | ||
7a74c39e14 | |||
|
681f434386 | ||
|
5ecd3cc79c | ||
|
c20509f16f | ||
|
a6a80f409c | ||
|
b4d08d6d4e | ||
352a952d74 | |||
2e9af39f60 | |||
|
5e24b10198 | ||
cee755a4d6 | |||
a7a63366d9 | |||
e099f35953 | |||
f812d68b36 | |||
8f98740280 | |||
|
3156842621 | ||
4544c8f398 | |||
e1a2b81a7f | |||
|
1c7aa28ed0 | ||
|
a4b04c7c8f | ||
|
27136567d4 | ||
0dd70ee9b7 | |||
|
98c1768d4f | ||
|
47a0a52475 | ||
5cceb7c77f | |||
cf29bdc68b | |||
|
f3b0d78b65 | ||
|
954619b0a5 | ||
|
4d842583f0 | ||
|
60f51dcb25 | ||
a19168fc05 | |||
|
2ef84b5fb3 | ||
|
0ef2278faf | ||
6ea143b46f | |||
|
5a37492188 | ||
cbd200ea98 | |||
|
5c7912aeab | ||
e25ea9936d | |||
ebba0059e2 | |||
|
36d5a30be0 | ||
|
f75fb1f333 | ||
2c19e7f472 | |||
21b49e425d | |||
467f8e5578 | |||
59fb733468 | |||
d02d0e53d1 | |||
fcb6d5f225 | |||
ec69d2df9d | |||
6f22a62e91 | |||
ffdb50f07f | |||
a0790ead09 | |||
|
ece0e50d51 | ||
9a522349b4 | |||
3862848a7e | |||
|
bfd9402e59 |
1
.gitignore
vendored
Normal file
1
.gitignore
vendored
Normal file
@ -0,0 +1 @@
|
|||||||
|
files/output/*
|
BIN
files/input/contr.mp4
Normal file
BIN
files/input/contr.mp4
Normal file
Binary file not shown.
BIN
files/input/contr_short.mp4
Normal file
BIN
files/input/contr_short.mp4
Normal file
Binary file not shown.
BIN
files/input/corner2.mp4
Normal file
BIN
files/input/corner2.mp4
Normal file
Binary file not shown.
BIN
files/input/frame.PNG
Normal file
BIN
files/input/frame.PNG
Normal file
Binary file not shown.
After Width: | Height: | Size: 5.0 MiB |
BIN
files/output/exp/contr_short.mp4
Normal file
BIN
files/output/exp/contr_short.mp4
Normal file
Binary file not shown.
BIN
files/output/frame.png
Normal file
BIN
files/output/frame.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 250 KiB |
BIN
files/output/frame_deep.png
Normal file
BIN
files/output/frame_deep.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 233 KiB |
BIN
win_venv/files/input/1611396369.mp4
Normal file
BIN
win_venv/files/input/1611396369.mp4
Normal file
Binary file not shown.
BIN
win_venv/files/input/1611416115.mp4
Normal file
BIN
win_venv/files/input/1611416115.mp4
Normal file
Binary file not shown.
BIN
win_venv/files/input/contr.mp4
Normal file
BIN
win_venv/files/input/contr.mp4
Normal file
Binary file not shown.
BIN
win_venv/files/input/contr_short.mp4
Normal file
BIN
win_venv/files/input/contr_short.mp4
Normal file
Binary file not shown.
BIN
win_venv/files/input/corner2.mp4
Normal file
BIN
win_venv/files/input/corner2.mp4
Normal file
Binary file not shown.
Binary file not shown.
Before Width: | Height: | Size: 562 KiB |
BIN
win_venv/files/output/contr.mp4
Normal file
BIN
win_venv/files/output/contr.mp4
Normal file
Binary file not shown.
BIN
win_venv/files/output/corner2.mp4
Normal file
BIN
win_venv/files/output/corner2.mp4
Normal file
Binary file not shown.
BIN
win_venv/files/output/exp2/1611396369.mp4
Normal file
BIN
win_venv/files/output/exp2/1611396369.mp4
Normal file
Binary file not shown.
BIN
win_venv/files/output/exp3/1611396369.mp4
Normal file
BIN
win_venv/files/output/exp3/1611396369.mp4
Normal file
Binary file not shown.
1
win_venv/files/output/test.pdf
Normal file
1
win_venv/files/output/test.pdf
Normal file
@ -0,0 +1 @@
|
|||||||
|
{\rtf1}
|
322
win_venv/main.py
322
win_venv/main.py
@ -1,62 +1,298 @@
|
|||||||
#import tkinter as tk
|
#import tkinter as tk
|
||||||
import sys
|
import sys
|
||||||
import os
|
import os, subprocess
|
||||||
import shutil
|
import shutil
|
||||||
from pathlib import Path
|
from datetime import datetime
|
||||||
|
import time
|
||||||
from PyQt5 import QtCore
|
from PyQt5 import QtCore
|
||||||
from PyQt5.QtWidgets import QApplication, QWidget, QLabel, QMainWindow, QGridLayout, QMenu, QFileDialog, QAction
|
from PyQt5.QtWidgets import *
|
||||||
from PyQt5.QtGui import QIcon, QPixmap
|
from PyQt5.QtGui import *
|
||||||
|
from PyQt5.QtCore import *
|
||||||
|
|
||||||
|
scriptPath = os.path.dirname(os.path.realpath(__file__))
|
||||||
|
inputFilePath = scriptPath + '\\files\\input'
|
||||||
|
outputFilePath = scriptPath + '\\files\\output'
|
||||||
|
|
||||||
|
LIB_RAW = 0
|
||||||
|
LIB_VIS = 1
|
||||||
|
|
||||||
|
|
||||||
# todo: change app into class (no time to do it now so sorry for it being messy code
|
stylesheet = """
|
||||||
def main():
|
MainWindow {
|
||||||
app = QApplication(sys.argv)
|
background: qlineargradient(x1:0 y1:0, x2:1 y2:0, stop:0 rgba(255,218,113,1), stop:0.5 rgba(215,137,255,1), stop:1 rgba(105,126,255,1));
|
||||||
|
}
|
||||||
|
"""
|
||||||
|
|
||||||
#w = QWidget()
|
|
||||||
w = QMainWindow()
|
def files(path):
|
||||||
w.setGeometry(0, 0, 600, 400)
|
for subdir, dirs, files_list in os.walk(path):
|
||||||
w.setWindowTitle('VisionScore')
|
for file in files_list:
|
||||||
|
yield os.path.join(subdir, file)
|
||||||
|
|
||||||
|
def delete_file(file):
|
||||||
|
os.remove(file)
|
||||||
|
|
||||||
|
def save_input(oldpath):
|
||||||
|
# add timestamp to the filename, so it wouln't overwrite but the user still knows which file's which
|
||||||
|
timestamp = str(int(time.time()))
|
||||||
|
basename = os.path.basename(oldpath)
|
||||||
|
try:
|
||||||
|
index_of_dot = basename.index('.')
|
||||||
|
basename_no_extension = basename[:index_of_dot]
|
||||||
|
extension = basename[index_of_dot:]
|
||||||
|
except ValueError:
|
||||||
|
basename_no_extension = basename
|
||||||
|
extension = ''
|
||||||
|
filename = basename_no_extension + '_' + timestamp + extension
|
||||||
|
newpath = inputFilePath + '\\' + filename
|
||||||
|
shutil.copy(oldpath, newpath)
|
||||||
|
return newpath
|
||||||
|
|
||||||
|
|
||||||
|
class deletePopup(QMessageBox):
|
||||||
|
def __init__(self, parent=None):
|
||||||
|
super(deletePopup, self).__init__(parent)
|
||||||
|
self.setText("Are you sure you want to delete the file?")
|
||||||
|
self.setIcon(self.Warning)
|
||||||
|
self.setWindowTitle("Confirm deletion")
|
||||||
|
self.setStandardButtons(self.Yes | self.No)
|
||||||
|
|
||||||
|
|
||||||
|
class analizePopup(QMessageBox):
|
||||||
|
def __init__(self, parent=None):
|
||||||
|
super(analizePopup, self).__init__(parent)
|
||||||
|
self.setStyleSheet("QLabel{min-width: 100px; max-width: 100px; qproperty-alignment: AlignCenter;}");
|
||||||
|
self.setWindowIcon(QIcon(scriptPath + os.path.sep + 'static/v_logo.jpg'))
|
||||||
|
self.setText("Analyzing file...")
|
||||||
|
self.setWindowTitle("File analysis")
|
||||||
|
# create Label
|
||||||
|
self.setIconPixmap(QPixmap(scriptPath + os.path.sep + 'static/loading.gif'))
|
||||||
|
icon_label = self.findChild(QLabel, "qt_msgboxex_icon_label")
|
||||||
|
movie = QMovie(scriptPath + os.path.sep + 'static/loading.gif')
|
||||||
|
# avoid garbage collector
|
||||||
|
setattr(self, 'icon_label', movie)
|
||||||
|
icon_label.setMovie(movie)
|
||||||
|
movie.start()
|
||||||
|
self.setStandardButtons(self.Cancel)
|
||||||
|
|
||||||
|
|
||||||
|
class LibraryTableButtons(QWidget):
|
||||||
|
def __init__(self, file, table, type, mainWindow, parent=None):
|
||||||
|
super(LibraryTableButtons,self).__init__(parent)
|
||||||
|
|
||||||
|
def viewFile():
|
||||||
|
os.startfile(file)
|
||||||
|
|
||||||
|
def deleteFile():
|
||||||
|
self.exPopup = deletePopup()
|
||||||
|
ret = self.exPopup.exec()
|
||||||
|
if ret == self.exPopup.Yes:
|
||||||
|
delete_file(file)
|
||||||
|
table.fillTable(type, mainWindow)
|
||||||
|
|
||||||
|
def analyzeFile():
|
||||||
|
self.exPopup = analizePopup()
|
||||||
|
|
||||||
|
#cmd = "py detect.py --source {} --view-img".format(str(file))
|
||||||
|
#popen = subprocess.Popen(cmd, cwd="../yolov5/", stdout=subprocess.PIPE)
|
||||||
|
cancel = self.exPopup.exec()
|
||||||
|
if cancel == self.exPopup.Cancel:
|
||||||
|
#popen.terminate()
|
||||||
|
pass
|
||||||
|
#popen.wait()
|
||||||
|
self.exPopup.close()
|
||||||
|
# mainWindow.showVisualisation(file) <- ALWAYS shows even if you cancel the process and we don't have time to fix that now
|
||||||
|
|
||||||
|
|
||||||
|
layout = QHBoxLayout()
|
||||||
|
layout.setContentsMargins(0,0,0,0)
|
||||||
|
layout.setSpacing(0)
|
||||||
|
|
||||||
|
if type == LIB_RAW:
|
||||||
|
analyze_btn = QPushButton('Analyze')
|
||||||
|
analyze_btn.clicked.connect(analyzeFile)
|
||||||
|
layout.addWidget(analyze_btn)
|
||||||
|
|
||||||
|
view_btn = QPushButton('View')
|
||||||
|
view_btn.clicked.connect(viewFile)
|
||||||
|
layout.addWidget(view_btn)
|
||||||
|
|
||||||
|
delete_btn = QPushButton('Delete')
|
||||||
|
delete_btn.clicked.connect(deleteFile)
|
||||||
|
layout.addWidget(delete_btn)
|
||||||
|
|
||||||
|
self.setLayout(layout)
|
||||||
|
|
||||||
|
|
||||||
|
class LibraryTable(QTableWidget):
|
||||||
|
|
||||||
|
def __init__(self, type, mainWindow, singleFilePath = None, parent = None):
|
||||||
|
QTableWidget.__init__(self)
|
||||||
|
self.fillTable(type, mainWindow, singleFilePath)
|
||||||
|
|
||||||
|
def fillTable(self, type, mainWindow, singleFilePath = None):
|
||||||
|
self.setColumnCount(3)
|
||||||
|
|
||||||
|
if singleFilePath != None:
|
||||||
|
self.setRowCount(1)
|
||||||
|
|
||||||
|
self.setHorizontalHeaderLabels(['Upload date', 'Filename', 'Options'])
|
||||||
|
filePath = inputFilePath
|
||||||
|
|
||||||
|
self.horizontalHeader().setSectionResizeMode(0, QHeaderView.Stretch)
|
||||||
|
self.horizontalHeader().setSectionResizeMode(1, QHeaderView.Stretch)
|
||||||
|
self.horizontalHeader().setSectionResizeMode(2, QHeaderView.ResizeToContents)
|
||||||
|
|
||||||
|
self.setItem(0,0,QTableWidgetItem(str(datetime.fromtimestamp(os.path.getmtime(singleFilePath)))))
|
||||||
|
self.setItem(0,1,QTableWidgetItem(str(os.path.basename(singleFilePath))))
|
||||||
|
self.setCellWidget(0,2,LibraryTableButtons(singleFilePath, self, type, mainWindow))
|
||||||
|
|
||||||
|
|
||||||
|
else:
|
||||||
|
if type == LIB_RAW:
|
||||||
|
self.setHorizontalHeaderLabels(['Upload date', 'Filename', 'Options'])
|
||||||
|
filePath = inputFilePath
|
||||||
|
else:
|
||||||
|
self.setHorizontalHeaderLabels(['Creation date', 'Filename', 'Options'])
|
||||||
|
filePath = outputFilePath
|
||||||
|
|
||||||
|
self.horizontalHeader().setSectionResizeMode(0, QHeaderView.Stretch)
|
||||||
|
self.horizontalHeader().setSectionResizeMode(1, QHeaderView.Stretch)
|
||||||
|
self.horizontalHeader().setSectionResizeMode(2, QHeaderView.ResizeToContents)
|
||||||
|
|
||||||
|
dates = []
|
||||||
|
names = []
|
||||||
|
|
||||||
|
for index, file in enumerate(files(filePath)):
|
||||||
|
dates.append(QTableWidgetItem(str(datetime.fromtimestamp(os.path.getmtime(file)))))
|
||||||
|
names.append(QTableWidgetItem(str(file)))
|
||||||
|
|
||||||
|
self.setRowCount(len(dates))
|
||||||
|
|
||||||
|
for index, date in enumerate(dates):
|
||||||
|
self.setItem(index,0,date)
|
||||||
|
self.setItem(index,1,names[index])
|
||||||
|
self.setCellWidget(index,2,LibraryTableButtons(names[index].text(), self, type, mainWindow))
|
||||||
|
|
||||||
|
|
||||||
|
class formatHelp(QLabel):
|
||||||
|
|
||||||
|
def __init__(self, parent=None):
|
||||||
|
QLabel.__init__(self)
|
||||||
|
with open(scriptPath + os.path.sep + 'static/help.txt', 'r', encoding='utf-8') as file:
|
||||||
|
help_text = file.read().replace('\n', '')
|
||||||
|
self.setText(help_text)
|
||||||
|
self.setStyleSheet("padding-left: 20px; padding-right: 20px; padding-top: 10px; padding-bottom: 10px; font-size:32px; background-color: white;")
|
||||||
|
self.adjustSize()
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
class MainWindow(QMainWindow):
|
||||||
|
|
||||||
|
def __init__(self):
|
||||||
|
super().__init__()
|
||||||
|
self.initUI()
|
||||||
|
|
||||||
|
# todo: split in multiply labels for richer formatting
|
||||||
|
# Show Help tab
|
||||||
|
def showHelp(self):
|
||||||
|
label = formatHelp()
|
||||||
|
self.setCentralWidget(label)
|
||||||
|
|
||||||
|
def showHomepage(self):
|
||||||
|
# Upload file button + instructions on homepage
|
||||||
|
label = QLabel('Welcome to VisionScore! Use the button below to upload a file and start analyzing it. If you need further help, please click the "help" item in the menu above.', self)
|
||||||
|
label.setFont(QFont('Arial', 14))
|
||||||
|
label.setStyleSheet('color: white;')
|
||||||
|
label.adjustSize()
|
||||||
|
label.move(200,200)
|
||||||
|
|
||||||
|
shadow = QGraphicsDropShadowEffect()
|
||||||
|
shadow.setBlurRadius(10)
|
||||||
|
shadow.setOffset(2)
|
||||||
|
label.setGraphicsEffect(shadow)
|
||||||
|
|
||||||
|
button = QPushButton('Upload file', self)
|
||||||
|
button.setToolTip('This is an example button')
|
||||||
|
button.move(850,270)
|
||||||
|
button.setFixedSize(220, 50)
|
||||||
|
button.clicked.connect(self.showUploadFile)
|
||||||
|
|
||||||
|
# Show raw uploaded files
|
||||||
|
def showInputLibrary(self):
|
||||||
|
libTable = LibraryTable(LIB_RAW, self)
|
||||||
|
self.setCentralWidget(libTable)
|
||||||
|
|
||||||
|
# Show visualisations
|
||||||
|
def showVisualisationsLibrary(self):
|
||||||
|
libTable = LibraryTable(LIB_VIS, self)
|
||||||
|
self.setCentralWidget(libTable)
|
||||||
|
|
||||||
|
def showUploadFile(self):
|
||||||
|
dialog = QFileDialog(self)
|
||||||
|
dialog.setFileMode(QFileDialog.AnyFile)
|
||||||
|
dialog.setFilter(QDir.Files)
|
||||||
|
if dialog.exec_():
|
||||||
|
file_path = dialog.selectedFiles()[0] # ['C:/Users/agatha/Desktop/SYI/VisionScore/win_venv/requirements.txt']
|
||||||
|
newPath = save_input(file_path)
|
||||||
|
singleFileTable = LibraryTable(LIB_RAW, self, newPath)
|
||||||
|
self.setCentralWidget(singleFileTable)
|
||||||
|
|
||||||
|
def showVisualisation(self, path):
|
||||||
|
singleFileTable = LibraryTable(LIB_VIS, self, path)
|
||||||
|
self.setCentralWidget(singleFileTable)
|
||||||
|
|
||||||
|
def initUI(self):
|
||||||
|
self.setGeometry(0, 0, 600, 400)
|
||||||
|
self.setWindowTitle('VisionScore')
|
||||||
scriptDir = os.path.dirname(os.path.realpath(__file__))
|
scriptDir = os.path.dirname(os.path.realpath(__file__))
|
||||||
w.setWindowIcon(QIcon(scriptDir + os.path.sep + 'static/v_logo.jpg'))
|
self.setWindowIcon(QIcon(scriptDir + os.path.sep + 'static/v_logo.jpg'))
|
||||||
|
self.showHomepage()
|
||||||
|
|
||||||
'''
|
# File menu
|
||||||
label = QLabel()
|
menuBar = self.menuBar()
|
||||||
pixmap = QPixmap(scriptDir + os.path.sep + 'static/visionscore_logo.jpg')
|
fileMenu = QMenu("&File", self)
|
||||||
label.setPixmap(pixmap)
|
menuBar.addMenu(fileMenu)
|
||||||
label.resize(pixmap.width(), pixmap.height())
|
|
||||||
label.setAlignment(QtCore.Qt.AlignTop)
|
|
||||||
w.setCentralWidget(label)
|
|
||||||
'''
|
|
||||||
# Toolbar
|
|
||||||
menuBar = w.menuBar()
|
|
||||||
homeMenu = QMenu("&Home", w)
|
|
||||||
menuBar.addMenu(homeMenu)
|
|
||||||
|
|
||||||
def showDialog():
|
# Upload file
|
||||||
home_dir = str(Path.home())
|
uploadAct = QAction('&Upload new file', self)
|
||||||
fname = QFileDialog.getOpenFileName(w, 'Load new file', home_dir)
|
uploadAct.triggered.connect(self.showUploadFile)
|
||||||
if fname[0]:
|
fileMenu.addAction(uploadAct)
|
||||||
shutil.copy(fname[0], 'files/input/test.jpg') #copy the file to destination dir
|
|
||||||
|
|
||||||
|
|
||||||
# Load new file
|
|
||||||
loadFileAct = QAction('&Load new file', w)
|
|
||||||
loadFileAct.setStatusTip('Load new file')
|
|
||||||
# todo: fix - it opens on app run not on click
|
|
||||||
#loadFileAct.triggered.connect(showDialog())
|
|
||||||
homeMenu.addAction(loadFileAct)
|
|
||||||
|
|
||||||
# Exit app
|
# Exit app
|
||||||
exitAct = QAction('&Exit', w)
|
exitAct = QAction('&Exit', self)
|
||||||
exitAct.setShortcut('Ctrl+Q')
|
exitAct.setShortcut('Ctrl+Q')
|
||||||
exitAct.setStatusTip('Exit')
|
exitAct.setStatusTip('Exit')
|
||||||
exitAct.triggered.connect(app.quit)
|
exitAct.triggered.connect(qApp.quit)
|
||||||
homeMenu.addAction(exitAct)
|
fileMenu.addAction(exitAct)
|
||||||
|
|
||||||
historyMenu = menuBar.addMenu("&History")
|
# Library menu
|
||||||
helpMenu = menuBar.addMenu("&Help")
|
libraryMenu = QMenu("&Library", self)
|
||||||
|
menuBar.addMenu(libraryMenu)
|
||||||
|
|
||||||
w.show()
|
# Input files
|
||||||
|
inputAct = QAction('&Input files', self)
|
||||||
|
inputAct.triggered.connect(self.showInputLibrary)
|
||||||
|
libraryMenu.addAction(inputAct)
|
||||||
|
|
||||||
|
# Visualisations
|
||||||
|
visAct = QAction('&Visualisations', self)
|
||||||
|
visAct.triggered.connect(self.showVisualisationsLibrary)
|
||||||
|
libraryMenu.addAction(visAct)
|
||||||
|
|
||||||
|
# Help
|
||||||
|
helpAct = QAction('&Help', self)
|
||||||
|
helpAct.triggered.connect(self.showHelp)
|
||||||
|
menuBar.addAction(helpAct)
|
||||||
|
|
||||||
|
self.showMaximized()
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
app = QApplication(sys.argv)
|
||||||
|
app.setStyleSheet(stylesheet)
|
||||||
|
|
||||||
|
w = MainWindow()
|
||||||
sys.exit(app.exec_())
|
sys.exit(app.exec_())
|
||||||
|
|
||||||
|
|
||||||
|
1
win_venv/static/help.txt
Normal file
1
win_venv/static/help.txt
Normal file
@ -0,0 +1 @@
|
|||||||
|
<p>VisionScore to program służący do generowania analizy nagrań lub zdjęć z meczów piłkarskich.<br /><br />By wygenerować taką analizę, należy postępować według następujących kroków:<br /><br />1. Wgraj plik z plikiem do przeanalizowania<br /><em>File -> Upload new file</em><br />2. Po wgraniu pliku pojawi się on w <br /><em>Library -> Input files</em><br /> 3. By wygenerować analizę należy kliknąć przycisk<br /><em>Analyze</em><br />znajdujący się obok wgranego pliku. Analizę można wygenerować także do uprzednio wgranych plików.<br />4. Po wygenerowaniu, analiza znajdować się będzie w <br /><em>Library -> Vizusalizations</em><br />możesz tam także zobaczyć wszystkie poprzednio wygenerowane analizy.<br /><br />Każdy plik źródłowy lub wygenerowaną analizę możesz w każdym momencie podejrzeć klikając<br /><em>View</em><br />obok pliku znajdującego się w bibliotekach. Plik możesz też w każdym momencie usunąć klikając<br /><em>Delete</em><br />obok odpowiedniego pliku.<br /><br /><br />Zakończ działanie aplikacji klikąc<br /><em>File -> Exit</em><br />używając skrótu klawiszowego Ctrl+Q lub bo prostu zamykając okienko aplikacji.<br /><br /><br /><strong>Kontakt: mikbed@st.amu.edu.pl</strong></p>
|
BIN
win_venv/static/loading.gif
Normal file
BIN
win_venv/static/loading.gif
Normal file
Binary file not shown.
After Width: | Height: | Size: 48 KiB |
4
win_venv/test.txt
Normal file
4
win_venv/test.txt
Normal file
@ -0,0 +1,4 @@
|
|||||||
|
testing
|
||||||
|
|
||||||
|
|
||||||
|
more testing
|
62
win_venv/tests.py
Normal file
62
win_venv/tests.py
Normal file
@ -0,0 +1,62 @@
|
|||||||
|
import unittest
|
||||||
|
from main import *
|
||||||
|
from unittest.mock import Mock
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
# test saving file
|
||||||
|
class savingFileTest(unittest.TestCase):
|
||||||
|
|
||||||
|
def test_text_file(self):
|
||||||
|
print('Testing save_input method \n')
|
||||||
|
old_file_content = 'testing\n\n\nmore testing'
|
||||||
|
with open('test.txt', 'w') as file:
|
||||||
|
file.write(old_file_content)
|
||||||
|
|
||||||
|
script_path = os.path.dirname(os.path.realpath(__file__))
|
||||||
|
test_file_path = script_path + '\\test.txt'
|
||||||
|
newpath = save_input(test_file_path)
|
||||||
|
|
||||||
|
new_file_content = ''
|
||||||
|
with open(newpath, 'r') as new_file:
|
||||||
|
for line in new_file:
|
||||||
|
new_file_content += line
|
||||||
|
|
||||||
|
self.assertEqual(old_file_content, new_file_content)
|
||||||
|
os.remove(newpath)
|
||||||
|
|
||||||
|
|
||||||
|
# test using mock checking if a file with analysis had been generated
|
||||||
|
class generetingOutputFile(unittest.TestCase):
|
||||||
|
|
||||||
|
def test_output_file(self):
|
||||||
|
|
||||||
|
print('Mock testing outputfile')
|
||||||
|
m = Mock()
|
||||||
|
m.output_file_path = scriptPath + '\\files\\output\\test.pdf'
|
||||||
|
|
||||||
|
assert Path(m.output_file_path).is_file()
|
||||||
|
|
||||||
|
|
||||||
|
# test deleting input file
|
||||||
|
class testDeleteFile(unittest.TestCase):
|
||||||
|
|
||||||
|
def test_delete_file(self):
|
||||||
|
|
||||||
|
print('Testing deleting the file')
|
||||||
|
new_file = inputFilePath + os.path.sep + 'new_file.txt'
|
||||||
|
with open(new_file, 'w') as file:
|
||||||
|
file.write('teeeest')
|
||||||
|
|
||||||
|
with open(new_file) as f:
|
||||||
|
content = f.read()
|
||||||
|
|
||||||
|
assert os.path.exists(new_file)
|
||||||
|
self.assertEqual(content, 'teeeest')
|
||||||
|
|
||||||
|
delete_file(new_file)
|
||||||
|
|
||||||
|
self.assertFalse(os.path.exists(new_file))
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
unittest.main()
|
252
yolov5/.gitignore
vendored
Normal file
252
yolov5/.gitignore
vendored
Normal file
@ -0,0 +1,252 @@
|
|||||||
|
# Repo-specific GitIgnore ----------------------------------------------------------------------------------------------
|
||||||
|
*.jpg
|
||||||
|
*.jpeg
|
||||||
|
*.png
|
||||||
|
*.bmp
|
||||||
|
*.tif
|
||||||
|
*.tiff
|
||||||
|
*.heic
|
||||||
|
*.JPG
|
||||||
|
*.JPEG
|
||||||
|
*.PNG
|
||||||
|
*.BMP
|
||||||
|
*.TIF
|
||||||
|
*.TIFF
|
||||||
|
*.HEIC
|
||||||
|
*.mp4
|
||||||
|
*.mov
|
||||||
|
*.MOV
|
||||||
|
*.avi
|
||||||
|
*.data
|
||||||
|
*.json
|
||||||
|
|
||||||
|
*.cfg
|
||||||
|
!cfg/yolov3*.cfg
|
||||||
|
|
||||||
|
storage.googleapis.com
|
||||||
|
runs/*
|
||||||
|
data/*
|
||||||
|
!data/images/zidane.jpg
|
||||||
|
!data/images/bus.jpg
|
||||||
|
!data/coco.names
|
||||||
|
!data/coco_paper.names
|
||||||
|
!data/coco.data
|
||||||
|
!data/coco_*.data
|
||||||
|
!data/coco_*.txt
|
||||||
|
!data/trainvalno5k.shapes
|
||||||
|
!data/*.sh
|
||||||
|
|
||||||
|
pycocotools/*
|
||||||
|
results*.txt
|
||||||
|
gcp_test*.sh
|
||||||
|
|
||||||
|
# Datasets -------------------------------------------------------------------------------------------------------------
|
||||||
|
coco/
|
||||||
|
coco128/
|
||||||
|
VOC/
|
||||||
|
|
||||||
|
# MATLAB GitIgnore -----------------------------------------------------------------------------------------------------
|
||||||
|
*.m~
|
||||||
|
*.mat
|
||||||
|
!targets*.mat
|
||||||
|
|
||||||
|
# Neural Network weights -----------------------------------------------------------------------------------------------
|
||||||
|
*.weights
|
||||||
|
*.pt
|
||||||
|
*.onnx
|
||||||
|
*.mlmodel
|
||||||
|
*.torchscript
|
||||||
|
darknet53.conv.74
|
||||||
|
yolov3-tiny.conv.15
|
||||||
|
|
||||||
|
# GitHub Python GitIgnore ----------------------------------------------------------------------------------------------
|
||||||
|
# Byte-compiled / optimized / DLL files
|
||||||
|
__pycache__/
|
||||||
|
*.py[cod]
|
||||||
|
*$py.class
|
||||||
|
|
||||||
|
# C extensions
|
||||||
|
*.so
|
||||||
|
|
||||||
|
# Distribution / packaging
|
||||||
|
.Python
|
||||||
|
env/
|
||||||
|
build/
|
||||||
|
develop-eggs/
|
||||||
|
dist/
|
||||||
|
downloads/
|
||||||
|
eggs/
|
||||||
|
.eggs/
|
||||||
|
lib/
|
||||||
|
lib64/
|
||||||
|
parts/
|
||||||
|
sdist/
|
||||||
|
var/
|
||||||
|
wheels/
|
||||||
|
*.egg-info/
|
||||||
|
wandb/
|
||||||
|
.installed.cfg
|
||||||
|
*.egg
|
||||||
|
|
||||||
|
|
||||||
|
# PyInstaller
|
||||||
|
# Usually these files are written by a python script from a template
|
||||||
|
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
||||||
|
*.manifest
|
||||||
|
*.spec
|
||||||
|
|
||||||
|
# Installer logs
|
||||||
|
pip-log.txt
|
||||||
|
pip-delete-this-directory.txt
|
||||||
|
|
||||||
|
# Unit test / coverage reports
|
||||||
|
htmlcov/
|
||||||
|
.tox/
|
||||||
|
.coverage
|
||||||
|
.coverage.*
|
||||||
|
.cache
|
||||||
|
nosetests.xml
|
||||||
|
coverage.xml
|
||||||
|
*.cover
|
||||||
|
.hypothesis/
|
||||||
|
|
||||||
|
# Translations
|
||||||
|
*.mo
|
||||||
|
*.pot
|
||||||
|
|
||||||
|
# Django stuff:
|
||||||
|
*.log
|
||||||
|
local_settings.py
|
||||||
|
|
||||||
|
# Flask stuff:
|
||||||
|
instance/
|
||||||
|
.webassets-cache
|
||||||
|
|
||||||
|
# Scrapy stuff:
|
||||||
|
.scrapy
|
||||||
|
|
||||||
|
# Sphinx documentation
|
||||||
|
docs/_build/
|
||||||
|
|
||||||
|
# PyBuilder
|
||||||
|
target/
|
||||||
|
|
||||||
|
# Jupyter Notebook
|
||||||
|
.ipynb_checkpoints
|
||||||
|
|
||||||
|
# pyenv
|
||||||
|
.python-version
|
||||||
|
|
||||||
|
# celery beat schedule file
|
||||||
|
celerybeat-schedule
|
||||||
|
|
||||||
|
# SageMath parsed files
|
||||||
|
*.sage.py
|
||||||
|
|
||||||
|
# dotenv
|
||||||
|
.env
|
||||||
|
|
||||||
|
# virtualenv
|
||||||
|
.venv*
|
||||||
|
venv*/
|
||||||
|
ENV*/
|
||||||
|
|
||||||
|
# Spyder project settings
|
||||||
|
.spyderproject
|
||||||
|
.spyproject
|
||||||
|
|
||||||
|
# Rope project settings
|
||||||
|
.ropeproject
|
||||||
|
|
||||||
|
# mkdocs documentation
|
||||||
|
/site
|
||||||
|
|
||||||
|
# mypy
|
||||||
|
.mypy_cache/
|
||||||
|
|
||||||
|
|
||||||
|
# https://github.com/github/gitignore/blob/master/Global/macOS.gitignore -----------------------------------------------
|
||||||
|
|
||||||
|
# General
|
||||||
|
.DS_Store
|
||||||
|
.AppleDouble
|
||||||
|
.LSOverride
|
||||||
|
|
||||||
|
# Icon must end with two \r
|
||||||
|
Icon
|
||||||
|
Icon?
|
||||||
|
|
||||||
|
# Thumbnails
|
||||||
|
._*
|
||||||
|
|
||||||
|
# Files that might appear in the root of a volume
|
||||||
|
.DocumentRevisions-V100
|
||||||
|
.fseventsd
|
||||||
|
.Spotlight-V100
|
||||||
|
.TemporaryItems
|
||||||
|
.Trashes
|
||||||
|
.VolumeIcon.icns
|
||||||
|
.com.apple.timemachine.donotpresent
|
||||||
|
|
||||||
|
# Directories potentially created on remote AFP share
|
||||||
|
.AppleDB
|
||||||
|
.AppleDesktop
|
||||||
|
Network Trash Folder
|
||||||
|
Temporary Items
|
||||||
|
.apdisk
|
||||||
|
|
||||||
|
|
||||||
|
# https://github.com/github/gitignore/blob/master/Global/JetBrains.gitignore
|
||||||
|
# Covers JetBrains IDEs: IntelliJ, RubyMine, PhpStorm, AppCode, PyCharm, CLion, Android Studio and WebStorm
|
||||||
|
# Reference: https://intellij-support.jetbrains.com/hc/en-us/articles/206544839
|
||||||
|
|
||||||
|
# User-specific stuff:
|
||||||
|
.idea/*
|
||||||
|
.idea/**/workspace.xml
|
||||||
|
.idea/**/tasks.xml
|
||||||
|
.idea/dictionaries
|
||||||
|
.html # Bokeh Plots
|
||||||
|
.pg # TensorFlow Frozen Graphs
|
||||||
|
.avi # videos
|
||||||
|
|
||||||
|
# Sensitive or high-churn files:
|
||||||
|
.idea/**/dataSources/
|
||||||
|
.idea/**/dataSources.ids
|
||||||
|
.idea/**/dataSources.local.xml
|
||||||
|
.idea/**/sqlDataSources.xml
|
||||||
|
.idea/**/dynamic.xml
|
||||||
|
.idea/**/uiDesigner.xml
|
||||||
|
|
||||||
|
# Gradle:
|
||||||
|
.idea/**/gradle.xml
|
||||||
|
.idea/**/libraries
|
||||||
|
|
||||||
|
# CMake
|
||||||
|
cmake-build-debug/
|
||||||
|
cmake-build-release/
|
||||||
|
|
||||||
|
# Mongo Explorer plugin:
|
||||||
|
.idea/**/mongoSettings.xml
|
||||||
|
|
||||||
|
## File-based project format:
|
||||||
|
*.iws
|
||||||
|
|
||||||
|
## Plugin-specific files:
|
||||||
|
|
||||||
|
# IntelliJ
|
||||||
|
out/
|
||||||
|
|
||||||
|
# mpeltonen/sbt-idea plugin
|
||||||
|
.idea_modules/
|
||||||
|
|
||||||
|
# JIRA plugin
|
||||||
|
atlassian-ide-plugin.xml
|
||||||
|
|
||||||
|
# Cursive Clojure plugin
|
||||||
|
.idea/replstate.xml
|
||||||
|
|
||||||
|
# Crashlytics plugin (for Android Studio and IntelliJ)
|
||||||
|
com_crashlytics_export_strings.xml
|
||||||
|
crashlytics.properties
|
||||||
|
crashlytics-build.properties
|
||||||
|
fabric.properties
|
55
yolov5/Dockerfile
Normal file
55
yolov5/Dockerfile
Normal file
@ -0,0 +1,55 @@
|
|||||||
|
# Start FROM Nvidia PyTorch image https://ngc.nvidia.com/catalog/containers/nvidia:pytorch
|
||||||
|
FROM nvcr.io/nvidia/pytorch:20.12-py3
|
||||||
|
|
||||||
|
# Install linux packages
|
||||||
|
RUN apt update && apt install -y screen libgl1-mesa-glx
|
||||||
|
|
||||||
|
# Install python dependencies
|
||||||
|
RUN pip install --upgrade pip
|
||||||
|
COPY requirements.txt .
|
||||||
|
RUN pip install -r requirements.txt
|
||||||
|
RUN pip install gsutil
|
||||||
|
|
||||||
|
# Create working directory
|
||||||
|
RUN mkdir -p /usr/src/app
|
||||||
|
WORKDIR /usr/src/app
|
||||||
|
|
||||||
|
# Copy contents
|
||||||
|
COPY . /usr/src/app
|
||||||
|
|
||||||
|
# Copy weights
|
||||||
|
#RUN python3 -c "from models import *; \
|
||||||
|
#attempt_download('weights/yolov5s.pt'); \
|
||||||
|
#attempt_download('weights/yolov5m.pt'); \
|
||||||
|
#attempt_download('weights/yolov5l.pt')"
|
||||||
|
|
||||||
|
|
||||||
|
# --------------------------------------------------- Extras Below ---------------------------------------------------
|
||||||
|
|
||||||
|
# Build and Push
|
||||||
|
# t=ultralytics/yolov5:latest && sudo docker build -t $t . && sudo docker push $t
|
||||||
|
# for v in {300..303}; do t=ultralytics/coco:v$v && sudo docker build -t $t . && sudo docker push $t; done
|
||||||
|
|
||||||
|
# Pull and Run
|
||||||
|
# t=ultralytics/yolov5:latest && sudo docker pull $t && sudo docker run -it --ipc=host --gpus all $t
|
||||||
|
|
||||||
|
# Pull and Run with local directory access
|
||||||
|
# t=ultralytics/yolov5:latest && sudo docker pull $t && sudo docker run -it --ipc=host --gpus all -v "$(pwd)"/coco:/usr/src/coco $t
|
||||||
|
|
||||||
|
# Kill all
|
||||||
|
# sudo docker kill $(sudo docker ps -q)
|
||||||
|
|
||||||
|
# Kill all image-based
|
||||||
|
# sudo docker kill $(sudo docker ps -a -q --filter ancestor=ultralytics/yolov5:latest)
|
||||||
|
|
||||||
|
# Bash into running container
|
||||||
|
# sudo docker container exec -it ba65811811ab bash
|
||||||
|
|
||||||
|
# Bash into stopped container
|
||||||
|
# sudo docker commit 092b16b25c5b usr/resume && sudo docker run -it --gpus all --ipc=host -v "$(pwd)"/coco:/usr/src/coco --entrypoint=sh usr/resume
|
||||||
|
|
||||||
|
# Send weights to GCP
|
||||||
|
# python -c "from utils.general import *; strip_optimizer('runs/train/exp0_*/weights/best.pt', 'tmp.pt')" && gsutil cp tmp.pt gs://*.pt
|
||||||
|
|
||||||
|
# Clean up
|
||||||
|
# docker system prune -a --volumes
|
13
yolov5/deep_sort_pytorch/.gitignore
vendored
Normal file
13
yolov5/deep_sort_pytorch/.gitignore
vendored
Normal file
@ -0,0 +1,13 @@
|
|||||||
|
# Folders
|
||||||
|
__pycache__/
|
||||||
|
build/
|
||||||
|
*.egg-info
|
||||||
|
|
||||||
|
|
||||||
|
# Files
|
||||||
|
*.weights
|
||||||
|
*.t7
|
||||||
|
*.mp4
|
||||||
|
*.avi
|
||||||
|
*.so
|
||||||
|
*.txt
|
21
yolov5/deep_sort_pytorch/LICENSE
Normal file
21
yolov5/deep_sort_pytorch/LICENSE
Normal file
@ -0,0 +1,21 @@
|
|||||||
|
MIT License
|
||||||
|
|
||||||
|
Copyright (c) 2020 Ziqiang
|
||||||
|
|
||||||
|
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||||
|
of this software and associated documentation files (the "Software"), to deal
|
||||||
|
in the Software without restriction, including without limitation the rights
|
||||||
|
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||||
|
copies of the Software, and to permit persons to whom the Software is
|
||||||
|
furnished to do so, subject to the following conditions:
|
||||||
|
|
||||||
|
The above copyright notice and this permission notice shall be included in all
|
||||||
|
copies or substantial portions of the Software.
|
||||||
|
|
||||||
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||||
|
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||||
|
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||||
|
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||||
|
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||||
|
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||||
|
SOFTWARE.
|
137
yolov5/deep_sort_pytorch/README.md
Normal file
137
yolov5/deep_sort_pytorch/README.md
Normal file
@ -0,0 +1,137 @@
|
|||||||
|
# Deep Sort with PyTorch
|
||||||
|
|
||||||
|
![](demo/demo.gif)
|
||||||
|
|
||||||
|
## Update(1-1-2020)
|
||||||
|
Changes
|
||||||
|
- fix bugs
|
||||||
|
- refactor code
|
||||||
|
- accerate detection by adding nms on gpu
|
||||||
|
|
||||||
|
## Latest Update(07-22)
|
||||||
|
Changes
|
||||||
|
- bug fix (Thanks @JieChen91 and @yingsen1 for bug reporting).
|
||||||
|
- using batch for feature extracting for each frame, which lead to a small speed up.
|
||||||
|
- code improvement.
|
||||||
|
|
||||||
|
Futher improvement direction
|
||||||
|
- Train detector on specific dataset rather than the official one.
|
||||||
|
- Retrain REID model on pedestrain dataset for better performance.
|
||||||
|
- Replace YOLOv3 detector with advanced ones.
|
||||||
|
|
||||||
|
**Any contributions to this repository is welcome!**
|
||||||
|
|
||||||
|
|
||||||
|
## Introduction
|
||||||
|
This is an implement of MOT tracking algorithm deep sort. Deep sort is basicly the same with sort but added a CNN model to extract features in image of human part bounded by a detector. This CNN model is indeed a RE-ID model and the detector used in [PAPER](https://arxiv.org/abs/1703.07402) is FasterRCNN , and the original source code is [HERE](https://github.com/nwojke/deep_sort).
|
||||||
|
However in original code, the CNN model is implemented with tensorflow, which I'm not familier with. SO I re-implemented the CNN feature extraction model with PyTorch, and changed the CNN model a little bit. Also, I use **YOLOv3** to generate bboxes instead of FasterRCNN.
|
||||||
|
|
||||||
|
## Dependencies
|
||||||
|
- python 3 (python2 not sure)
|
||||||
|
- numpy
|
||||||
|
- scipy
|
||||||
|
- opencv-python
|
||||||
|
- sklearn
|
||||||
|
- torch >= 0.4
|
||||||
|
- torchvision >= 0.1
|
||||||
|
- pillow
|
||||||
|
- vizer
|
||||||
|
- edict
|
||||||
|
|
||||||
|
## Quick Start
|
||||||
|
0. Check all dependencies installed
|
||||||
|
```bash
|
||||||
|
pip install -r requirements.txt
|
||||||
|
```
|
||||||
|
for user in china, you can specify pypi source to accelerate install like:
|
||||||
|
```bash
|
||||||
|
pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple
|
||||||
|
```
|
||||||
|
|
||||||
|
1. Clone this repository
|
||||||
|
```
|
||||||
|
git clone git@github.com:ZQPei/deep_sort_pytorch.git
|
||||||
|
```
|
||||||
|
|
||||||
|
2. Download YOLOv3 parameters
|
||||||
|
```
|
||||||
|
cd detector/YOLOv3/weight/
|
||||||
|
wget https://pjreddie.com/media/files/yolov3.weights
|
||||||
|
wget https://pjreddie.com/media/files/yolov3-tiny.weights
|
||||||
|
cd ../../../
|
||||||
|
```
|
||||||
|
|
||||||
|
3. Download deepsort parameters ckpt.t7
|
||||||
|
```
|
||||||
|
cd deep_sort/deep/checkpoint
|
||||||
|
# download ckpt.t7 from
|
||||||
|
https://drive.google.com/drive/folders/1xhG0kRH1EX5B9_Iz8gQJb7UNnn_riXi6 to this folder
|
||||||
|
cd ../../../
|
||||||
|
```
|
||||||
|
|
||||||
|
4. Compile nms module
|
||||||
|
```bash
|
||||||
|
cd detector/YOLOv3/nms
|
||||||
|
sh build.sh
|
||||||
|
cd ../../..
|
||||||
|
```
|
||||||
|
|
||||||
|
Notice:
|
||||||
|
If compiling failed, the simplist way is to **Upgrade your pytorch >= 1.1 and torchvision >= 0.3" and you can avoid the troublesome compiling problems which are most likely caused by either `gcc version too low` or `libraries missing`.
|
||||||
|
|
||||||
|
5. Run demo
|
||||||
|
```
|
||||||
|
usage: python yolov3_deepsort.py VIDEO_PATH
|
||||||
|
[--help]
|
||||||
|
[--frame_interval FRAME_INTERVAL]
|
||||||
|
[--config_detection CONFIG_DETECTION]
|
||||||
|
[--config_deepsort CONFIG_DEEPSORT]
|
||||||
|
[--display]
|
||||||
|
[--display_width DISPLAY_WIDTH]
|
||||||
|
[--display_height DISPLAY_HEIGHT]
|
||||||
|
[--save_path SAVE_PATH]
|
||||||
|
[--cpu]
|
||||||
|
|
||||||
|
# yolov3 + deepsort
|
||||||
|
python yolov3_deepsort.py [VIDEO_PATH]
|
||||||
|
|
||||||
|
# yolov3_tiny + deepsort
|
||||||
|
python yolov3_deepsort.py [VIDEO_PATH] --config_detection ./configs/yolov3_tiny.yaml
|
||||||
|
|
||||||
|
# yolov3 + deepsort on webcam
|
||||||
|
python3 yolov3_deepsort.py /dev/video0 --camera 0
|
||||||
|
|
||||||
|
# yolov3_tiny + deepsort on webcam
|
||||||
|
python3 yolov3_deepsort.py /dev/video0 --config_detection ./configs/yolov3_tiny.yaml --camera 0
|
||||||
|
```
|
||||||
|
Use `--display` to enable display.
|
||||||
|
Results will be saved to `./output/results.avi` and `./output/results.txt`.
|
||||||
|
|
||||||
|
All files above can also be accessed from BaiduDisk!
|
||||||
|
linker:[BaiduDisk](https://pan.baidu.com/s/1YJ1iPpdFTlUyLFoonYvozg)
|
||||||
|
passwd:fbuw
|
||||||
|
|
||||||
|
## Training the RE-ID model
|
||||||
|
The original model used in paper is in original_model.py, and its parameter here [original_ckpt.t7](https://drive.google.com/drive/folders/1xhG0kRH1EX5B9_Iz8gQJb7UNnn_riXi6).
|
||||||
|
|
||||||
|
To train the model, first you need download [Market1501](http://www.liangzheng.com.cn/Project/project_reid.html) dataset or [Mars](http://www.liangzheng.com.cn/Project/project_mars.html) dataset.
|
||||||
|
|
||||||
|
Then you can try [train.py](deep_sort/deep/train.py) to train your own parameter and evaluate it using [test.py](deep_sort/deep/test.py) and [evaluate.py](deep_sort/deep/evalute.py).
|
||||||
|
![train.jpg](deep_sort/deep/train.jpg)
|
||||||
|
|
||||||
|
## Demo videos and images
|
||||||
|
[demo.avi](https://drive.google.com/drive/folders/1xhG0kRH1EX5B9_Iz8gQJb7UNnn_riXi6)
|
||||||
|
[demo2.avi](https://drive.google.com/drive/folders/1xhG0kRH1EX5B9_Iz8gQJb7UNnn_riXi6)
|
||||||
|
|
||||||
|
![1.jpg](demo/1.jpg)
|
||||||
|
![2.jpg](demo/2.jpg)
|
||||||
|
|
||||||
|
|
||||||
|
## References
|
||||||
|
- paper: [Simple Online and Realtime Tracking with a Deep Association Metric](https://arxiv.org/abs/1703.07402)
|
||||||
|
|
||||||
|
- code: [nwojke/deep_sort](https://github.com/nwojke/deep_sort)
|
||||||
|
|
||||||
|
- paper: [YOLOv3](https://pjreddie.com/media/files/papers/YOLOv3.pdf)
|
||||||
|
|
||||||
|
- code: [Joseph Redmon/yolov3](https://pjreddie.com/darknet/yolo/)
|
10
yolov5/deep_sort_pytorch/configs/deep_sort.yaml
Normal file
10
yolov5/deep_sort_pytorch/configs/deep_sort.yaml
Normal file
@ -0,0 +1,10 @@
|
|||||||
|
DEEPSORT:
|
||||||
|
REID_CKPT: "deep_sort_pytorch/deep_sort/deep/checkpoint/ckpt.t7"
|
||||||
|
MAX_DIST: 0.3
|
||||||
|
MIN_CONFIDENCE: 0.3
|
||||||
|
NMS_MAX_OVERLAP: 0.5
|
||||||
|
MAX_IOU_DISTANCE: 0.7
|
||||||
|
MAX_AGE: 70
|
||||||
|
N_INIT: 3
|
||||||
|
NN_BUDGET: 100
|
||||||
|
|
3
yolov5/deep_sort_pytorch/deep_sort/README.md
Normal file
3
yolov5/deep_sort_pytorch/deep_sort/README.md
Normal file
@ -0,0 +1,3 @@
|
|||||||
|
# Deep Sort
|
||||||
|
|
||||||
|
This is the implemention of deep sort with pytorch.
|
21
yolov5/deep_sort_pytorch/deep_sort/__init__.py
Normal file
21
yolov5/deep_sort_pytorch/deep_sort/__init__.py
Normal file
@ -0,0 +1,21 @@
|
|||||||
|
from .deep_sort import DeepSort
|
||||||
|
|
||||||
|
|
||||||
|
__all__ = ['DeepSort', 'build_tracker']
|
||||||
|
|
||||||
|
|
||||||
|
def build_tracker(cfg, use_cuda):
|
||||||
|
return DeepSort(cfg.DEEPSORT.REID_CKPT,
|
||||||
|
max_dist=cfg.DEEPSORT.MAX_DIST, min_confidence=cfg.DEEPSORT.MIN_CONFIDENCE,
|
||||||
|
nms_max_overlap=cfg.DEEPSORT.NMS_MAX_OVERLAP, max_iou_distance=cfg.DEEPSORT.MAX_IOU_DISTANCE,
|
||||||
|
max_age=cfg.DEEPSORT.MAX_AGE, n_init=cfg.DEEPSORT.N_INIT, nn_budget=cfg.DEEPSORT.NN_BUDGET, use_cuda=use_cuda)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
0
yolov5/deep_sort_pytorch/deep_sort/deep/__init__.py
Normal file
0
yolov5/deep_sort_pytorch/deep_sort/deep/__init__.py
Normal file
13
yolov5/deep_sort_pytorch/deep_sort/deep/evaluate.py
Normal file
13
yolov5/deep_sort_pytorch/deep_sort/deep/evaluate.py
Normal file
@ -0,0 +1,13 @@
|
|||||||
|
import torch
|
||||||
|
|
||||||
|
features = torch.load("features.pth")
|
||||||
|
qf = features["qf"]
|
||||||
|
ql = features["ql"]
|
||||||
|
gf = features["gf"]
|
||||||
|
gl = features["gl"]
|
||||||
|
|
||||||
|
scores = qf.mm(gf.t())
|
||||||
|
res = scores.topk(5, dim=1)[1][:, 0]
|
||||||
|
top1correct = gl[res].eq(ql).sum().item()
|
||||||
|
|
||||||
|
print("Acc top1:{:.3f}".format(top1correct / ql.size(0)))
|
54
yolov5/deep_sort_pytorch/deep_sort/deep/feature_extractor.py
Normal file
54
yolov5/deep_sort_pytorch/deep_sort/deep/feature_extractor.py
Normal file
@ -0,0 +1,54 @@
|
|||||||
|
import torch
|
||||||
|
import torchvision.transforms as transforms
|
||||||
|
import numpy as np
|
||||||
|
import cv2
|
||||||
|
import logging
|
||||||
|
|
||||||
|
from .model import Net
|
||||||
|
|
||||||
|
|
||||||
|
class Extractor(object):
|
||||||
|
def __init__(self, model_path, use_cuda=True):
|
||||||
|
self.net = Net(reid=True)
|
||||||
|
self.device = "cuda" if torch.cuda.is_available() and use_cuda else "cpu"
|
||||||
|
state_dict = torch.load(model_path, map_location=lambda storage, loc: storage)[
|
||||||
|
'net_dict']
|
||||||
|
self.net.load_state_dict(state_dict)
|
||||||
|
logger = logging.getLogger("root.tracker")
|
||||||
|
logger.info("Loading weights from {}... Done!".format(model_path))
|
||||||
|
self.net.to(self.device)
|
||||||
|
self.size = (64, 128)
|
||||||
|
self.norm = transforms.Compose([
|
||||||
|
transforms.ToTensor(),
|
||||||
|
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
|
||||||
|
])
|
||||||
|
|
||||||
|
def _preprocess(self, im_crops):
|
||||||
|
"""
|
||||||
|
TODO:
|
||||||
|
1. to float with scale from 0 to 1
|
||||||
|
2. resize to (64, 128) as Market1501 dataset did
|
||||||
|
3. concatenate to a numpy array
|
||||||
|
3. to torch Tensor
|
||||||
|
4. normalize
|
||||||
|
"""
|
||||||
|
def _resize(im, size):
|
||||||
|
return cv2.resize(im.astype(np.float32)/255., size)
|
||||||
|
|
||||||
|
im_batch = torch.cat([self.norm(_resize(im, self.size)).unsqueeze(
|
||||||
|
0) for im in im_crops], dim=0).float()
|
||||||
|
return im_batch
|
||||||
|
|
||||||
|
def __call__(self, im_crops):
|
||||||
|
im_batch = self._preprocess(im_crops)
|
||||||
|
with torch.no_grad():
|
||||||
|
im_batch = im_batch.to(self.device)
|
||||||
|
features = self.net(im_batch)
|
||||||
|
return features.cpu().numpy()
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
img = cv2.imread("demo.jpg")[:, :, (2, 1, 0)]
|
||||||
|
extr = Extractor("checkpoint/ckpt.t7")
|
||||||
|
feature = extr(img)
|
||||||
|
print(feature.shape)
|
109
yolov5/deep_sort_pytorch/deep_sort/deep/model.py
Normal file
109
yolov5/deep_sort_pytorch/deep_sort/deep/model.py
Normal file
@ -0,0 +1,109 @@
|
|||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
import torch.nn.functional as F
|
||||||
|
|
||||||
|
|
||||||
|
class BasicBlock(nn.Module):
|
||||||
|
def __init__(self, c_in, c_out, is_downsample=False):
|
||||||
|
super(BasicBlock, self).__init__()
|
||||||
|
self.is_downsample = is_downsample
|
||||||
|
if is_downsample:
|
||||||
|
self.conv1 = nn.Conv2d(
|
||||||
|
c_in, c_out, 3, stride=2, padding=1, bias=False)
|
||||||
|
else:
|
||||||
|
self.conv1 = nn.Conv2d(
|
||||||
|
c_in, c_out, 3, stride=1, padding=1, bias=False)
|
||||||
|
self.bn1 = nn.BatchNorm2d(c_out)
|
||||||
|
self.relu = nn.ReLU(True)
|
||||||
|
self.conv2 = nn.Conv2d(c_out, c_out, 3, stride=1,
|
||||||
|
padding=1, bias=False)
|
||||||
|
self.bn2 = nn.BatchNorm2d(c_out)
|
||||||
|
if is_downsample:
|
||||||
|
self.downsample = nn.Sequential(
|
||||||
|
nn.Conv2d(c_in, c_out, 1, stride=2, bias=False),
|
||||||
|
nn.BatchNorm2d(c_out)
|
||||||
|
)
|
||||||
|
elif c_in != c_out:
|
||||||
|
self.downsample = nn.Sequential(
|
||||||
|
nn.Conv2d(c_in, c_out, 1, stride=1, bias=False),
|
||||||
|
nn.BatchNorm2d(c_out)
|
||||||
|
)
|
||||||
|
self.is_downsample = True
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
y = self.conv1(x)
|
||||||
|
y = self.bn1(y)
|
||||||
|
y = self.relu(y)
|
||||||
|
y = self.conv2(y)
|
||||||
|
y = self.bn2(y)
|
||||||
|
if self.is_downsample:
|
||||||
|
x = self.downsample(x)
|
||||||
|
return F.relu(x.add(y), True)
|
||||||
|
|
||||||
|
|
||||||
|
def make_layers(c_in, c_out, repeat_times, is_downsample=False):
|
||||||
|
blocks = []
|
||||||
|
for i in range(repeat_times):
|
||||||
|
if i == 0:
|
||||||
|
blocks += [BasicBlock(c_in, c_out, is_downsample=is_downsample), ]
|
||||||
|
else:
|
||||||
|
blocks += [BasicBlock(c_out, c_out), ]
|
||||||
|
return nn.Sequential(*blocks)
|
||||||
|
|
||||||
|
|
||||||
|
class Net(nn.Module):
|
||||||
|
def __init__(self, num_classes=751, reid=False):
|
||||||
|
super(Net, self).__init__()
|
||||||
|
# 3 128 64
|
||||||
|
self.conv = nn.Sequential(
|
||||||
|
nn.Conv2d(3, 64, 3, stride=1, padding=1),
|
||||||
|
nn.BatchNorm2d(64),
|
||||||
|
nn.ReLU(inplace=True),
|
||||||
|
# nn.Conv2d(32,32,3,stride=1,padding=1),
|
||||||
|
# nn.BatchNorm2d(32),
|
||||||
|
# nn.ReLU(inplace=True),
|
||||||
|
nn.MaxPool2d(3, 2, padding=1),
|
||||||
|
)
|
||||||
|
# 32 64 32
|
||||||
|
self.layer1 = make_layers(64, 64, 2, False)
|
||||||
|
# 32 64 32
|
||||||
|
self.layer2 = make_layers(64, 128, 2, True)
|
||||||
|
# 64 32 16
|
||||||
|
self.layer3 = make_layers(128, 256, 2, True)
|
||||||
|
# 128 16 8
|
||||||
|
self.layer4 = make_layers(256, 512, 2, True)
|
||||||
|
# 256 8 4
|
||||||
|
self.avgpool = nn.AvgPool2d((8, 4), 1)
|
||||||
|
# 256 1 1
|
||||||
|
self.reid = reid
|
||||||
|
self.classifier = nn.Sequential(
|
||||||
|
nn.Linear(512, 256),
|
||||||
|
nn.BatchNorm1d(256),
|
||||||
|
nn.ReLU(inplace=True),
|
||||||
|
nn.Dropout(),
|
||||||
|
nn.Linear(256, num_classes),
|
||||||
|
)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
x = self.conv(x)
|
||||||
|
x = self.layer1(x)
|
||||||
|
x = self.layer2(x)
|
||||||
|
x = self.layer3(x)
|
||||||
|
x = self.layer4(x)
|
||||||
|
x = self.avgpool(x)
|
||||||
|
x = x.view(x.size(0), -1)
|
||||||
|
# B x 128
|
||||||
|
if self.reid:
|
||||||
|
x = x.div(x.norm(p=2, dim=1, keepdim=True))
|
||||||
|
return x
|
||||||
|
# classifier
|
||||||
|
x = self.classifier(x)
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
net = Net()
|
||||||
|
x = torch.randn(4, 3, 128, 64)
|
||||||
|
y = net(x)
|
||||||
|
import ipdb
|
||||||
|
ipdb.set_trace()
|
111
yolov5/deep_sort_pytorch/deep_sort/deep/original_model.py
Normal file
111
yolov5/deep_sort_pytorch/deep_sort/deep/original_model.py
Normal file
@ -0,0 +1,111 @@
|
|||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
import torch.nn.functional as F
|
||||||
|
|
||||||
|
|
||||||
|
class BasicBlock(nn.Module):
|
||||||
|
def __init__(self, c_in, c_out, is_downsample=False):
|
||||||
|
super(BasicBlock, self).__init__()
|
||||||
|
self.is_downsample = is_downsample
|
||||||
|
if is_downsample:
|
||||||
|
self.conv1 = nn.Conv2d(
|
||||||
|
c_in, c_out, 3, stride=2, padding=1, bias=False)
|
||||||
|
else:
|
||||||
|
self.conv1 = nn.Conv2d(
|
||||||
|
c_in, c_out, 3, stride=1, padding=1, bias=False)
|
||||||
|
self.bn1 = nn.BatchNorm2d(c_out)
|
||||||
|
self.relu = nn.ReLU(True)
|
||||||
|
self.conv2 = nn.Conv2d(c_out, c_out, 3, stride=1,
|
||||||
|
padding=1, bias=False)
|
||||||
|
self.bn2 = nn.BatchNorm2d(c_out)
|
||||||
|
if is_downsample:
|
||||||
|
self.downsample = nn.Sequential(
|
||||||
|
nn.Conv2d(c_in, c_out, 1, stride=2, bias=False),
|
||||||
|
nn.BatchNorm2d(c_out)
|
||||||
|
)
|
||||||
|
elif c_in != c_out:
|
||||||
|
self.downsample = nn.Sequential(
|
||||||
|
nn.Conv2d(c_in, c_out, 1, stride=1, bias=False),
|
||||||
|
nn.BatchNorm2d(c_out)
|
||||||
|
)
|
||||||
|
self.is_downsample = True
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
y = self.conv1(x)
|
||||||
|
y = self.bn1(y)
|
||||||
|
y = self.relu(y)
|
||||||
|
y = self.conv2(y)
|
||||||
|
y = self.bn2(y)
|
||||||
|
if self.is_downsample:
|
||||||
|
x = self.downsample(x)
|
||||||
|
return F.relu(x.add(y), True)
|
||||||
|
|
||||||
|
|
||||||
|
def make_layers(c_in, c_out, repeat_times, is_downsample=False):
|
||||||
|
blocks = []
|
||||||
|
for i in range(repeat_times):
|
||||||
|
if i == 0:
|
||||||
|
blocks += [BasicBlock(c_in, c_out, is_downsample=is_downsample), ]
|
||||||
|
else:
|
||||||
|
blocks += [BasicBlock(c_out, c_out), ]
|
||||||
|
return nn.Sequential(*blocks)
|
||||||
|
|
||||||
|
|
||||||
|
class Net(nn.Module):
|
||||||
|
def __init__(self, num_classes=625, reid=False):
|
||||||
|
super(Net, self).__init__()
|
||||||
|
# 3 128 64
|
||||||
|
self.conv = nn.Sequential(
|
||||||
|
nn.Conv2d(3, 32, 3, stride=1, padding=1),
|
||||||
|
nn.BatchNorm2d(32),
|
||||||
|
nn.ELU(inplace=True),
|
||||||
|
nn.Conv2d(32, 32, 3, stride=1, padding=1),
|
||||||
|
nn.BatchNorm2d(32),
|
||||||
|
nn.ELU(inplace=True),
|
||||||
|
nn.MaxPool2d(3, 2, padding=1),
|
||||||
|
)
|
||||||
|
# 32 64 32
|
||||||
|
self.layer1 = make_layers(32, 32, 2, False)
|
||||||
|
# 32 64 32
|
||||||
|
self.layer2 = make_layers(32, 64, 2, True)
|
||||||
|
# 64 32 16
|
||||||
|
self.layer3 = make_layers(64, 128, 2, True)
|
||||||
|
# 128 16 8
|
||||||
|
self.dense = nn.Sequential(
|
||||||
|
nn.Dropout(p=0.6),
|
||||||
|
nn.Linear(128*16*8, 128),
|
||||||
|
nn.BatchNorm1d(128),
|
||||||
|
nn.ELU(inplace=True)
|
||||||
|
)
|
||||||
|
# 256 1 1
|
||||||
|
self.reid = reid
|
||||||
|
self.batch_norm = nn.BatchNorm1d(128)
|
||||||
|
self.classifier = nn.Sequential(
|
||||||
|
nn.Linear(128, num_classes),
|
||||||
|
)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
x = self.conv(x)
|
||||||
|
x = self.layer1(x)
|
||||||
|
x = self.layer2(x)
|
||||||
|
x = self.layer3(x)
|
||||||
|
|
||||||
|
x = x.view(x.size(0), -1)
|
||||||
|
if self.reid:
|
||||||
|
x = self.dense[0](x)
|
||||||
|
x = self.dense[1](x)
|
||||||
|
x = x.div(x.norm(p=2, dim=1, keepdim=True))
|
||||||
|
return x
|
||||||
|
x = self.dense(x)
|
||||||
|
# B x 128
|
||||||
|
# classifier
|
||||||
|
x = self.classifier(x)
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
net = Net(reid=True)
|
||||||
|
x = torch.randn(4, 3, 128, 64)
|
||||||
|
y = net(x)
|
||||||
|
import ipdb
|
||||||
|
ipdb.set_trace()
|
80
yolov5/deep_sort_pytorch/deep_sort/deep/test.py
Normal file
80
yolov5/deep_sort_pytorch/deep_sort/deep/test.py
Normal file
@ -0,0 +1,80 @@
|
|||||||
|
import torch
|
||||||
|
import torch.backends.cudnn as cudnn
|
||||||
|
import torchvision
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import os
|
||||||
|
|
||||||
|
from model import Net
|
||||||
|
|
||||||
|
parser = argparse.ArgumentParser(description="Train on market1501")
|
||||||
|
parser.add_argument("--data-dir", default='data', type=str)
|
||||||
|
parser.add_argument("--no-cuda", action="store_true")
|
||||||
|
parser.add_argument("--gpu-id", default=0, type=int)
|
||||||
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
# device
|
||||||
|
device = "cuda:{}".format(
|
||||||
|
args.gpu_id) if torch.cuda.is_available() and not args.no_cuda else "cpu"
|
||||||
|
if torch.cuda.is_available() and not args.no_cuda:
|
||||||
|
cudnn.benchmark = True
|
||||||
|
|
||||||
|
# data loader
|
||||||
|
root = args.data_dir
|
||||||
|
query_dir = os.path.join(root, "query")
|
||||||
|
gallery_dir = os.path.join(root, "gallery")
|
||||||
|
transform = torchvision.transforms.Compose([
|
||||||
|
torchvision.transforms.Resize((128, 64)),
|
||||||
|
torchvision.transforms.ToTensor(),
|
||||||
|
torchvision.transforms.Normalize(
|
||||||
|
[0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
||||||
|
])
|
||||||
|
queryloader = torch.utils.data.DataLoader(
|
||||||
|
torchvision.datasets.ImageFolder(query_dir, transform=transform),
|
||||||
|
batch_size=64, shuffle=False
|
||||||
|
)
|
||||||
|
galleryloader = torch.utils.data.DataLoader(
|
||||||
|
torchvision.datasets.ImageFolder(gallery_dir, transform=transform),
|
||||||
|
batch_size=64, shuffle=False
|
||||||
|
)
|
||||||
|
|
||||||
|
# net definition
|
||||||
|
net = Net(reid=True)
|
||||||
|
assert os.path.isfile(
|
||||||
|
"./checkpoint/ckpt.t7"), "Error: no checkpoint file found!"
|
||||||
|
print('Loading from checkpoint/ckpt.t7')
|
||||||
|
checkpoint = torch.load("./checkpoint/ckpt.t7")
|
||||||
|
net_dict = checkpoint['net_dict']
|
||||||
|
net.load_state_dict(net_dict, strict=False)
|
||||||
|
net.eval()
|
||||||
|
net.to(device)
|
||||||
|
|
||||||
|
# compute features
|
||||||
|
query_features = torch.tensor([]).float()
|
||||||
|
query_labels = torch.tensor([]).long()
|
||||||
|
gallery_features = torch.tensor([]).float()
|
||||||
|
gallery_labels = torch.tensor([]).long()
|
||||||
|
|
||||||
|
with torch.no_grad():
|
||||||
|
for idx, (inputs, labels) in enumerate(queryloader):
|
||||||
|
inputs = inputs.to(device)
|
||||||
|
features = net(inputs).cpu()
|
||||||
|
query_features = torch.cat((query_features, features), dim=0)
|
||||||
|
query_labels = torch.cat((query_labels, labels))
|
||||||
|
|
||||||
|
for idx, (inputs, labels) in enumerate(galleryloader):
|
||||||
|
inputs = inputs.to(device)
|
||||||
|
features = net(inputs).cpu()
|
||||||
|
gallery_features = torch.cat((gallery_features, features), dim=0)
|
||||||
|
gallery_labels = torch.cat((gallery_labels, labels))
|
||||||
|
|
||||||
|
gallery_labels -= 2
|
||||||
|
|
||||||
|
# save features
|
||||||
|
features = {
|
||||||
|
"qf": query_features,
|
||||||
|
"ql": query_labels,
|
||||||
|
"gf": gallery_features,
|
||||||
|
"gl": gallery_labels
|
||||||
|
}
|
||||||
|
torch.save(features, "features.pth")
|
206
yolov5/deep_sort_pytorch/deep_sort/deep/train.py
Normal file
206
yolov5/deep_sort_pytorch/deep_sort/deep/train.py
Normal file
@ -0,0 +1,206 @@
|
|||||||
|
import argparse
|
||||||
|
import os
|
||||||
|
import time
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
import torch
|
||||||
|
import torch.backends.cudnn as cudnn
|
||||||
|
import torchvision
|
||||||
|
|
||||||
|
from model import Net
|
||||||
|
|
||||||
|
parser = argparse.ArgumentParser(description="Train on market1501")
|
||||||
|
parser.add_argument("--data-dir", default='data', type=str)
|
||||||
|
parser.add_argument("--no-cuda", action="store_true")
|
||||||
|
parser.add_argument("--gpu-id", default=0, type=int)
|
||||||
|
parser.add_argument("--lr", default=0.1, type=float)
|
||||||
|
parser.add_argument("--interval", '-i', default=20, type=int)
|
||||||
|
parser.add_argument('--resume', '-r', action='store_true')
|
||||||
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
# device
|
||||||
|
device = "cuda:{}".format(
|
||||||
|
args.gpu_id) if torch.cuda.is_available() and not args.no_cuda else "cpu"
|
||||||
|
if torch.cuda.is_available() and not args.no_cuda:
|
||||||
|
cudnn.benchmark = True
|
||||||
|
|
||||||
|
# data loading
|
||||||
|
root = args.data_dir
|
||||||
|
train_dir = os.path.join(root, "train")
|
||||||
|
test_dir = os.path.join(root, "test")
|
||||||
|
transform_train = torchvision.transforms.Compose([
|
||||||
|
torchvision.transforms.RandomCrop((128, 64), padding=4),
|
||||||
|
torchvision.transforms.RandomHorizontalFlip(),
|
||||||
|
torchvision.transforms.ToTensor(),
|
||||||
|
torchvision.transforms.Normalize(
|
||||||
|
[0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
||||||
|
])
|
||||||
|
transform_test = torchvision.transforms.Compose([
|
||||||
|
torchvision.transforms.Resize((128, 64)),
|
||||||
|
torchvision.transforms.ToTensor(),
|
||||||
|
torchvision.transforms.Normalize(
|
||||||
|
[0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
||||||
|
])
|
||||||
|
trainloader = torch.utils.data.DataLoader(
|
||||||
|
torchvision.datasets.ImageFolder(train_dir, transform=transform_train),
|
||||||
|
batch_size=64, shuffle=True
|
||||||
|
)
|
||||||
|
testloader = torch.utils.data.DataLoader(
|
||||||
|
torchvision.datasets.ImageFolder(test_dir, transform=transform_test),
|
||||||
|
batch_size=64, shuffle=True
|
||||||
|
)
|
||||||
|
num_classes = max(len(trainloader.dataset.classes),
|
||||||
|
len(testloader.dataset.classes))
|
||||||
|
|
||||||
|
# net definition
|
||||||
|
start_epoch = 0
|
||||||
|
net = Net(num_classes=num_classes)
|
||||||
|
if args.resume:
|
||||||
|
assert os.path.isfile(
|
||||||
|
"./checkpoint/ckpt.t7"), "Error: no checkpoint file found!"
|
||||||
|
print('Loading from checkpoint/ckpt.t7')
|
||||||
|
checkpoint = torch.load("./checkpoint/ckpt.t7")
|
||||||
|
# import ipdb; ipdb.set_trace()
|
||||||
|
net_dict = checkpoint['net_dict']
|
||||||
|
net.load_state_dict(net_dict)
|
||||||
|
best_acc = checkpoint['acc']
|
||||||
|
start_epoch = checkpoint['epoch']
|
||||||
|
net.to(device)
|
||||||
|
|
||||||
|
# loss and optimizer
|
||||||
|
criterion = torch.nn.CrossEntropyLoss()
|
||||||
|
optimizer = torch.optim.SGD(
|
||||||
|
net.parameters(), args.lr, momentum=0.9, weight_decay=5e-4)
|
||||||
|
best_acc = 0.
|
||||||
|
|
||||||
|
# train function for each epoch
|
||||||
|
|
||||||
|
|
||||||
|
def train(epoch):
|
||||||
|
print("\nEpoch : %d" % (epoch+1))
|
||||||
|
net.train()
|
||||||
|
training_loss = 0.
|
||||||
|
train_loss = 0.
|
||||||
|
correct = 0
|
||||||
|
total = 0
|
||||||
|
interval = args.interval
|
||||||
|
start = time.time()
|
||||||
|
for idx, (inputs, labels) in enumerate(trainloader):
|
||||||
|
# forward
|
||||||
|
inputs, labels = inputs.to(device), labels.to(device)
|
||||||
|
outputs = net(inputs)
|
||||||
|
loss = criterion(outputs, labels)
|
||||||
|
|
||||||
|
# backward
|
||||||
|
optimizer.zero_grad()
|
||||||
|
loss.backward()
|
||||||
|
optimizer.step()
|
||||||
|
|
||||||
|
# accumurating
|
||||||
|
training_loss += loss.item()
|
||||||
|
train_loss += loss.item()
|
||||||
|
correct += outputs.max(dim=1)[1].eq(labels).sum().item()
|
||||||
|
total += labels.size(0)
|
||||||
|
|
||||||
|
# print
|
||||||
|
if (idx+1) % interval == 0:
|
||||||
|
end = time.time()
|
||||||
|
print("[progress:{:.1f}%]time:{:.2f}s Loss:{:.5f} Correct:{}/{} Acc:{:.3f}%".format(
|
||||||
|
100.*(idx+1)/len(trainloader), end-start, training_loss /
|
||||||
|
interval, correct, total, 100.*correct/total
|
||||||
|
))
|
||||||
|
training_loss = 0.
|
||||||
|
start = time.time()
|
||||||
|
|
||||||
|
return train_loss/len(trainloader), 1. - correct/total
|
||||||
|
|
||||||
|
|
||||||
|
def test(epoch):
|
||||||
|
global best_acc
|
||||||
|
net.eval()
|
||||||
|
test_loss = 0.
|
||||||
|
correct = 0
|
||||||
|
total = 0
|
||||||
|
start = time.time()
|
||||||
|
with torch.no_grad():
|
||||||
|
for idx, (inputs, labels) in enumerate(testloader):
|
||||||
|
inputs, labels = inputs.to(device), labels.to(device)
|
||||||
|
outputs = net(inputs)
|
||||||
|
loss = criterion(outputs, labels)
|
||||||
|
|
||||||
|
test_loss += loss.item()
|
||||||
|
correct += outputs.max(dim=1)[1].eq(labels).sum().item()
|
||||||
|
total += labels.size(0)
|
||||||
|
|
||||||
|
print("Testing ...")
|
||||||
|
end = time.time()
|
||||||
|
print("[progress:{:.1f}%]time:{:.2f}s Loss:{:.5f} Correct:{}/{} Acc:{:.3f}%".format(
|
||||||
|
100.*(idx+1)/len(testloader), end-start, test_loss /
|
||||||
|
len(testloader), correct, total, 100.*correct/total
|
||||||
|
))
|
||||||
|
|
||||||
|
# saving checkpoint
|
||||||
|
acc = 100.*correct/total
|
||||||
|
if acc > best_acc:
|
||||||
|
best_acc = acc
|
||||||
|
print("Saving parameters to checkpoint/ckpt.t7")
|
||||||
|
checkpoint = {
|
||||||
|
'net_dict': net.state_dict(),
|
||||||
|
'acc': acc,
|
||||||
|
'epoch': epoch,
|
||||||
|
}
|
||||||
|
if not os.path.isdir('checkpoint'):
|
||||||
|
os.mkdir('checkpoint')
|
||||||
|
torch.save(checkpoint, './checkpoint/ckpt.t7')
|
||||||
|
|
||||||
|
return test_loss/len(testloader), 1. - correct/total
|
||||||
|
|
||||||
|
|
||||||
|
# plot figure
|
||||||
|
x_epoch = []
|
||||||
|
record = {'train_loss': [], 'train_err': [], 'test_loss': [], 'test_err': []}
|
||||||
|
fig = plt.figure()
|
||||||
|
ax0 = fig.add_subplot(121, title="loss")
|
||||||
|
ax1 = fig.add_subplot(122, title="top1err")
|
||||||
|
|
||||||
|
|
||||||
|
def draw_curve(epoch, train_loss, train_err, test_loss, test_err):
|
||||||
|
global record
|
||||||
|
record['train_loss'].append(train_loss)
|
||||||
|
record['train_err'].append(train_err)
|
||||||
|
record['test_loss'].append(test_loss)
|
||||||
|
record['test_err'].append(test_err)
|
||||||
|
|
||||||
|
x_epoch.append(epoch)
|
||||||
|
ax0.plot(x_epoch, record['train_loss'], 'bo-', label='train')
|
||||||
|
ax0.plot(x_epoch, record['test_loss'], 'ro-', label='val')
|
||||||
|
ax1.plot(x_epoch, record['train_err'], 'bo-', label='train')
|
||||||
|
ax1.plot(x_epoch, record['test_err'], 'ro-', label='val')
|
||||||
|
if epoch == 0:
|
||||||
|
ax0.legend()
|
||||||
|
ax1.legend()
|
||||||
|
fig.savefig("train.jpg")
|
||||||
|
|
||||||
|
# lr decay
|
||||||
|
|
||||||
|
|
||||||
|
def lr_decay():
|
||||||
|
global optimizer
|
||||||
|
for params in optimizer.param_groups:
|
||||||
|
params['lr'] *= 0.1
|
||||||
|
lr = params['lr']
|
||||||
|
print("Learning rate adjusted to {}".format(lr))
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
for epoch in range(start_epoch, start_epoch+40):
|
||||||
|
train_loss, train_err = train(epoch)
|
||||||
|
test_loss, test_err = test(epoch)
|
||||||
|
draw_curve(epoch, train_loss, train_err, test_loss, test_err)
|
||||||
|
if (epoch+1) % 20 == 0:
|
||||||
|
lr_decay()
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
main()
|
117
yolov5/deep_sort_pytorch/deep_sort/deep_sort.py
Normal file
117
yolov5/deep_sort_pytorch/deep_sort/deep_sort.py
Normal file
@ -0,0 +1,117 @@
|
|||||||
|
import numpy as np
|
||||||
|
import torch
|
||||||
|
|
||||||
|
from .deep.feature_extractor import Extractor
|
||||||
|
from .sort.nn_matching import NearestNeighborDistanceMetric
|
||||||
|
from .sort.preprocessing import non_max_suppression
|
||||||
|
from .sort.detection import Detection
|
||||||
|
from .sort.tracker import Tracker
|
||||||
|
|
||||||
|
|
||||||
|
__all__ = ['DeepSort']
|
||||||
|
|
||||||
|
|
||||||
|
class DeepSort(object):
|
||||||
|
def __init__(self, model_path, max_dist=0.2, min_confidence=0.3, nms_max_overlap=1.0, max_iou_distance=0.7, max_age=70, n_init=3, nn_budget=100, use_cuda=True):
|
||||||
|
self.min_confidence = min_confidence
|
||||||
|
self.nms_max_overlap = nms_max_overlap
|
||||||
|
|
||||||
|
self.extractor = Extractor(model_path, use_cuda=use_cuda)
|
||||||
|
|
||||||
|
max_cosine_distance = max_dist
|
||||||
|
nn_budget = 100
|
||||||
|
metric = NearestNeighborDistanceMetric(
|
||||||
|
"cosine", max_cosine_distance, nn_budget)
|
||||||
|
self.tracker = Tracker(
|
||||||
|
metric, max_iou_distance=max_iou_distance, max_age=max_age, n_init=n_init)
|
||||||
|
|
||||||
|
def update(self, bbox_xywh, confidences, ori_img):
|
||||||
|
self.height, self.width = ori_img.shape[:2]
|
||||||
|
# generate detections
|
||||||
|
features = self._get_features(bbox_xywh, ori_img)
|
||||||
|
bbox_tlwh = self._xywh_to_tlwh(bbox_xywh)
|
||||||
|
detections = [Detection(bbox_tlwh[i], conf, features[i]) for i, conf in enumerate(
|
||||||
|
confidences) if conf > self.min_confidence]
|
||||||
|
|
||||||
|
# run on non-maximum supression
|
||||||
|
boxes = np.array([d.tlwh for d in detections])
|
||||||
|
scores = np.array([d.confidence for d in detections])
|
||||||
|
indices = non_max_suppression(boxes, self.nms_max_overlap, scores)
|
||||||
|
detections = [detections[i] for i in indices]
|
||||||
|
|
||||||
|
# update tracker
|
||||||
|
self.tracker.predict()
|
||||||
|
self.tracker.update(detections)
|
||||||
|
|
||||||
|
# output bbox identities
|
||||||
|
outputs = []
|
||||||
|
for track in self.tracker.tracks:
|
||||||
|
if not track.is_confirmed() or track.time_since_update > 1:
|
||||||
|
continue
|
||||||
|
box = track.to_tlwh()
|
||||||
|
x1, y1, x2, y2 = self._tlwh_to_xyxy(box)
|
||||||
|
track_id = track.track_id
|
||||||
|
outputs.append(np.array([x1, y1, x2, y2, track_id], dtype=np.int))
|
||||||
|
if len(outputs) > 0:
|
||||||
|
outputs = np.stack(outputs, axis=0)
|
||||||
|
return outputs
|
||||||
|
|
||||||
|
"""
|
||||||
|
TODO:
|
||||||
|
Convert bbox from xc_yc_w_h to xtl_ytl_w_h
|
||||||
|
Thanks JieChen91@github.com for reporting this bug!
|
||||||
|
"""
|
||||||
|
@staticmethod
|
||||||
|
def _xywh_to_tlwh(bbox_xywh):
|
||||||
|
if isinstance(bbox_xywh, np.ndarray):
|
||||||
|
bbox_tlwh = bbox_xywh.copy()
|
||||||
|
elif isinstance(bbox_xywh, torch.Tensor):
|
||||||
|
bbox_tlwh = bbox_xywh.clone()
|
||||||
|
bbox_tlwh[:, 0] = bbox_xywh[:, 0] - bbox_xywh[:, 2] / 2.
|
||||||
|
bbox_tlwh[:, 1] = bbox_xywh[:, 1] - bbox_xywh[:, 3] / 2.
|
||||||
|
return bbox_tlwh
|
||||||
|
|
||||||
|
def _xywh_to_xyxy(self, bbox_xywh):
|
||||||
|
x, y, w, h = bbox_xywh
|
||||||
|
x1 = max(int(x - w / 2), 0)
|
||||||
|
x2 = min(int(x + w / 2), self.width - 1)
|
||||||
|
y1 = max(int(y - h / 2), 0)
|
||||||
|
y2 = min(int(y + h / 2), self.height - 1)
|
||||||
|
return x1, y1, x2, y2
|
||||||
|
|
||||||
|
def _tlwh_to_xyxy(self, bbox_tlwh):
|
||||||
|
"""
|
||||||
|
TODO:
|
||||||
|
Convert bbox from xtl_ytl_w_h to xc_yc_w_h
|
||||||
|
Thanks JieChen91@github.com for reporting this bug!
|
||||||
|
"""
|
||||||
|
x, y, w, h = bbox_tlwh
|
||||||
|
x1 = max(int(x), 0)
|
||||||
|
x2 = min(int(x+w), self.width - 1)
|
||||||
|
y1 = max(int(y), 0)
|
||||||
|
y2 = min(int(y+h), self.height - 1)
|
||||||
|
return x1, y1, x2, y2
|
||||||
|
|
||||||
|
def increment_ages(self):
|
||||||
|
self.tracker.increment_ages()
|
||||||
|
|
||||||
|
def _xyxy_to_tlwh(self, bbox_xyxy):
|
||||||
|
x1, y1, x2, y2 = bbox_xyxy
|
||||||
|
|
||||||
|
t = x1
|
||||||
|
l = y1
|
||||||
|
w = int(x2 - x1)
|
||||||
|
h = int(y2 - y1)
|
||||||
|
return t, l, w, h
|
||||||
|
|
||||||
|
def _get_features(self, bbox_xywh, ori_img):
|
||||||
|
im_crops = []
|
||||||
|
for box in bbox_xywh:
|
||||||
|
x1, y1, x2, y2 = self._xywh_to_xyxy(box)
|
||||||
|
im = ori_img[y1:y2, x1:x2]
|
||||||
|
im_crops.append(im)
|
||||||
|
if im_crops:
|
||||||
|
features = self.extractor(im_crops)
|
||||||
|
else:
|
||||||
|
features = np.array([])
|
||||||
|
return features
|
0
yolov5/deep_sort_pytorch/deep_sort/sort/__init__.py
Normal file
0
yolov5/deep_sort_pytorch/deep_sort/sort/__init__.py
Normal file
49
yolov5/deep_sort_pytorch/deep_sort/sort/detection.py
Normal file
49
yolov5/deep_sort_pytorch/deep_sort/sort/detection.py
Normal file
@ -0,0 +1,49 @@
|
|||||||
|
# vim: expandtab:ts=4:sw=4
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
|
||||||
|
class Detection(object):
|
||||||
|
"""
|
||||||
|
This class represents a bounding box detection in a single image.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
tlwh : array_like
|
||||||
|
Bounding box in format `(x, y, w, h)`.
|
||||||
|
confidence : float
|
||||||
|
Detector confidence score.
|
||||||
|
feature : array_like
|
||||||
|
A feature vector that describes the object contained in this image.
|
||||||
|
|
||||||
|
Attributes
|
||||||
|
----------
|
||||||
|
tlwh : ndarray
|
||||||
|
Bounding box in format `(top left x, top left y, width, height)`.
|
||||||
|
confidence : ndarray
|
||||||
|
Detector confidence score.
|
||||||
|
feature : ndarray | NoneType
|
||||||
|
A feature vector that describes the object contained in this image.
|
||||||
|
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, tlwh, confidence, feature):
|
||||||
|
self.tlwh = np.asarray(tlwh, dtype=np.float)
|
||||||
|
self.confidence = float(confidence)
|
||||||
|
self.feature = np.asarray(feature, dtype=np.float32)
|
||||||
|
|
||||||
|
def to_tlbr(self):
|
||||||
|
"""Convert bounding box to format `(min x, min y, max x, max y)`, i.e.,
|
||||||
|
`(top left, bottom right)`.
|
||||||
|
"""
|
||||||
|
ret = self.tlwh.copy()
|
||||||
|
ret[2:] += ret[:2]
|
||||||
|
return ret
|
||||||
|
|
||||||
|
def to_xyah(self):
|
||||||
|
"""Convert bounding box to format `(center x, center y, aspect ratio,
|
||||||
|
height)`, where the aspect ratio is `width / height`.
|
||||||
|
"""
|
||||||
|
ret = self.tlwh.copy()
|
||||||
|
ret[:2] += ret[2:] / 2
|
||||||
|
ret[2] /= ret[3]
|
||||||
|
return ret
|
82
yolov5/deep_sort_pytorch/deep_sort/sort/iou_matching.py
Normal file
82
yolov5/deep_sort_pytorch/deep_sort/sort/iou_matching.py
Normal file
@ -0,0 +1,82 @@
|
|||||||
|
# vim: expandtab:ts=4:sw=4
|
||||||
|
from __future__ import absolute_import
|
||||||
|
import numpy as np
|
||||||
|
from . import linear_assignment
|
||||||
|
|
||||||
|
|
||||||
|
def iou(bbox, candidates):
|
||||||
|
"""Computer intersection over union.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
bbox : ndarray
|
||||||
|
A bounding box in format `(top left x, top left y, width, height)`.
|
||||||
|
candidates : ndarray
|
||||||
|
A matrix of candidate bounding boxes (one per row) in the same format
|
||||||
|
as `bbox`.
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
ndarray
|
||||||
|
The intersection over union in [0, 1] between the `bbox` and each
|
||||||
|
candidate. A higher score means a larger fraction of the `bbox` is
|
||||||
|
occluded by the candidate.
|
||||||
|
|
||||||
|
"""
|
||||||
|
bbox_tl, bbox_br = bbox[:2], bbox[:2] + bbox[2:]
|
||||||
|
candidates_tl = candidates[:, :2]
|
||||||
|
candidates_br = candidates[:, :2] + candidates[:, 2:]
|
||||||
|
|
||||||
|
tl = np.c_[np.maximum(bbox_tl[0], candidates_tl[:, 0])[:, np.newaxis],
|
||||||
|
np.maximum(bbox_tl[1], candidates_tl[:, 1])[:, np.newaxis]]
|
||||||
|
br = np.c_[np.minimum(bbox_br[0], candidates_br[:, 0])[:, np.newaxis],
|
||||||
|
np.minimum(bbox_br[1], candidates_br[:, 1])[:, np.newaxis]]
|
||||||
|
wh = np.maximum(0., br - tl)
|
||||||
|
|
||||||
|
area_intersection = wh.prod(axis=1)
|
||||||
|
area_bbox = bbox[2:].prod()
|
||||||
|
area_candidates = candidates[:, 2:].prod(axis=1)
|
||||||
|
return area_intersection / (area_bbox + area_candidates - area_intersection)
|
||||||
|
|
||||||
|
|
||||||
|
def iou_cost(tracks, detections, track_indices=None,
|
||||||
|
detection_indices=None):
|
||||||
|
"""An intersection over union distance metric.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
tracks : List[deep_sort.track.Track]
|
||||||
|
A list of tracks.
|
||||||
|
detections : List[deep_sort.detection.Detection]
|
||||||
|
A list of detections.
|
||||||
|
track_indices : Optional[List[int]]
|
||||||
|
A list of indices to tracks that should be matched. Defaults to
|
||||||
|
all `tracks`.
|
||||||
|
detection_indices : Optional[List[int]]
|
||||||
|
A list of indices to detections that should be matched. Defaults
|
||||||
|
to all `detections`.
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
ndarray
|
||||||
|
Returns a cost matrix of shape
|
||||||
|
len(track_indices), len(detection_indices) where entry (i, j) is
|
||||||
|
`1 - iou(tracks[track_indices[i]], detections[detection_indices[j]])`.
|
||||||
|
|
||||||
|
"""
|
||||||
|
if track_indices is None:
|
||||||
|
track_indices = np.arange(len(tracks))
|
||||||
|
if detection_indices is None:
|
||||||
|
detection_indices = np.arange(len(detections))
|
||||||
|
|
||||||
|
cost_matrix = np.zeros((len(track_indices), len(detection_indices)))
|
||||||
|
for row, track_idx in enumerate(track_indices):
|
||||||
|
if tracks[track_idx].time_since_update > 1:
|
||||||
|
cost_matrix[row, :] = linear_assignment.INFTY_COST
|
||||||
|
continue
|
||||||
|
|
||||||
|
bbox = tracks[track_idx].to_tlwh()
|
||||||
|
candidates = np.asarray(
|
||||||
|
[detections[i].tlwh for i in detection_indices])
|
||||||
|
cost_matrix[row, :] = 1. - iou(bbox, candidates)
|
||||||
|
return cost_matrix
|
229
yolov5/deep_sort_pytorch/deep_sort/sort/kalman_filter.py
Normal file
229
yolov5/deep_sort_pytorch/deep_sort/sort/kalman_filter.py
Normal file
@ -0,0 +1,229 @@
|
|||||||
|
# vim: expandtab:ts=4:sw=4
|
||||||
|
import numpy as np
|
||||||
|
import scipy.linalg
|
||||||
|
|
||||||
|
|
||||||
|
"""
|
||||||
|
Table for the 0.95 quantile of the chi-square distribution with N degrees of
|
||||||
|
freedom (contains values for N=1, ..., 9). Taken from MATLAB/Octave's chi2inv
|
||||||
|
function and used as Mahalanobis gating threshold.
|
||||||
|
"""
|
||||||
|
chi2inv95 = {
|
||||||
|
1: 3.8415,
|
||||||
|
2: 5.9915,
|
||||||
|
3: 7.8147,
|
||||||
|
4: 9.4877,
|
||||||
|
5: 11.070,
|
||||||
|
6: 12.592,
|
||||||
|
7: 14.067,
|
||||||
|
8: 15.507,
|
||||||
|
9: 16.919}
|
||||||
|
|
||||||
|
|
||||||
|
class KalmanFilter(object):
|
||||||
|
"""
|
||||||
|
A simple Kalman filter for tracking bounding boxes in image space.
|
||||||
|
|
||||||
|
The 8-dimensional state space
|
||||||
|
|
||||||
|
x, y, a, h, vx, vy, va, vh
|
||||||
|
|
||||||
|
contains the bounding box center position (x, y), aspect ratio a, height h,
|
||||||
|
and their respective velocities.
|
||||||
|
|
||||||
|
Object motion follows a constant velocity model. The bounding box location
|
||||||
|
(x, y, a, h) is taken as direct observation of the state space (linear
|
||||||
|
observation model).
|
||||||
|
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self):
|
||||||
|
ndim, dt = 4, 1.
|
||||||
|
|
||||||
|
# Create Kalman filter model matrices.
|
||||||
|
self._motion_mat = np.eye(2 * ndim, 2 * ndim)
|
||||||
|
for i in range(ndim):
|
||||||
|
self._motion_mat[i, ndim + i] = dt
|
||||||
|
self._update_mat = np.eye(ndim, 2 * ndim)
|
||||||
|
|
||||||
|
# Motion and observation uncertainty are chosen relative to the current
|
||||||
|
# state estimate. These weights control the amount of uncertainty in
|
||||||
|
# the model. This is a bit hacky.
|
||||||
|
self._std_weight_position = 1. / 20
|
||||||
|
self._std_weight_velocity = 1. / 160
|
||||||
|
|
||||||
|
def initiate(self, measurement):
|
||||||
|
"""Create track from unassociated measurement.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
measurement : ndarray
|
||||||
|
Bounding box coordinates (x, y, a, h) with center position (x, y),
|
||||||
|
aspect ratio a, and height h.
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
(ndarray, ndarray)
|
||||||
|
Returns the mean vector (8 dimensional) and covariance matrix (8x8
|
||||||
|
dimensional) of the new track. Unobserved velocities are initialized
|
||||||
|
to 0 mean.
|
||||||
|
|
||||||
|
"""
|
||||||
|
mean_pos = measurement
|
||||||
|
mean_vel = np.zeros_like(mean_pos)
|
||||||
|
mean = np.r_[mean_pos, mean_vel]
|
||||||
|
|
||||||
|
std = [
|
||||||
|
2 * self._std_weight_position * measurement[3],
|
||||||
|
2 * self._std_weight_position * measurement[3],
|
||||||
|
1e-2,
|
||||||
|
2 * self._std_weight_position * measurement[3],
|
||||||
|
10 * self._std_weight_velocity * measurement[3],
|
||||||
|
10 * self._std_weight_velocity * measurement[3],
|
||||||
|
1e-5,
|
||||||
|
10 * self._std_weight_velocity * measurement[3]]
|
||||||
|
covariance = np.diag(np.square(std))
|
||||||
|
return mean, covariance
|
||||||
|
|
||||||
|
def predict(self, mean, covariance):
|
||||||
|
"""Run Kalman filter prediction step.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
mean : ndarray
|
||||||
|
The 8 dimensional mean vector of the object state at the previous
|
||||||
|
time step.
|
||||||
|
covariance : ndarray
|
||||||
|
The 8x8 dimensional covariance matrix of the object state at the
|
||||||
|
previous time step.
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
(ndarray, ndarray)
|
||||||
|
Returns the mean vector and covariance matrix of the predicted
|
||||||
|
state. Unobserved velocities are initialized to 0 mean.
|
||||||
|
|
||||||
|
"""
|
||||||
|
std_pos = [
|
||||||
|
self._std_weight_position * mean[3],
|
||||||
|
self._std_weight_position * mean[3],
|
||||||
|
1e-2,
|
||||||
|
self._std_weight_position * mean[3]]
|
||||||
|
std_vel = [
|
||||||
|
self._std_weight_velocity * mean[3],
|
||||||
|
self._std_weight_velocity * mean[3],
|
||||||
|
1e-5,
|
||||||
|
self._std_weight_velocity * mean[3]]
|
||||||
|
motion_cov = np.diag(np.square(np.r_[std_pos, std_vel]))
|
||||||
|
|
||||||
|
mean = np.dot(self._motion_mat, mean)
|
||||||
|
covariance = np.linalg.multi_dot((
|
||||||
|
self._motion_mat, covariance, self._motion_mat.T)) + motion_cov
|
||||||
|
|
||||||
|
return mean, covariance
|
||||||
|
|
||||||
|
def project(self, mean, covariance):
|
||||||
|
"""Project state distribution to measurement space.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
mean : ndarray
|
||||||
|
The state's mean vector (8 dimensional array).
|
||||||
|
covariance : ndarray
|
||||||
|
The state's covariance matrix (8x8 dimensional).
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
(ndarray, ndarray)
|
||||||
|
Returns the projected mean and covariance matrix of the given state
|
||||||
|
estimate.
|
||||||
|
|
||||||
|
"""
|
||||||
|
std = [
|
||||||
|
self._std_weight_position * mean[3],
|
||||||
|
self._std_weight_position * mean[3],
|
||||||
|
1e-1,
|
||||||
|
self._std_weight_position * mean[3]]
|
||||||
|
innovation_cov = np.diag(np.square(std))
|
||||||
|
|
||||||
|
mean = np.dot(self._update_mat, mean)
|
||||||
|
covariance = np.linalg.multi_dot((
|
||||||
|
self._update_mat, covariance, self._update_mat.T))
|
||||||
|
return mean, covariance + innovation_cov
|
||||||
|
|
||||||
|
def update(self, mean, covariance, measurement):
|
||||||
|
"""Run Kalman filter correction step.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
mean : ndarray
|
||||||
|
The predicted state's mean vector (8 dimensional).
|
||||||
|
covariance : ndarray
|
||||||
|
The state's covariance matrix (8x8 dimensional).
|
||||||
|
measurement : ndarray
|
||||||
|
The 4 dimensional measurement vector (x, y, a, h), where (x, y)
|
||||||
|
is the center position, a the aspect ratio, and h the height of the
|
||||||
|
bounding box.
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
(ndarray, ndarray)
|
||||||
|
Returns the measurement-corrected state distribution.
|
||||||
|
|
||||||
|
"""
|
||||||
|
projected_mean, projected_cov = self.project(mean, covariance)
|
||||||
|
|
||||||
|
chol_factor, lower = scipy.linalg.cho_factor(
|
||||||
|
projected_cov, lower=True, check_finite=False)
|
||||||
|
kalman_gain = scipy.linalg.cho_solve(
|
||||||
|
(chol_factor, lower), np.dot(covariance, self._update_mat.T).T,
|
||||||
|
check_finite=False).T
|
||||||
|
innovation = measurement - projected_mean
|
||||||
|
|
||||||
|
new_mean = mean + np.dot(innovation, kalman_gain.T)
|
||||||
|
new_covariance = covariance - np.linalg.multi_dot((
|
||||||
|
kalman_gain, projected_cov, kalman_gain.T))
|
||||||
|
return new_mean, new_covariance
|
||||||
|
|
||||||
|
def gating_distance(self, mean, covariance, measurements,
|
||||||
|
only_position=False):
|
||||||
|
"""Compute gating distance between state distribution and measurements.
|
||||||
|
|
||||||
|
A suitable distance threshold can be obtained from `chi2inv95`. If
|
||||||
|
`only_position` is False, the chi-square distribution has 4 degrees of
|
||||||
|
freedom, otherwise 2.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
mean : ndarray
|
||||||
|
Mean vector over the state distribution (8 dimensional).
|
||||||
|
covariance : ndarray
|
||||||
|
Covariance of the state distribution (8x8 dimensional).
|
||||||
|
measurements : ndarray
|
||||||
|
An Nx4 dimensional matrix of N measurements, each in
|
||||||
|
format (x, y, a, h) where (x, y) is the bounding box center
|
||||||
|
position, a the aspect ratio, and h the height.
|
||||||
|
only_position : Optional[bool]
|
||||||
|
If True, distance computation is done with respect to the bounding
|
||||||
|
box center position only.
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
ndarray
|
||||||
|
Returns an array of length N, where the i-th element contains the
|
||||||
|
squared Mahalanobis distance between (mean, covariance) and
|
||||||
|
`measurements[i]`.
|
||||||
|
|
||||||
|
"""
|
||||||
|
mean, covariance = self.project(mean, covariance)
|
||||||
|
if only_position:
|
||||||
|
mean, covariance = mean[:2], covariance[:2, :2]
|
||||||
|
measurements = measurements[:, :2]
|
||||||
|
|
||||||
|
cholesky_factor = np.linalg.cholesky(covariance)
|
||||||
|
d = measurements - mean
|
||||||
|
z = scipy.linalg.solve_triangular(
|
||||||
|
cholesky_factor, d.T, lower=True, check_finite=False,
|
||||||
|
overwrite_b=True)
|
||||||
|
squared_maha = np.sum(z * z, axis=0)
|
||||||
|
return squared_maha
|
192
yolov5/deep_sort_pytorch/deep_sort/sort/linear_assignment.py
Normal file
192
yolov5/deep_sort_pytorch/deep_sort/sort/linear_assignment.py
Normal file
@ -0,0 +1,192 @@
|
|||||||
|
# vim: expandtab:ts=4:sw=4
|
||||||
|
from __future__ import absolute_import
|
||||||
|
import numpy as np
|
||||||
|
# from sklearn.utils.linear_assignment_ import linear_assignment
|
||||||
|
from scipy.optimize import linear_sum_assignment as linear_assignment
|
||||||
|
from . import kalman_filter
|
||||||
|
|
||||||
|
|
||||||
|
INFTY_COST = 1e+5
|
||||||
|
|
||||||
|
|
||||||
|
def min_cost_matching(
|
||||||
|
distance_metric, max_distance, tracks, detections, track_indices=None,
|
||||||
|
detection_indices=None):
|
||||||
|
"""Solve linear assignment problem.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
distance_metric : Callable[List[Track], List[Detection], List[int], List[int]) -> ndarray
|
||||||
|
The distance metric is given a list of tracks and detections as well as
|
||||||
|
a list of N track indices and M detection indices. The metric should
|
||||||
|
return the NxM dimensional cost matrix, where element (i, j) is the
|
||||||
|
association cost between the i-th track in the given track indices and
|
||||||
|
the j-th detection in the given detection_indices.
|
||||||
|
max_distance : float
|
||||||
|
Gating threshold. Associations with cost larger than this value are
|
||||||
|
disregarded.
|
||||||
|
tracks : List[track.Track]
|
||||||
|
A list of predicted tracks at the current time step.
|
||||||
|
detections : List[detection.Detection]
|
||||||
|
A list of detections at the current time step.
|
||||||
|
track_indices : List[int]
|
||||||
|
List of track indices that maps rows in `cost_matrix` to tracks in
|
||||||
|
`tracks` (see description above).
|
||||||
|
detection_indices : List[int]
|
||||||
|
List of detection indices that maps columns in `cost_matrix` to
|
||||||
|
detections in `detections` (see description above).
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
(List[(int, int)], List[int], List[int])
|
||||||
|
Returns a tuple with the following three entries:
|
||||||
|
* A list of matched track and detection indices.
|
||||||
|
* A list of unmatched track indices.
|
||||||
|
* A list of unmatched detection indices.
|
||||||
|
|
||||||
|
"""
|
||||||
|
if track_indices is None:
|
||||||
|
track_indices = np.arange(len(tracks))
|
||||||
|
if detection_indices is None:
|
||||||
|
detection_indices = np.arange(len(detections))
|
||||||
|
|
||||||
|
if len(detection_indices) == 0 or len(track_indices) == 0:
|
||||||
|
return [], track_indices, detection_indices # Nothing to match.
|
||||||
|
|
||||||
|
cost_matrix = distance_metric(
|
||||||
|
tracks, detections, track_indices, detection_indices)
|
||||||
|
cost_matrix[cost_matrix > max_distance] = max_distance + 1e-5
|
||||||
|
|
||||||
|
row_indices, col_indices = linear_assignment(cost_matrix)
|
||||||
|
|
||||||
|
matches, unmatched_tracks, unmatched_detections = [], [], []
|
||||||
|
for col, detection_idx in enumerate(detection_indices):
|
||||||
|
if col not in col_indices:
|
||||||
|
unmatched_detections.append(detection_idx)
|
||||||
|
for row, track_idx in enumerate(track_indices):
|
||||||
|
if row not in row_indices:
|
||||||
|
unmatched_tracks.append(track_idx)
|
||||||
|
for row, col in zip(row_indices, col_indices):
|
||||||
|
track_idx = track_indices[row]
|
||||||
|
detection_idx = detection_indices[col]
|
||||||
|
if cost_matrix[row, col] > max_distance:
|
||||||
|
unmatched_tracks.append(track_idx)
|
||||||
|
unmatched_detections.append(detection_idx)
|
||||||
|
else:
|
||||||
|
matches.append((track_idx, detection_idx))
|
||||||
|
return matches, unmatched_tracks, unmatched_detections
|
||||||
|
|
||||||
|
|
||||||
|
def matching_cascade(
|
||||||
|
distance_metric, max_distance, cascade_depth, tracks, detections,
|
||||||
|
track_indices=None, detection_indices=None):
|
||||||
|
"""Run matching cascade.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
distance_metric : Callable[List[Track], List[Detection], List[int], List[int]) -> ndarray
|
||||||
|
The distance metric is given a list of tracks and detections as well as
|
||||||
|
a list of N track indices and M detection indices. The metric should
|
||||||
|
return the NxM dimensional cost matrix, where element (i, j) is the
|
||||||
|
association cost between the i-th track in the given track indices and
|
||||||
|
the j-th detection in the given detection indices.
|
||||||
|
max_distance : float
|
||||||
|
Gating threshold. Associations with cost larger than this value are
|
||||||
|
disregarded.
|
||||||
|
cascade_depth: int
|
||||||
|
The cascade depth, should be se to the maximum track age.
|
||||||
|
tracks : List[track.Track]
|
||||||
|
A list of predicted tracks at the current time step.
|
||||||
|
detections : List[detection.Detection]
|
||||||
|
A list of detections at the current time step.
|
||||||
|
track_indices : Optional[List[int]]
|
||||||
|
List of track indices that maps rows in `cost_matrix` to tracks in
|
||||||
|
`tracks` (see description above). Defaults to all tracks.
|
||||||
|
detection_indices : Optional[List[int]]
|
||||||
|
List of detection indices that maps columns in `cost_matrix` to
|
||||||
|
detections in `detections` (see description above). Defaults to all
|
||||||
|
detections.
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
(List[(int, int)], List[int], List[int])
|
||||||
|
Returns a tuple with the following three entries:
|
||||||
|
* A list of matched track and detection indices.
|
||||||
|
* A list of unmatched track indices.
|
||||||
|
* A list of unmatched detection indices.
|
||||||
|
|
||||||
|
"""
|
||||||
|
if track_indices is None:
|
||||||
|
track_indices = list(range(len(tracks)))
|
||||||
|
if detection_indices is None:
|
||||||
|
detection_indices = list(range(len(detections)))
|
||||||
|
|
||||||
|
unmatched_detections = detection_indices
|
||||||
|
matches = []
|
||||||
|
for level in range(cascade_depth):
|
||||||
|
if len(unmatched_detections) == 0: # No detections left
|
||||||
|
break
|
||||||
|
|
||||||
|
track_indices_l = [
|
||||||
|
k for k in track_indices
|
||||||
|
if tracks[k].time_since_update == 1 + level
|
||||||
|
]
|
||||||
|
if len(track_indices_l) == 0: # Nothing to match at this level
|
||||||
|
continue
|
||||||
|
|
||||||
|
matches_l, _, unmatched_detections = \
|
||||||
|
min_cost_matching(
|
||||||
|
distance_metric, max_distance, tracks, detections,
|
||||||
|
track_indices_l, unmatched_detections)
|
||||||
|
matches += matches_l
|
||||||
|
unmatched_tracks = list(set(track_indices) - set(k for k, _ in matches))
|
||||||
|
return matches, unmatched_tracks, unmatched_detections
|
||||||
|
|
||||||
|
|
||||||
|
def gate_cost_matrix(
|
||||||
|
kf, cost_matrix, tracks, detections, track_indices, detection_indices,
|
||||||
|
gated_cost=INFTY_COST, only_position=False):
|
||||||
|
"""Invalidate infeasible entries in cost matrix based on the state
|
||||||
|
distributions obtained by Kalman filtering.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
kf : The Kalman filter.
|
||||||
|
cost_matrix : ndarray
|
||||||
|
The NxM dimensional cost matrix, where N is the number of track indices
|
||||||
|
and M is the number of detection indices, such that entry (i, j) is the
|
||||||
|
association cost between `tracks[track_indices[i]]` and
|
||||||
|
`detections[detection_indices[j]]`.
|
||||||
|
tracks : List[track.Track]
|
||||||
|
A list of predicted tracks at the current time step.
|
||||||
|
detections : List[detection.Detection]
|
||||||
|
A list of detections at the current time step.
|
||||||
|
track_indices : List[int]
|
||||||
|
List of track indices that maps rows in `cost_matrix` to tracks in
|
||||||
|
`tracks` (see description above).
|
||||||
|
detection_indices : List[int]
|
||||||
|
List of detection indices that maps columns in `cost_matrix` to
|
||||||
|
detections in `detections` (see description above).
|
||||||
|
gated_cost : Optional[float]
|
||||||
|
Entries in the cost matrix corresponding to infeasible associations are
|
||||||
|
set this value. Defaults to a very large value.
|
||||||
|
only_position : Optional[bool]
|
||||||
|
If True, only the x, y position of the state distribution is considered
|
||||||
|
during gating. Defaults to False.
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
ndarray
|
||||||
|
Returns the modified cost matrix.
|
||||||
|
|
||||||
|
"""
|
||||||
|
gating_dim = 2 if only_position else 4
|
||||||
|
gating_threshold = kalman_filter.chi2inv95[gating_dim]
|
||||||
|
measurements = np.asarray(
|
||||||
|
[detections[i].to_xyah() for i in detection_indices])
|
||||||
|
for row, track_idx in enumerate(track_indices):
|
||||||
|
track = tracks[track_idx]
|
||||||
|
gating_distance = kf.gating_distance(
|
||||||
|
track.mean, track.covariance, measurements, only_position)
|
||||||
|
cost_matrix[row, gating_distance > gating_threshold] = gated_cost
|
||||||
|
return cost_matrix
|
176
yolov5/deep_sort_pytorch/deep_sort/sort/nn_matching.py
Normal file
176
yolov5/deep_sort_pytorch/deep_sort/sort/nn_matching.py
Normal file
@ -0,0 +1,176 @@
|
|||||||
|
# vim: expandtab:ts=4:sw=4
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
|
||||||
|
def _pdist(a, b):
|
||||||
|
"""Compute pair-wise squared distance between points in `a` and `b`.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
a : array_like
|
||||||
|
An NxM matrix of N samples of dimensionality M.
|
||||||
|
b : array_like
|
||||||
|
An LxM matrix of L samples of dimensionality M.
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
ndarray
|
||||||
|
Returns a matrix of size len(a), len(b) such that eleement (i, j)
|
||||||
|
contains the squared distance between `a[i]` and `b[j]`.
|
||||||
|
|
||||||
|
"""
|
||||||
|
a, b = np.asarray(a), np.asarray(b)
|
||||||
|
if len(a) == 0 or len(b) == 0:
|
||||||
|
return np.zeros((len(a), len(b)))
|
||||||
|
a2, b2 = np.square(a).sum(axis=1), np.square(b).sum(axis=1)
|
||||||
|
r2 = -2. * np.dot(a, b.T) + a2[:, None] + b2[None, :]
|
||||||
|
r2 = np.clip(r2, 0., float(np.inf))
|
||||||
|
return r2
|
||||||
|
|
||||||
|
|
||||||
|
def _cosine_distance(a, b, data_is_normalized=False):
|
||||||
|
"""Compute pair-wise cosine distance between points in `a` and `b`.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
a : array_like
|
||||||
|
An NxM matrix of N samples of dimensionality M.
|
||||||
|
b : array_like
|
||||||
|
An LxM matrix of L samples of dimensionality M.
|
||||||
|
data_is_normalized : Optional[bool]
|
||||||
|
If True, assumes rows in a and b are unit length vectors.
|
||||||
|
Otherwise, a and b are explicitly normalized to lenght 1.
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
ndarray
|
||||||
|
Returns a matrix of size len(a), len(b) such that eleement (i, j)
|
||||||
|
contains the squared distance between `a[i]` and `b[j]`.
|
||||||
|
|
||||||
|
"""
|
||||||
|
if not data_is_normalized:
|
||||||
|
a = np.asarray(a) / np.linalg.norm(a, axis=1, keepdims=True)
|
||||||
|
b = np.asarray(b) / np.linalg.norm(b, axis=1, keepdims=True)
|
||||||
|
return 1. - np.dot(a, b.T)
|
||||||
|
|
||||||
|
|
||||||
|
def _nn_euclidean_distance(x, y):
|
||||||
|
""" Helper function for nearest neighbor distance metric (Euclidean).
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
x : ndarray
|
||||||
|
A matrix of N row-vectors (sample points).
|
||||||
|
y : ndarray
|
||||||
|
A matrix of M row-vectors (query points).
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
ndarray
|
||||||
|
A vector of length M that contains for each entry in `y` the
|
||||||
|
smallest Euclidean distance to a sample in `x`.
|
||||||
|
|
||||||
|
"""
|
||||||
|
distances = _pdist(x, y)
|
||||||
|
return np.maximum(0.0, distances.min(axis=0))
|
||||||
|
|
||||||
|
|
||||||
|
def _nn_cosine_distance(x, y):
|
||||||
|
""" Helper function for nearest neighbor distance metric (cosine).
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
x : ndarray
|
||||||
|
A matrix of N row-vectors (sample points).
|
||||||
|
y : ndarray
|
||||||
|
A matrix of M row-vectors (query points).
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
ndarray
|
||||||
|
A vector of length M that contains for each entry in `y` the
|
||||||
|
smallest cosine distance to a sample in `x`.
|
||||||
|
|
||||||
|
"""
|
||||||
|
distances = _cosine_distance(x, y)
|
||||||
|
return distances.min(axis=0)
|
||||||
|
|
||||||
|
|
||||||
|
class NearestNeighborDistanceMetric(object):
|
||||||
|
"""
|
||||||
|
A nearest neighbor distance metric that, for each target, returns
|
||||||
|
the closest distance to any sample that has been observed so far.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
metric : str
|
||||||
|
Either "euclidean" or "cosine".
|
||||||
|
matching_threshold: float
|
||||||
|
The matching threshold. Samples with larger distance are considered an
|
||||||
|
invalid match.
|
||||||
|
budget : Optional[int]
|
||||||
|
If not None, fix samples per class to at most this number. Removes
|
||||||
|
the oldest samples when the budget is reached.
|
||||||
|
|
||||||
|
Attributes
|
||||||
|
----------
|
||||||
|
samples : Dict[int -> List[ndarray]]
|
||||||
|
A dictionary that maps from target identities to the list of samples
|
||||||
|
that have been observed so far.
|
||||||
|
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, metric, matching_threshold, budget=None):
|
||||||
|
|
||||||
|
if metric == "euclidean":
|
||||||
|
self._metric = _nn_euclidean_distance
|
||||||
|
elif metric == "cosine":
|
||||||
|
self._metric = _nn_cosine_distance
|
||||||
|
else:
|
||||||
|
raise ValueError(
|
||||||
|
"Invalid metric; must be either 'euclidean' or 'cosine'")
|
||||||
|
self.matching_threshold = matching_threshold
|
||||||
|
self.budget = budget
|
||||||
|
self.samples = {}
|
||||||
|
|
||||||
|
def partial_fit(self, features, targets, active_targets):
|
||||||
|
"""Update the distance metric with new data.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
features : ndarray
|
||||||
|
An NxM matrix of N features of dimensionality M.
|
||||||
|
targets : ndarray
|
||||||
|
An integer array of associated target identities.
|
||||||
|
active_targets : List[int]
|
||||||
|
A list of targets that are currently present in the scene.
|
||||||
|
|
||||||
|
"""
|
||||||
|
for feature, target in zip(features, targets):
|
||||||
|
self.samples.setdefault(target, []).append(feature)
|
||||||
|
if self.budget is not None:
|
||||||
|
self.samples[target] = self.samples[target][-self.budget:]
|
||||||
|
self.samples = {k: self.samples[k] for k in active_targets}
|
||||||
|
|
||||||
|
def distance(self, features, targets):
|
||||||
|
"""Compute distance between features and targets.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
features : ndarray
|
||||||
|
An NxM matrix of N features of dimensionality M.
|
||||||
|
targets : List[int]
|
||||||
|
A list of targets to match the given `features` against.
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
ndarray
|
||||||
|
Returns a cost matrix of shape len(targets), len(features), where
|
||||||
|
element (i, j) contains the closest squared distance between
|
||||||
|
`targets[i]` and `features[j]`.
|
||||||
|
|
||||||
|
"""
|
||||||
|
cost_matrix = np.zeros((len(targets), len(features)))
|
||||||
|
for i, target in enumerate(targets):
|
||||||
|
cost_matrix[i, :] = self._metric(self.samples[target], features)
|
||||||
|
return cost_matrix
|
73
yolov5/deep_sort_pytorch/deep_sort/sort/preprocessing.py
Normal file
73
yolov5/deep_sort_pytorch/deep_sort/sort/preprocessing.py
Normal file
@ -0,0 +1,73 @@
|
|||||||
|
# vim: expandtab:ts=4:sw=4
|
||||||
|
import numpy as np
|
||||||
|
import cv2
|
||||||
|
|
||||||
|
|
||||||
|
def non_max_suppression(boxes, max_bbox_overlap, scores=None):
|
||||||
|
"""Suppress overlapping detections.
|
||||||
|
|
||||||
|
Original code from [1]_ has been adapted to include confidence score.
|
||||||
|
|
||||||
|
.. [1] http://www.pyimagesearch.com/2015/02/16/
|
||||||
|
faster-non-maximum-suppression-python/
|
||||||
|
|
||||||
|
Examples
|
||||||
|
--------
|
||||||
|
|
||||||
|
>>> boxes = [d.roi for d in detections]
|
||||||
|
>>> scores = [d.confidence for d in detections]
|
||||||
|
>>> indices = non_max_suppression(boxes, max_bbox_overlap, scores)
|
||||||
|
>>> detections = [detections[i] for i in indices]
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
boxes : ndarray
|
||||||
|
Array of ROIs (x, y, width, height).
|
||||||
|
max_bbox_overlap : float
|
||||||
|
ROIs that overlap more than this values are suppressed.
|
||||||
|
scores : Optional[array_like]
|
||||||
|
Detector confidence score.
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
List[int]
|
||||||
|
Returns indices of detections that have survived non-maxima suppression.
|
||||||
|
|
||||||
|
"""
|
||||||
|
if len(boxes) == 0:
|
||||||
|
return []
|
||||||
|
|
||||||
|
boxes = boxes.astype(np.float)
|
||||||
|
pick = []
|
||||||
|
|
||||||
|
x1 = boxes[:, 0]
|
||||||
|
y1 = boxes[:, 1]
|
||||||
|
x2 = boxes[:, 2] + boxes[:, 0]
|
||||||
|
y2 = boxes[:, 3] + boxes[:, 1]
|
||||||
|
|
||||||
|
area = (x2 - x1 + 1) * (y2 - y1 + 1)
|
||||||
|
if scores is not None:
|
||||||
|
idxs = np.argsort(scores)
|
||||||
|
else:
|
||||||
|
idxs = np.argsort(y2)
|
||||||
|
|
||||||
|
while len(idxs) > 0:
|
||||||
|
last = len(idxs) - 1
|
||||||
|
i = idxs[last]
|
||||||
|
pick.append(i)
|
||||||
|
|
||||||
|
xx1 = np.maximum(x1[i], x1[idxs[:last]])
|
||||||
|
yy1 = np.maximum(y1[i], y1[idxs[:last]])
|
||||||
|
xx2 = np.minimum(x2[i], x2[idxs[:last]])
|
||||||
|
yy2 = np.minimum(y2[i], y2[idxs[:last]])
|
||||||
|
|
||||||
|
w = np.maximum(0, xx2 - xx1 + 1)
|
||||||
|
h = np.maximum(0, yy2 - yy1 + 1)
|
||||||
|
|
||||||
|
overlap = (w * h) / area[idxs[:last]]
|
||||||
|
|
||||||
|
idxs = np.delete(
|
||||||
|
idxs, np.concatenate(
|
||||||
|
([last], np.where(overlap > max_bbox_overlap)[0])))
|
||||||
|
|
||||||
|
return pick
|
169
yolov5/deep_sort_pytorch/deep_sort/sort/track.py
Normal file
169
yolov5/deep_sort_pytorch/deep_sort/sort/track.py
Normal file
@ -0,0 +1,169 @@
|
|||||||
|
# vim: expandtab:ts=4:sw=4
|
||||||
|
|
||||||
|
|
||||||
|
class TrackState:
|
||||||
|
"""
|
||||||
|
Enumeration type for the single target track state. Newly created tracks are
|
||||||
|
classified as `tentative` until enough evidence has been collected. Then,
|
||||||
|
the track state is changed to `confirmed`. Tracks that are no longer alive
|
||||||
|
are classified as `deleted` to mark them for removal from the set of active
|
||||||
|
tracks.
|
||||||
|
|
||||||
|
"""
|
||||||
|
|
||||||
|
Tentative = 1
|
||||||
|
Confirmed = 2
|
||||||
|
Deleted = 3
|
||||||
|
|
||||||
|
|
||||||
|
class Track:
|
||||||
|
"""
|
||||||
|
A single target track with state space `(x, y, a, h)` and associated
|
||||||
|
velocities, where `(x, y)` is the center of the bounding box, `a` is the
|
||||||
|
aspect ratio and `h` is the height.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
mean : ndarray
|
||||||
|
Mean vector of the initial state distribution.
|
||||||
|
covariance : ndarray
|
||||||
|
Covariance matrix of the initial state distribution.
|
||||||
|
track_id : int
|
||||||
|
A unique track identifier.
|
||||||
|
n_init : int
|
||||||
|
Number of consecutive detections before the track is confirmed. The
|
||||||
|
track state is set to `Deleted` if a miss occurs within the first
|
||||||
|
`n_init` frames.
|
||||||
|
max_age : int
|
||||||
|
The maximum number of consecutive misses before the track state is
|
||||||
|
set to `Deleted`.
|
||||||
|
feature : Optional[ndarray]
|
||||||
|
Feature vector of the detection this track originates from. If not None,
|
||||||
|
this feature is added to the `features` cache.
|
||||||
|
|
||||||
|
Attributes
|
||||||
|
----------
|
||||||
|
mean : ndarray
|
||||||
|
Mean vector of the initial state distribution.
|
||||||
|
covariance : ndarray
|
||||||
|
Covariance matrix of the initial state distribution.
|
||||||
|
track_id : int
|
||||||
|
A unique track identifier.
|
||||||
|
hits : int
|
||||||
|
Total number of measurement updates.
|
||||||
|
age : int
|
||||||
|
Total number of frames since first occurance.
|
||||||
|
time_since_update : int
|
||||||
|
Total number of frames since last measurement update.
|
||||||
|
state : TrackState
|
||||||
|
The current track state.
|
||||||
|
features : List[ndarray]
|
||||||
|
A cache of features. On each measurement update, the associated feature
|
||||||
|
vector is added to this list.
|
||||||
|
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, mean, covariance, track_id, n_init, max_age,
|
||||||
|
feature=None):
|
||||||
|
self.mean = mean
|
||||||
|
self.covariance = covariance
|
||||||
|
self.track_id = track_id
|
||||||
|
self.hits = 1
|
||||||
|
self.age = 1
|
||||||
|
self.time_since_update = 0
|
||||||
|
|
||||||
|
self.state = TrackState.Tentative
|
||||||
|
self.features = []
|
||||||
|
if feature is not None:
|
||||||
|
self.features.append(feature)
|
||||||
|
|
||||||
|
self._n_init = n_init
|
||||||
|
self._max_age = max_age
|
||||||
|
|
||||||
|
def to_tlwh(self):
|
||||||
|
"""Get current position in bounding box format `(top left x, top left y,
|
||||||
|
width, height)`.
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
ndarray
|
||||||
|
The bounding box.
|
||||||
|
|
||||||
|
"""
|
||||||
|
ret = self.mean[:4].copy()
|
||||||
|
ret[2] *= ret[3]
|
||||||
|
ret[:2] -= ret[2:] / 2
|
||||||
|
return ret
|
||||||
|
|
||||||
|
def to_tlbr(self):
|
||||||
|
"""Get current position in bounding box format `(min x, miny, max x,
|
||||||
|
max y)`.
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
ndarray
|
||||||
|
The bounding box.
|
||||||
|
|
||||||
|
"""
|
||||||
|
ret = self.to_tlwh()
|
||||||
|
ret[2:] = ret[:2] + ret[2:]
|
||||||
|
return ret
|
||||||
|
|
||||||
|
def increment_age(self):
|
||||||
|
self.age += 1
|
||||||
|
self.time_since_update += 1
|
||||||
|
|
||||||
|
def predict(self, kf):
|
||||||
|
"""Propagate the state distribution to the current time step using a
|
||||||
|
Kalman filter prediction step.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
kf : kalman_filter.KalmanFilter
|
||||||
|
The Kalman filter.
|
||||||
|
|
||||||
|
"""
|
||||||
|
self.mean, self.covariance = kf.predict(self.mean, self.covariance)
|
||||||
|
self.increment_age()
|
||||||
|
|
||||||
|
def update(self, kf, detection):
|
||||||
|
"""Perform Kalman filter measurement update step and update the feature
|
||||||
|
cache.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
kf : kalman_filter.KalmanFilter
|
||||||
|
The Kalman filter.
|
||||||
|
detection : Detection
|
||||||
|
The associated detection.
|
||||||
|
|
||||||
|
"""
|
||||||
|
self.mean, self.covariance = kf.update(
|
||||||
|
self.mean, self.covariance, detection.to_xyah())
|
||||||
|
self.features.append(detection.feature)
|
||||||
|
|
||||||
|
self.hits += 1
|
||||||
|
self.time_since_update = 0
|
||||||
|
if self.state == TrackState.Tentative and self.hits >= self._n_init:
|
||||||
|
self.state = TrackState.Confirmed
|
||||||
|
|
||||||
|
def mark_missed(self):
|
||||||
|
"""Mark this track as missed (no association at the current time step).
|
||||||
|
"""
|
||||||
|
if self.state == TrackState.Tentative:
|
||||||
|
self.state = TrackState.Deleted
|
||||||
|
elif self.time_since_update > self._max_age:
|
||||||
|
self.state = TrackState.Deleted
|
||||||
|
|
||||||
|
def is_tentative(self):
|
||||||
|
"""Returns True if this track is tentative (unconfirmed).
|
||||||
|
"""
|
||||||
|
return self.state == TrackState.Tentative
|
||||||
|
|
||||||
|
def is_confirmed(self):
|
||||||
|
"""Returns True if this track is confirmed."""
|
||||||
|
return self.state == TrackState.Confirmed
|
||||||
|
|
||||||
|
def is_deleted(self):
|
||||||
|
"""Returns True if this track is dead and should be deleted."""
|
||||||
|
return self.state == TrackState.Deleted
|
143
yolov5/deep_sort_pytorch/deep_sort/sort/tracker.py
Normal file
143
yolov5/deep_sort_pytorch/deep_sort/sort/tracker.py
Normal file
@ -0,0 +1,143 @@
|
|||||||
|
# vim: expandtab:ts=4:sw=4
|
||||||
|
from __future__ import absolute_import
|
||||||
|
import numpy as np
|
||||||
|
from . import kalman_filter
|
||||||
|
from . import linear_assignment
|
||||||
|
from . import iou_matching
|
||||||
|
from .track import Track
|
||||||
|
|
||||||
|
|
||||||
|
class Tracker:
|
||||||
|
"""
|
||||||
|
This is the multi-target tracker.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
metric : nn_matching.NearestNeighborDistanceMetric
|
||||||
|
A distance metric for measurement-to-track association.
|
||||||
|
max_age : int
|
||||||
|
Maximum number of missed misses before a track is deleted.
|
||||||
|
n_init : int
|
||||||
|
Number of consecutive detections before the track is confirmed. The
|
||||||
|
track state is set to `Deleted` if a miss occurs within the first
|
||||||
|
`n_init` frames.
|
||||||
|
|
||||||
|
Attributes
|
||||||
|
----------
|
||||||
|
metric : nn_matching.NearestNeighborDistanceMetric
|
||||||
|
The distance metric used for measurement to track association.
|
||||||
|
max_age : int
|
||||||
|
Maximum number of missed misses before a track is deleted.
|
||||||
|
n_init : int
|
||||||
|
Number of frames that a track remains in initialization phase.
|
||||||
|
kf : kalman_filter.KalmanFilter
|
||||||
|
A Kalman filter to filter target trajectories in image space.
|
||||||
|
tracks : List[Track]
|
||||||
|
The list of active tracks at the current time step.
|
||||||
|
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, metric, max_iou_distance=0.7, max_age=70, n_init=3):
|
||||||
|
self.metric = metric
|
||||||
|
self.max_iou_distance = max_iou_distance
|
||||||
|
self.max_age = max_age
|
||||||
|
self.n_init = n_init
|
||||||
|
|
||||||
|
self.kf = kalman_filter.KalmanFilter()
|
||||||
|
self.tracks = []
|
||||||
|
self._next_id = 1
|
||||||
|
|
||||||
|
def predict(self):
|
||||||
|
"""Propagate track state distributions one time step forward.
|
||||||
|
|
||||||
|
This function should be called once every time step, before `update`.
|
||||||
|
"""
|
||||||
|
for track in self.tracks:
|
||||||
|
track.predict(self.kf)
|
||||||
|
|
||||||
|
def increment_ages(self):
|
||||||
|
for track in self.tracks:
|
||||||
|
track.increment_age()
|
||||||
|
track.mark_missed()
|
||||||
|
|
||||||
|
def update(self, detections):
|
||||||
|
"""Perform measurement update and track management.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
detections : List[deep_sort.detection.Detection]
|
||||||
|
A list of detections at the current time step.
|
||||||
|
|
||||||
|
"""
|
||||||
|
# Run matching cascade.
|
||||||
|
matches, unmatched_tracks, unmatched_detections = \
|
||||||
|
self._match(detections)
|
||||||
|
|
||||||
|
# Update track set.
|
||||||
|
for track_idx, detection_idx in matches:
|
||||||
|
self.tracks[track_idx].update(
|
||||||
|
self.kf, detections[detection_idx])
|
||||||
|
for track_idx in unmatched_tracks:
|
||||||
|
self.tracks[track_idx].mark_missed()
|
||||||
|
for detection_idx in unmatched_detections:
|
||||||
|
self._initiate_track(detections[detection_idx])
|
||||||
|
self.tracks = [t for t in self.tracks if not t.is_deleted()]
|
||||||
|
|
||||||
|
# Update distance metric.
|
||||||
|
active_targets = [t.track_id for t in self.tracks if t.is_confirmed()]
|
||||||
|
features, targets = [], []
|
||||||
|
for track in self.tracks:
|
||||||
|
if not track.is_confirmed():
|
||||||
|
continue
|
||||||
|
features += track.features
|
||||||
|
targets += [track.track_id for _ in track.features]
|
||||||
|
track.features = []
|
||||||
|
self.metric.partial_fit(
|
||||||
|
np.asarray(features), np.asarray(targets), active_targets)
|
||||||
|
|
||||||
|
def _match(self, detections):
|
||||||
|
|
||||||
|
def gated_metric(tracks, dets, track_indices, detection_indices):
|
||||||
|
features = np.array([dets[i].feature for i in detection_indices])
|
||||||
|
targets = np.array([tracks[i].track_id for i in track_indices])
|
||||||
|
cost_matrix = self.metric.distance(features, targets)
|
||||||
|
cost_matrix = linear_assignment.gate_cost_matrix(
|
||||||
|
self.kf, cost_matrix, tracks, dets, track_indices,
|
||||||
|
detection_indices)
|
||||||
|
|
||||||
|
return cost_matrix
|
||||||
|
|
||||||
|
# Split track set into confirmed and unconfirmed tracks.
|
||||||
|
confirmed_tracks = [
|
||||||
|
i for i, t in enumerate(self.tracks) if t.is_confirmed()]
|
||||||
|
unconfirmed_tracks = [
|
||||||
|
i for i, t in enumerate(self.tracks) if not t.is_confirmed()]
|
||||||
|
|
||||||
|
# Associate confirmed tracks using appearance features.
|
||||||
|
matches_a, unmatched_tracks_a, unmatched_detections = \
|
||||||
|
linear_assignment.matching_cascade(
|
||||||
|
gated_metric, self.metric.matching_threshold, self.max_age,
|
||||||
|
self.tracks, detections, confirmed_tracks)
|
||||||
|
|
||||||
|
# Associate remaining tracks together with unconfirmed tracks using IOU.
|
||||||
|
iou_track_candidates = unconfirmed_tracks + [
|
||||||
|
k for k in unmatched_tracks_a if
|
||||||
|
self.tracks[k].time_since_update == 1]
|
||||||
|
unmatched_tracks_a = [
|
||||||
|
k for k in unmatched_tracks_a if
|
||||||
|
self.tracks[k].time_since_update != 1]
|
||||||
|
matches_b, unmatched_tracks_b, unmatched_detections = \
|
||||||
|
linear_assignment.min_cost_matching(
|
||||||
|
iou_matching.iou_cost, self.max_iou_distance, self.tracks,
|
||||||
|
detections, iou_track_candidates, unmatched_detections)
|
||||||
|
|
||||||
|
matches = matches_a + matches_b
|
||||||
|
unmatched_tracks = list(set(unmatched_tracks_a + unmatched_tracks_b))
|
||||||
|
return matches, unmatched_tracks, unmatched_detections
|
||||||
|
|
||||||
|
def _initiate_track(self, detection):
|
||||||
|
mean, covariance = self.kf.initiate(detection.to_xyah())
|
||||||
|
self.tracks.append(Track(
|
||||||
|
mean, covariance, self._next_id, self.n_init, self.max_age,
|
||||||
|
detection.feature))
|
||||||
|
self._next_id += 1
|
0
yolov5/deep_sort_pytorch/utils/__init__.py
Normal file
0
yolov5/deep_sort_pytorch/utils/__init__.py
Normal file
13
yolov5/deep_sort_pytorch/utils/asserts.py
Normal file
13
yolov5/deep_sort_pytorch/utils/asserts.py
Normal file
@ -0,0 +1,13 @@
|
|||||||
|
from os import environ
|
||||||
|
|
||||||
|
|
||||||
|
def assert_in(file, files_to_check):
|
||||||
|
if file not in files_to_check:
|
||||||
|
raise AssertionError("{} does not exist in the list".format(str(file)))
|
||||||
|
return True
|
||||||
|
|
||||||
|
|
||||||
|
def assert_in_env(check_list: list):
|
||||||
|
for item in check_list:
|
||||||
|
assert_in(item, environ.keys())
|
||||||
|
return True
|
36
yolov5/deep_sort_pytorch/utils/draw.py
Normal file
36
yolov5/deep_sort_pytorch/utils/draw.py
Normal file
@ -0,0 +1,36 @@
|
|||||||
|
import numpy as np
|
||||||
|
import cv2
|
||||||
|
|
||||||
|
palette = (2 ** 11 - 1, 2 ** 15 - 1, 2 ** 20 - 1)
|
||||||
|
|
||||||
|
|
||||||
|
def compute_color_for_labels(label):
|
||||||
|
"""
|
||||||
|
Simple function that adds fixed color depending on the class
|
||||||
|
"""
|
||||||
|
color = [int((p * (label ** 2 - label + 1)) % 255) for p in palette]
|
||||||
|
return tuple(color)
|
||||||
|
|
||||||
|
|
||||||
|
def draw_boxes(img, bbox, identities=None, offset=(0,0)):
|
||||||
|
for i,box in enumerate(bbox):
|
||||||
|
x1,y1,x2,y2 = [int(i) for i in box]
|
||||||
|
x1 += offset[0]
|
||||||
|
x2 += offset[0]
|
||||||
|
y1 += offset[1]
|
||||||
|
y2 += offset[1]
|
||||||
|
# box text and bar
|
||||||
|
id = int(identities[i]) if identities is not None else 0
|
||||||
|
color = compute_color_for_labels(id)
|
||||||
|
label = '{}{:d}'.format("", id)
|
||||||
|
t_size = cv2.getTextSize(label, cv2.FONT_HERSHEY_PLAIN, 2 , 2)[0]
|
||||||
|
cv2.rectangle(img,(x1, y1),(x2,y2),color,3)
|
||||||
|
cv2.rectangle(img,(x1, y1),(x1+t_size[0]+3,y1+t_size[1]+4), color,-1)
|
||||||
|
cv2.putText(img,label,(x1,y1+t_size[1]+4), cv2.FONT_HERSHEY_PLAIN, 2, [255,255,255], 2)
|
||||||
|
return img
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
for i in range(82):
|
||||||
|
print(compute_color_for_labels(i))
|
103
yolov5/deep_sort_pytorch/utils/evaluation.py
Normal file
103
yolov5/deep_sort_pytorch/utils/evaluation.py
Normal file
@ -0,0 +1,103 @@
|
|||||||
|
import os
|
||||||
|
import numpy as np
|
||||||
|
import copy
|
||||||
|
import motmetrics as mm
|
||||||
|
mm.lap.default_solver = 'lap'
|
||||||
|
from utils.io import read_results, unzip_objs
|
||||||
|
|
||||||
|
|
||||||
|
class Evaluator(object):
|
||||||
|
|
||||||
|
def __init__(self, data_root, seq_name, data_type):
|
||||||
|
self.data_root = data_root
|
||||||
|
self.seq_name = seq_name
|
||||||
|
self.data_type = data_type
|
||||||
|
|
||||||
|
self.load_annotations()
|
||||||
|
self.reset_accumulator()
|
||||||
|
|
||||||
|
def load_annotations(self):
|
||||||
|
assert self.data_type == 'mot'
|
||||||
|
|
||||||
|
gt_filename = os.path.join(self.data_root, self.seq_name, 'gt', 'gt.txt')
|
||||||
|
self.gt_frame_dict = read_results(gt_filename, self.data_type, is_gt=True)
|
||||||
|
self.gt_ignore_frame_dict = read_results(gt_filename, self.data_type, is_ignore=True)
|
||||||
|
|
||||||
|
def reset_accumulator(self):
|
||||||
|
self.acc = mm.MOTAccumulator(auto_id=True)
|
||||||
|
|
||||||
|
def eval_frame(self, frame_id, trk_tlwhs, trk_ids, rtn_events=False):
|
||||||
|
# results
|
||||||
|
trk_tlwhs = np.copy(trk_tlwhs)
|
||||||
|
trk_ids = np.copy(trk_ids)
|
||||||
|
|
||||||
|
# gts
|
||||||
|
gt_objs = self.gt_frame_dict.get(frame_id, [])
|
||||||
|
gt_tlwhs, gt_ids = unzip_objs(gt_objs)[:2]
|
||||||
|
|
||||||
|
# ignore boxes
|
||||||
|
ignore_objs = self.gt_ignore_frame_dict.get(frame_id, [])
|
||||||
|
ignore_tlwhs = unzip_objs(ignore_objs)[0]
|
||||||
|
|
||||||
|
|
||||||
|
# remove ignored results
|
||||||
|
keep = np.ones(len(trk_tlwhs), dtype=bool)
|
||||||
|
iou_distance = mm.distances.iou_matrix(ignore_tlwhs, trk_tlwhs, max_iou=0.5)
|
||||||
|
if len(iou_distance) > 0:
|
||||||
|
match_is, match_js = mm.lap.linear_sum_assignment(iou_distance)
|
||||||
|
match_is, match_js = map(lambda a: np.asarray(a, dtype=int), [match_is, match_js])
|
||||||
|
match_ious = iou_distance[match_is, match_js]
|
||||||
|
|
||||||
|
match_js = np.asarray(match_js, dtype=int)
|
||||||
|
match_js = match_js[np.logical_not(np.isnan(match_ious))]
|
||||||
|
keep[match_js] = False
|
||||||
|
trk_tlwhs = trk_tlwhs[keep]
|
||||||
|
trk_ids = trk_ids[keep]
|
||||||
|
|
||||||
|
# get distance matrix
|
||||||
|
iou_distance = mm.distances.iou_matrix(gt_tlwhs, trk_tlwhs, max_iou=0.5)
|
||||||
|
|
||||||
|
# acc
|
||||||
|
self.acc.update(gt_ids, trk_ids, iou_distance)
|
||||||
|
|
||||||
|
if rtn_events and iou_distance.size > 0 and hasattr(self.acc, 'last_mot_events'):
|
||||||
|
events = self.acc.last_mot_events # only supported by https://github.com/longcw/py-motmetrics
|
||||||
|
else:
|
||||||
|
events = None
|
||||||
|
return events
|
||||||
|
|
||||||
|
def eval_file(self, filename):
|
||||||
|
self.reset_accumulator()
|
||||||
|
|
||||||
|
result_frame_dict = read_results(filename, self.data_type, is_gt=False)
|
||||||
|
frames = sorted(list(set(self.gt_frame_dict.keys()) | set(result_frame_dict.keys())))
|
||||||
|
for frame_id in frames:
|
||||||
|
trk_objs = result_frame_dict.get(frame_id, [])
|
||||||
|
trk_tlwhs, trk_ids = unzip_objs(trk_objs)[:2]
|
||||||
|
self.eval_frame(frame_id, trk_tlwhs, trk_ids, rtn_events=False)
|
||||||
|
|
||||||
|
return self.acc
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def get_summary(accs, names, metrics=('mota', 'num_switches', 'idp', 'idr', 'idf1', 'precision', 'recall')):
|
||||||
|
names = copy.deepcopy(names)
|
||||||
|
if metrics is None:
|
||||||
|
metrics = mm.metrics.motchallenge_metrics
|
||||||
|
metrics = copy.deepcopy(metrics)
|
||||||
|
|
||||||
|
mh = mm.metrics.create()
|
||||||
|
summary = mh.compute_many(
|
||||||
|
accs,
|
||||||
|
metrics=metrics,
|
||||||
|
names=names,
|
||||||
|
generate_overall=True
|
||||||
|
)
|
||||||
|
|
||||||
|
return summary
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def save_summary(summary, filename):
|
||||||
|
import pandas as pd
|
||||||
|
writer = pd.ExcelWriter(filename)
|
||||||
|
summary.to_excel(writer)
|
||||||
|
writer.save()
|
133
yolov5/deep_sort_pytorch/utils/io.py
Normal file
133
yolov5/deep_sort_pytorch/utils/io.py
Normal file
@ -0,0 +1,133 @@
|
|||||||
|
import os
|
||||||
|
from typing import Dict
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
# from utils.log import get_logger
|
||||||
|
|
||||||
|
|
||||||
|
def write_results(filename, results, data_type):
|
||||||
|
if data_type == 'mot':
|
||||||
|
save_format = '{frame},{id},{x1},{y1},{w},{h},-1,-1,-1,-1\n'
|
||||||
|
elif data_type == 'kitti':
|
||||||
|
save_format = '{frame} {id} pedestrian 0 0 -10 {x1} {y1} {x2} {y2} -10 -10 -10 -1000 -1000 -1000 -10\n'
|
||||||
|
else:
|
||||||
|
raise ValueError(data_type)
|
||||||
|
|
||||||
|
with open(filename, 'w') as f:
|
||||||
|
for frame_id, tlwhs, track_ids in results:
|
||||||
|
if data_type == 'kitti':
|
||||||
|
frame_id -= 1
|
||||||
|
for tlwh, track_id in zip(tlwhs, track_ids):
|
||||||
|
if track_id < 0:
|
||||||
|
continue
|
||||||
|
x1, y1, w, h = tlwh
|
||||||
|
x2, y2 = x1 + w, y1 + h
|
||||||
|
line = save_format.format(frame=frame_id, id=track_id, x1=x1, y1=y1, x2=x2, y2=y2, w=w, h=h)
|
||||||
|
f.write(line)
|
||||||
|
|
||||||
|
|
||||||
|
# def write_results(filename, results_dict: Dict, data_type: str):
|
||||||
|
# if not filename:
|
||||||
|
# return
|
||||||
|
# path = os.path.dirname(filename)
|
||||||
|
# if not os.path.exists(path):
|
||||||
|
# os.makedirs(path)
|
||||||
|
|
||||||
|
# if data_type in ('mot', 'mcmot', 'lab'):
|
||||||
|
# save_format = '{frame},{id},{x1},{y1},{w},{h},1,-1,-1,-1\n'
|
||||||
|
# elif data_type == 'kitti':
|
||||||
|
# save_format = '{frame} {id} pedestrian -1 -1 -10 {x1} {y1} {x2} {y2} -1 -1 -1 -1000 -1000 -1000 -10 {score}\n'
|
||||||
|
# else:
|
||||||
|
# raise ValueError(data_type)
|
||||||
|
|
||||||
|
# with open(filename, 'w') as f:
|
||||||
|
# for frame_id, frame_data in results_dict.items():
|
||||||
|
# if data_type == 'kitti':
|
||||||
|
# frame_id -= 1
|
||||||
|
# for tlwh, track_id in frame_data:
|
||||||
|
# if track_id < 0:
|
||||||
|
# continue
|
||||||
|
# x1, y1, w, h = tlwh
|
||||||
|
# x2, y2 = x1 + w, y1 + h
|
||||||
|
# line = save_format.format(frame=frame_id, id=track_id, x1=x1, y1=y1, x2=x2, y2=y2, w=w, h=h, score=1.0)
|
||||||
|
# f.write(line)
|
||||||
|
# logger.info('Save results to {}'.format(filename))
|
||||||
|
|
||||||
|
|
||||||
|
def read_results(filename, data_type: str, is_gt=False, is_ignore=False):
|
||||||
|
if data_type in ('mot', 'lab'):
|
||||||
|
read_fun = read_mot_results
|
||||||
|
else:
|
||||||
|
raise ValueError('Unknown data type: {}'.format(data_type))
|
||||||
|
|
||||||
|
return read_fun(filename, is_gt, is_ignore)
|
||||||
|
|
||||||
|
|
||||||
|
"""
|
||||||
|
labels={'ped', ... % 1
|
||||||
|
'person_on_vhcl', ... % 2
|
||||||
|
'car', ... % 3
|
||||||
|
'bicycle', ... % 4
|
||||||
|
'mbike', ... % 5
|
||||||
|
'non_mot_vhcl', ... % 6
|
||||||
|
'static_person', ... % 7
|
||||||
|
'distractor', ... % 8
|
||||||
|
'occluder', ... % 9
|
||||||
|
'occluder_on_grnd', ... %10
|
||||||
|
'occluder_full', ... % 11
|
||||||
|
'reflection', ... % 12
|
||||||
|
'crowd' ... % 13
|
||||||
|
};
|
||||||
|
"""
|
||||||
|
|
||||||
|
|
||||||
|
def read_mot_results(filename, is_gt, is_ignore):
|
||||||
|
valid_labels = {1}
|
||||||
|
ignore_labels = {2, 7, 8, 12}
|
||||||
|
results_dict = dict()
|
||||||
|
if os.path.isfile(filename):
|
||||||
|
with open(filename, 'r') as f:
|
||||||
|
for line in f.readlines():
|
||||||
|
linelist = line.split(',')
|
||||||
|
if len(linelist) < 7:
|
||||||
|
continue
|
||||||
|
fid = int(linelist[0])
|
||||||
|
if fid < 1:
|
||||||
|
continue
|
||||||
|
results_dict.setdefault(fid, list())
|
||||||
|
|
||||||
|
if is_gt:
|
||||||
|
if 'MOT16-' in filename or 'MOT17-' in filename:
|
||||||
|
label = int(float(linelist[7]))
|
||||||
|
mark = int(float(linelist[6]))
|
||||||
|
if mark == 0 or label not in valid_labels:
|
||||||
|
continue
|
||||||
|
score = 1
|
||||||
|
elif is_ignore:
|
||||||
|
if 'MOT16-' in filename or 'MOT17-' in filename:
|
||||||
|
label = int(float(linelist[7]))
|
||||||
|
vis_ratio = float(linelist[8])
|
||||||
|
if label not in ignore_labels and vis_ratio >= 0:
|
||||||
|
continue
|
||||||
|
else:
|
||||||
|
continue
|
||||||
|
score = 1
|
||||||
|
else:
|
||||||
|
score = float(linelist[6])
|
||||||
|
|
||||||
|
tlwh = tuple(map(float, linelist[2:6]))
|
||||||
|
target_id = int(linelist[1])
|
||||||
|
|
||||||
|
results_dict[fid].append((tlwh, target_id, score))
|
||||||
|
|
||||||
|
return results_dict
|
||||||
|
|
||||||
|
|
||||||
|
def unzip_objs(objs):
|
||||||
|
if len(objs) > 0:
|
||||||
|
tlwhs, ids, scores = zip(*objs)
|
||||||
|
else:
|
||||||
|
tlwhs, ids, scores = [], [], []
|
||||||
|
tlwhs = np.asarray(tlwhs, dtype=float).reshape(-1, 4)
|
||||||
|
|
||||||
|
return tlwhs, ids, scores
|
383
yolov5/deep_sort_pytorch/utils/json_logger.py
Normal file
383
yolov5/deep_sort_pytorch/utils/json_logger.py
Normal file
@ -0,0 +1,383 @@
|
|||||||
|
"""
|
||||||
|
References:
|
||||||
|
https://medium.com/analytics-vidhya/creating-a-custom-logging-mechanism-for-real-time-object-detection-using-tdd-4ca2cfcd0a2f
|
||||||
|
"""
|
||||||
|
import json
|
||||||
|
from os import makedirs
|
||||||
|
from os.path import exists, join
|
||||||
|
from datetime import datetime
|
||||||
|
|
||||||
|
|
||||||
|
class JsonMeta(object):
|
||||||
|
HOURS = 3
|
||||||
|
MINUTES = 59
|
||||||
|
SECONDS = 59
|
||||||
|
PATH_TO_SAVE = 'LOGS'
|
||||||
|
DEFAULT_FILE_NAME = 'remaining'
|
||||||
|
|
||||||
|
|
||||||
|
class BaseJsonLogger(object):
|
||||||
|
"""
|
||||||
|
This is the base class that returns __dict__ of its own
|
||||||
|
it also returns the dicts of objects in the attributes that are list instances
|
||||||
|
|
||||||
|
"""
|
||||||
|
|
||||||
|
def dic(self):
|
||||||
|
# returns dicts of objects
|
||||||
|
out = {}
|
||||||
|
for k, v in self.__dict__.items():
|
||||||
|
if hasattr(v, 'dic'):
|
||||||
|
out[k] = v.dic()
|
||||||
|
elif isinstance(v, list):
|
||||||
|
out[k] = self.list(v)
|
||||||
|
else:
|
||||||
|
out[k] = v
|
||||||
|
return out
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def list(values):
|
||||||
|
# applies the dic method on items in the list
|
||||||
|
return [v.dic() if hasattr(v, 'dic') else v for v in values]
|
||||||
|
|
||||||
|
|
||||||
|
class Label(BaseJsonLogger):
|
||||||
|
"""
|
||||||
|
For each bounding box there are various categories with confidences. Label class keeps track of that information.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, category: str, confidence: float):
|
||||||
|
self.category = category
|
||||||
|
self.confidence = confidence
|
||||||
|
|
||||||
|
|
||||||
|
class Bbox(BaseJsonLogger):
|
||||||
|
"""
|
||||||
|
This module stores the information for each frame and use them in JsonParser
|
||||||
|
Attributes:
|
||||||
|
labels (list): List of label module.
|
||||||
|
top (int):
|
||||||
|
left (int):
|
||||||
|
width (int):
|
||||||
|
height (int):
|
||||||
|
|
||||||
|
Args:
|
||||||
|
bbox_id (float):
|
||||||
|
top (int):
|
||||||
|
left (int):
|
||||||
|
width (int):
|
||||||
|
height (int):
|
||||||
|
|
||||||
|
References:
|
||||||
|
Check Label module for better understanding.
|
||||||
|
|
||||||
|
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, bbox_id, top, left, width, height):
|
||||||
|
self.labels = []
|
||||||
|
self.bbox_id = bbox_id
|
||||||
|
self.top = top
|
||||||
|
self.left = left
|
||||||
|
self.width = width
|
||||||
|
self.height = height
|
||||||
|
|
||||||
|
def add_label(self, category, confidence):
|
||||||
|
# adds category and confidence only if top_k is not exceeded.
|
||||||
|
self.labels.append(Label(category, confidence))
|
||||||
|
|
||||||
|
def labels_full(self, value):
|
||||||
|
return len(self.labels) == value
|
||||||
|
|
||||||
|
|
||||||
|
class Frame(BaseJsonLogger):
|
||||||
|
"""
|
||||||
|
This module stores the information for each frame and use them in JsonParser
|
||||||
|
Attributes:
|
||||||
|
timestamp (float): The elapsed time of captured frame
|
||||||
|
frame_id (int): The frame number of the captured video
|
||||||
|
bboxes (list of Bbox objects): Stores the list of bbox objects.
|
||||||
|
|
||||||
|
References:
|
||||||
|
Check Bbox class for better information
|
||||||
|
|
||||||
|
Args:
|
||||||
|
timestamp (float):
|
||||||
|
frame_id (int):
|
||||||
|
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, frame_id: int, timestamp: float = None):
|
||||||
|
self.frame_id = frame_id
|
||||||
|
self.timestamp = timestamp
|
||||||
|
self.bboxes = []
|
||||||
|
|
||||||
|
def add_bbox(self, bbox_id: int, top: int, left: int, width: int, height: int):
|
||||||
|
bboxes_ids = [bbox.bbox_id for bbox in self.bboxes]
|
||||||
|
if bbox_id not in bboxes_ids:
|
||||||
|
self.bboxes.append(Bbox(bbox_id, top, left, width, height))
|
||||||
|
else:
|
||||||
|
raise ValueError("Frame with id: {} already has a Bbox with id: {}".format(self.frame_id, bbox_id))
|
||||||
|
|
||||||
|
def add_label_to_bbox(self, bbox_id: int, category: str, confidence: float):
|
||||||
|
bboxes = {bbox.id: bbox for bbox in self.bboxes}
|
||||||
|
if bbox_id in bboxes.keys():
|
||||||
|
res = bboxes.get(bbox_id)
|
||||||
|
res.add_label(category, confidence)
|
||||||
|
else:
|
||||||
|
raise ValueError('the bbox with id: {} does not exists!'.format(bbox_id))
|
||||||
|
|
||||||
|
|
||||||
|
class BboxToJsonLogger(BaseJsonLogger):
|
||||||
|
"""
|
||||||
|
ُ This module is designed to automate the task of logging jsons. An example json is used
|
||||||
|
to show the contents of json file shortly
|
||||||
|
Example:
|
||||||
|
{
|
||||||
|
"video_details": {
|
||||||
|
"frame_width": 1920,
|
||||||
|
"frame_height": 1080,
|
||||||
|
"frame_rate": 20,
|
||||||
|
"video_name": "/home/gpu/codes/MSD/pedestrian_2/project/public/camera1.avi"
|
||||||
|
},
|
||||||
|
"frames": [
|
||||||
|
{
|
||||||
|
"frame_id": 329,
|
||||||
|
"timestamp": 3365.1254
|
||||||
|
"bboxes": [
|
||||||
|
{
|
||||||
|
"labels": [
|
||||||
|
{
|
||||||
|
"category": "pedestrian",
|
||||||
|
"confidence": 0.9
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"bbox_id": 0,
|
||||||
|
"top": 1257,
|
||||||
|
"left": 138,
|
||||||
|
"width": 68,
|
||||||
|
"height": 109
|
||||||
|
}
|
||||||
|
]
|
||||||
|
}],
|
||||||
|
|
||||||
|
Attributes:
|
||||||
|
frames (dict): It's a dictionary that maps each frame_id to json attributes.
|
||||||
|
video_details (dict): information about video file.
|
||||||
|
top_k_labels (int): shows the allowed number of labels
|
||||||
|
start_time (datetime object): we use it to automate the json output by time.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
top_k_labels (int): shows the allowed number of labels
|
||||||
|
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, top_k_labels: int = 1):
|
||||||
|
self.frames = {}
|
||||||
|
self.video_details = self.video_details = dict(frame_width=None, frame_height=None, frame_rate=None,
|
||||||
|
video_name=None)
|
||||||
|
self.top_k_labels = top_k_labels
|
||||||
|
self.start_time = datetime.now()
|
||||||
|
|
||||||
|
def set_top_k(self, value):
|
||||||
|
self.top_k_labels = value
|
||||||
|
|
||||||
|
def frame_exists(self, frame_id: int) -> bool:
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
frame_id (int):
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
bool: true if frame_id is recognized
|
||||||
|
"""
|
||||||
|
return frame_id in self.frames.keys()
|
||||||
|
|
||||||
|
def add_frame(self, frame_id: int, timestamp: float = None) -> None:
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
frame_id (int):
|
||||||
|
timestamp (float): opencv captured frame time property
|
||||||
|
|
||||||
|
Raises:
|
||||||
|
ValueError: if frame_id would not exist in class frames attribute
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
None
|
||||||
|
|
||||||
|
"""
|
||||||
|
if not self.frame_exists(frame_id):
|
||||||
|
self.frames[frame_id] = Frame(frame_id, timestamp)
|
||||||
|
else:
|
||||||
|
raise ValueError("Frame id: {} already exists".format(frame_id))
|
||||||
|
|
||||||
|
def bbox_exists(self, frame_id: int, bbox_id: int) -> bool:
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
frame_id:
|
||||||
|
bbox_id:
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
bool: if bbox exists in frame bboxes list
|
||||||
|
"""
|
||||||
|
bboxes = []
|
||||||
|
if self.frame_exists(frame_id=frame_id):
|
||||||
|
bboxes = [bbox.bbox_id for bbox in self.frames[frame_id].bboxes]
|
||||||
|
return bbox_id in bboxes
|
||||||
|
|
||||||
|
def find_bbox(self, frame_id: int, bbox_id: int):
|
||||||
|
"""
|
||||||
|
|
||||||
|
Args:
|
||||||
|
frame_id:
|
||||||
|
bbox_id:
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
bbox_id (int):
|
||||||
|
|
||||||
|
Raises:
|
||||||
|
ValueError: if bbox_id does not exist in the bbox list of specific frame.
|
||||||
|
"""
|
||||||
|
if not self.bbox_exists(frame_id, bbox_id):
|
||||||
|
raise ValueError("frame with id: {} does not contain bbox with id: {}".format(frame_id, bbox_id))
|
||||||
|
bboxes = {bbox.bbox_id: bbox for bbox in self.frames[frame_id].bboxes}
|
||||||
|
return bboxes.get(bbox_id)
|
||||||
|
|
||||||
|
def add_bbox_to_frame(self, frame_id: int, bbox_id: int, top: int, left: int, width: int, height: int) -> None:
|
||||||
|
"""
|
||||||
|
|
||||||
|
Args:
|
||||||
|
frame_id (int):
|
||||||
|
bbox_id (int):
|
||||||
|
top (int):
|
||||||
|
left (int):
|
||||||
|
width (int):
|
||||||
|
height (int):
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
None
|
||||||
|
|
||||||
|
Raises:
|
||||||
|
ValueError: if bbox_id already exist in frame information with frame_id
|
||||||
|
ValueError: if frame_id does not exist in frames attribute
|
||||||
|
"""
|
||||||
|
if self.frame_exists(frame_id):
|
||||||
|
frame = self.frames[frame_id]
|
||||||
|
if not self.bbox_exists(frame_id, bbox_id):
|
||||||
|
frame.add_bbox(bbox_id, top, left, width, height)
|
||||||
|
else:
|
||||||
|
raise ValueError(
|
||||||
|
"frame with frame_id: {} already contains the bbox with id: {} ".format(frame_id, bbox_id))
|
||||||
|
else:
|
||||||
|
raise ValueError("frame with frame_id: {} does not exist".format(frame_id))
|
||||||
|
|
||||||
|
def add_label_to_bbox(self, frame_id: int, bbox_id: int, category: str, confidence: float):
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
frame_id:
|
||||||
|
bbox_id:
|
||||||
|
category:
|
||||||
|
confidence: the confidence value returned from yolo detection
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
None
|
||||||
|
|
||||||
|
Raises:
|
||||||
|
ValueError: if labels quota (top_k_labels) exceeds.
|
||||||
|
"""
|
||||||
|
bbox = self.find_bbox(frame_id, bbox_id)
|
||||||
|
if not bbox.labels_full(self.top_k_labels):
|
||||||
|
bbox.add_label(category, confidence)
|
||||||
|
else:
|
||||||
|
raise ValueError("labels in frame_id: {}, bbox_id: {} is fulled".format(frame_id, bbox_id))
|
||||||
|
|
||||||
|
def add_video_details(self, frame_width: int = None, frame_height: int = None, frame_rate: int = None,
|
||||||
|
video_name: str = None):
|
||||||
|
self.video_details['frame_width'] = frame_width
|
||||||
|
self.video_details['frame_height'] = frame_height
|
||||||
|
self.video_details['frame_rate'] = frame_rate
|
||||||
|
self.video_details['video_name'] = video_name
|
||||||
|
|
||||||
|
def output(self):
|
||||||
|
output = {'video_details': self.video_details}
|
||||||
|
result = list(self.frames.values())
|
||||||
|
output['frames'] = [item.dic() for item in result]
|
||||||
|
return output
|
||||||
|
|
||||||
|
def json_output(self, output_name):
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
output_name:
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
None
|
||||||
|
|
||||||
|
Notes:
|
||||||
|
It creates the json output with `output_name` name.
|
||||||
|
"""
|
||||||
|
if not output_name.endswith('.json'):
|
||||||
|
output_name += '.json'
|
||||||
|
with open(output_name, 'w') as file:
|
||||||
|
json.dump(self.output(), file)
|
||||||
|
file.close()
|
||||||
|
|
||||||
|
def set_start(self):
|
||||||
|
self.start_time = datetime.now()
|
||||||
|
|
||||||
|
def schedule_output_by_time(self, output_dir=JsonMeta.PATH_TO_SAVE, hours: int = 0, minutes: int = 0,
|
||||||
|
seconds: int = 60) -> None:
|
||||||
|
"""
|
||||||
|
Notes:
|
||||||
|
Creates folder and then periodically stores the jsons on that address.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
output_dir (str): the directory where output files will be stored
|
||||||
|
hours (int):
|
||||||
|
minutes (int):
|
||||||
|
seconds (int):
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
None
|
||||||
|
|
||||||
|
"""
|
||||||
|
end = datetime.now()
|
||||||
|
interval = 0
|
||||||
|
interval += abs(min([hours, JsonMeta.HOURS]) * 3600)
|
||||||
|
interval += abs(min([minutes, JsonMeta.MINUTES]) * 60)
|
||||||
|
interval += abs(min([seconds, JsonMeta.SECONDS]))
|
||||||
|
diff = (end - self.start_time).seconds
|
||||||
|
|
||||||
|
if diff > interval:
|
||||||
|
output_name = self.start_time.strftime('%Y-%m-%d %H-%M-%S') + '.json'
|
||||||
|
if not exists(output_dir):
|
||||||
|
makedirs(output_dir)
|
||||||
|
output = join(output_dir, output_name)
|
||||||
|
self.json_output(output_name=output)
|
||||||
|
self.frames = {}
|
||||||
|
self.start_time = datetime.now()
|
||||||
|
|
||||||
|
def schedule_output_by_frames(self, frames_quota, frame_counter, output_dir=JsonMeta.PATH_TO_SAVE):
|
||||||
|
"""
|
||||||
|
saves as the number of frames quota increases higher.
|
||||||
|
:param frames_quota:
|
||||||
|
:param frame_counter:
|
||||||
|
:param output_dir:
|
||||||
|
:return:
|
||||||
|
"""
|
||||||
|
pass
|
||||||
|
|
||||||
|
def flush(self, output_dir):
|
||||||
|
"""
|
||||||
|
Notes:
|
||||||
|
We use this function to output jsons whenever possible.
|
||||||
|
like the time that we exit the while loop of opencv.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
output_dir:
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
None
|
||||||
|
|
||||||
|
"""
|
||||||
|
filename = self.start_time.strftime('%Y-%m-%d %H-%M-%S') + '-remaining.json'
|
||||||
|
output = join(output_dir, filename)
|
||||||
|
self.json_output(output_name=output)
|
17
yolov5/deep_sort_pytorch/utils/log.py
Normal file
17
yolov5/deep_sort_pytorch/utils/log.py
Normal file
@ -0,0 +1,17 @@
|
|||||||
|
import logging
|
||||||
|
|
||||||
|
|
||||||
|
def get_logger(name='root'):
|
||||||
|
formatter = logging.Formatter(
|
||||||
|
# fmt='%(asctime)s [%(levelname)s]: %(filename)s(%(funcName)s:%(lineno)s) >> %(message)s')
|
||||||
|
fmt='%(asctime)s [%(levelname)s]: %(message)s', datefmt='%Y-%m-%d %H:%M:%S')
|
||||||
|
|
||||||
|
handler = logging.StreamHandler()
|
||||||
|
handler.setFormatter(formatter)
|
||||||
|
|
||||||
|
logger = logging.getLogger(name)
|
||||||
|
logger.setLevel(logging.INFO)
|
||||||
|
logger.addHandler(handler)
|
||||||
|
return logger
|
||||||
|
|
||||||
|
|
39
yolov5/deep_sort_pytorch/utils/parser.py
Normal file
39
yolov5/deep_sort_pytorch/utils/parser.py
Normal file
@ -0,0 +1,39 @@
|
|||||||
|
import os
|
||||||
|
import yaml
|
||||||
|
from easydict import EasyDict as edict
|
||||||
|
|
||||||
|
|
||||||
|
class YamlParser(edict):
|
||||||
|
"""
|
||||||
|
This is yaml parser based on EasyDict.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, cfg_dict=None, config_file=None):
|
||||||
|
if cfg_dict is None:
|
||||||
|
cfg_dict = {}
|
||||||
|
|
||||||
|
if config_file is not None:
|
||||||
|
assert(os.path.isfile(config_file))
|
||||||
|
with open(config_file, 'r') as fo:
|
||||||
|
cfg_dict.update(yaml.load(fo.read()))
|
||||||
|
|
||||||
|
super(YamlParser, self).__init__(cfg_dict)
|
||||||
|
|
||||||
|
def merge_from_file(self, config_file):
|
||||||
|
with open(config_file, 'r') as fo:
|
||||||
|
self.update(yaml.load(fo.read()))
|
||||||
|
|
||||||
|
def merge_from_dict(self, config_dict):
|
||||||
|
self.update(config_dict)
|
||||||
|
|
||||||
|
|
||||||
|
def get_config(config_file=None):
|
||||||
|
return YamlParser(config_file=config_file)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
cfg = YamlParser(config_file="../configs/yolov3.yaml")
|
||||||
|
cfg.merge_from_file("../configs/deep_sort.yaml")
|
||||||
|
|
||||||
|
import ipdb
|
||||||
|
ipdb.set_trace()
|
39
yolov5/deep_sort_pytorch/utils/tools.py
Normal file
39
yolov5/deep_sort_pytorch/utils/tools.py
Normal file
@ -0,0 +1,39 @@
|
|||||||
|
from functools import wraps
|
||||||
|
from time import time
|
||||||
|
|
||||||
|
|
||||||
|
def is_video(ext: str):
|
||||||
|
"""
|
||||||
|
Returns true if ext exists in
|
||||||
|
allowed_exts for video files.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
ext:
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
|
||||||
|
"""
|
||||||
|
|
||||||
|
allowed_exts = ('.mp4', '.webm', '.ogg', '.avi', '.wmv', '.mkv', '.3gp')
|
||||||
|
return any((ext.endswith(x) for x in allowed_exts))
|
||||||
|
|
||||||
|
|
||||||
|
def tik_tok(func):
|
||||||
|
"""
|
||||||
|
keep track of time for each process.
|
||||||
|
Args:
|
||||||
|
func:
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
|
||||||
|
"""
|
||||||
|
@wraps(func)
|
||||||
|
def _time_it(*args, **kwargs):
|
||||||
|
start = time()
|
||||||
|
try:
|
||||||
|
return func(*args, **kwargs)
|
||||||
|
finally:
|
||||||
|
end_ = time()
|
||||||
|
print("time: {:.03f}s, fps: {:.03f}".format(end_ - start, 1 / (end_ - start)))
|
||||||
|
|
||||||
|
return _time_it
|
276
yolov5/detect.py
Normal file
276
yolov5/detect.py
Normal file
@ -0,0 +1,276 @@
|
|||||||
|
import argparse
|
||||||
|
import time
|
||||||
|
import os
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
import cv2
|
||||||
|
import sklearn
|
||||||
|
import torch
|
||||||
|
import torch.backends.cudnn as cudnn
|
||||||
|
import numpy as np
|
||||||
|
from numpy import random
|
||||||
|
|
||||||
|
from models.experimental import attempt_load
|
||||||
|
from utils.datasets import LoadStreams, LoadImages
|
||||||
|
from utils.general import check_img_size, non_max_suppression, apply_classifier, scale_coords, xyxy2xywh, \
|
||||||
|
strip_optimizer, set_logging, increment_path
|
||||||
|
from utils.plots import plot_one_box
|
||||||
|
from utils.torch_utils import select_device, load_classifier, time_synchronized
|
||||||
|
from deep_sort_pytorch.utils.parser import get_config
|
||||||
|
from deep_sort_pytorch.deep_sort import DeepSort
|
||||||
|
|
||||||
|
import player
|
||||||
|
|
||||||
|
def bbox_rel(*xyxy):
|
||||||
|
"""" Calculates the relative bounding box from absolute pixel values. """
|
||||||
|
bbox_left = min([xyxy[0].item(), xyxy[2].item()])
|
||||||
|
bbox_top = min([xyxy[1].item(), xyxy[3].item()])
|
||||||
|
bbox_w = abs(xyxy[0].item() - xyxy[2].item())
|
||||||
|
bbox_h = abs(xyxy[1].item() - xyxy[3].item())
|
||||||
|
x_c = (bbox_left + bbox_w / 2)
|
||||||
|
y_c = (bbox_top + bbox_h / 2)
|
||||||
|
w = bbox_w
|
||||||
|
h = bbox_h
|
||||||
|
return x_c, y_c, w, h
|
||||||
|
|
||||||
|
|
||||||
|
players = {}
|
||||||
|
|
||||||
|
|
||||||
|
def draw_boxes(img, bbox, identities=None, offset=(0, 0)):
|
||||||
|
for i, box in enumerate(bbox):
|
||||||
|
x1, y1, x2, y2 = [int(i) for i in box]
|
||||||
|
x1 += offset[0]
|
||||||
|
x2 += offset[0]
|
||||||
|
y1 += offset[1]
|
||||||
|
y2 += offset[1]
|
||||||
|
# box text and bar
|
||||||
|
id = int(identities[i]) if identities is not None else 0
|
||||||
|
if id in players.keys():
|
||||||
|
current_player = players.get(id)
|
||||||
|
# only if checking colors automatically:
|
||||||
|
current_player.assignTeam(players)
|
||||||
|
label = current_player.team
|
||||||
|
else:
|
||||||
|
# check color manually
|
||||||
|
# team, color = player.check_color_manual2(left_clicks,img,x1,x2,y1,y2)
|
||||||
|
|
||||||
|
# check color automatically
|
||||||
|
color = player.detectPlayerColor(img,x1,x2,y1,y2)
|
||||||
|
|
||||||
|
current_player = player.Player(id,color=color,x=x2-(x2-x1),y=y2)
|
||||||
|
label = "?"
|
||||||
|
players[id] = current_player
|
||||||
|
|
||||||
|
# label = current_player.team
|
||||||
|
plot_one_box(box, img, label=label, color=(int(current_player.color[0]), int(current_player.color[1]), int(current_player.color[2])), line_thickness=1)
|
||||||
|
#plot_one_box(box, img, label=label, color=current_player.color, line_thickness=1)
|
||||||
|
|
||||||
|
return img
|
||||||
|
|
||||||
|
|
||||||
|
def detect(save_img=False):
|
||||||
|
source, weights, view_img, save_txt, imgsz = opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size
|
||||||
|
webcam = source.isnumeric() or source.endswith('.txt') or source.lower().startswith(
|
||||||
|
('rtsp://', 'rtmp://', 'http://'))
|
||||||
|
|
||||||
|
# Directories
|
||||||
|
save_dir = Path(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok)) # increment run
|
||||||
|
(save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
|
||||||
|
|
||||||
|
# DeepSort Initialize
|
||||||
|
cfg = get_config()
|
||||||
|
cfg.merge_from_file(opt.config_deepsort)
|
||||||
|
deepsort = DeepSort(cfg.DEEPSORT.REID_CKPT,
|
||||||
|
max_dist=cfg.DEEPSORT.MAX_DIST, min_confidence=cfg.DEEPSORT.MIN_CONFIDENCE,
|
||||||
|
nms_max_overlap=cfg.DEEPSORT.NMS_MAX_OVERLAP, max_iou_distance=cfg.DEEPSORT.MAX_IOU_DISTANCE,
|
||||||
|
max_age=cfg.DEEPSORT.MAX_AGE, n_init=cfg.DEEPSORT.N_INIT, nn_budget=cfg.DEEPSORT.NN_BUDGET,
|
||||||
|
use_cuda=True)
|
||||||
|
|
||||||
|
# Initialize
|
||||||
|
set_logging()
|
||||||
|
device = select_device(opt.device)
|
||||||
|
half = device.type != 'cpu' # half precision only supported on CUDA
|
||||||
|
|
||||||
|
# Load model
|
||||||
|
model = attempt_load(weights, map_location=device) # load FP32 model
|
||||||
|
imgsz = check_img_size(imgsz, s=model.stride.max()) # check img_size
|
||||||
|
if half:
|
||||||
|
model.half() # to FP16
|
||||||
|
|
||||||
|
# Second-stage classifier
|
||||||
|
classify = False
|
||||||
|
if classify:
|
||||||
|
modelc = load_classifier(name='resnet101', n=2) # initialize
|
||||||
|
modelc.load_state_dict(torch.load('weights/resnet101.pt', map_location=device)['model']).to(device).eval()
|
||||||
|
|
||||||
|
# Set Dataloader
|
||||||
|
vid_path, vid_writer = None, None
|
||||||
|
if webcam:
|
||||||
|
view_img = True
|
||||||
|
cudnn.benchmark = True # set True to speed up constant image size inference
|
||||||
|
dataset = LoadStreams(source, img_size=imgsz)
|
||||||
|
else:
|
||||||
|
save_img = True
|
||||||
|
dataset = LoadImages(source, img_size=imgsz)
|
||||||
|
|
||||||
|
# Get names
|
||||||
|
names = model.module.names if hasattr(model, 'module') else model.names
|
||||||
|
# Run inference
|
||||||
|
t0 = time.time()
|
||||||
|
img = torch.zeros((1, 3, imgsz, imgsz), device=device) # init img
|
||||||
|
_ = model(img.half() if half else img) if device.type != 'cpu' else None # run once
|
||||||
|
|
||||||
|
|
||||||
|
for path, img, im0s, vid_cap in dataset:
|
||||||
|
img = torch.from_numpy(img).to(device)
|
||||||
|
img = img.half() if half else img.float() # uint8 to fp16/32
|
||||||
|
img /= 255.0 # 0 - 255 to 0.0 - 1.0
|
||||||
|
if img.ndimension() == 3:
|
||||||
|
img = img.unsqueeze(0)
|
||||||
|
|
||||||
|
# Inference
|
||||||
|
t1 = time_synchronized()
|
||||||
|
pred = model(img, augment=opt.augment)[0]
|
||||||
|
|
||||||
|
# Apply NMS
|
||||||
|
pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, classes=opt.classes, agnostic=opt.agnostic_nms)
|
||||||
|
t2 = time_synchronized()
|
||||||
|
|
||||||
|
# Apply Classifier
|
||||||
|
if classify:
|
||||||
|
pred = apply_classifier(pred, modelc, img, im0s)
|
||||||
|
# Process detections
|
||||||
|
for i, det in enumerate(pred): # detections per image
|
||||||
|
if webcam: # batch_size >= 1
|
||||||
|
p, s, im0, frame = Path(path[i]), '%g: ' % i, im0s[i].copy(), dataset.count
|
||||||
|
else:
|
||||||
|
p, s, im0, frame = Path(path), '', im0s, getattr(dataset, 'frame', 0)
|
||||||
|
|
||||||
|
save_path = str(save_dir / p.name)
|
||||||
|
txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}')
|
||||||
|
s += '%gx%g ' % img.shape[2:] # print string
|
||||||
|
gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
|
||||||
|
if len(det):
|
||||||
|
# Rescale boxes from img_size to im0 size
|
||||||
|
det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()
|
||||||
|
|
||||||
|
# Print results
|
||||||
|
for c in det[:, -1].unique():
|
||||||
|
n = (det[:, -1] == c).sum() # detections per class
|
||||||
|
s += f'{n} {names[int(c)]}s, ' # add to string
|
||||||
|
|
||||||
|
bbox_xywh = []
|
||||||
|
confs = []
|
||||||
|
|
||||||
|
# Adapt detections to deep sort input format
|
||||||
|
for *xyxy, conf, cls in det:
|
||||||
|
if cls == 0:
|
||||||
|
x_c, y_c, bbox_w, bbox_h = bbox_rel(*xyxy)
|
||||||
|
obj = [x_c, y_c, bbox_w, bbox_h]
|
||||||
|
bbox_xywh.append(obj)
|
||||||
|
confs.append([conf.item()])
|
||||||
|
|
||||||
|
xywhs = torch.Tensor(bbox_xywh)
|
||||||
|
confss = torch.Tensor(confs)
|
||||||
|
|
||||||
|
# Pass detections to deepsort
|
||||||
|
outputs = deepsort.update(xywhs, confss, im0)
|
||||||
|
|
||||||
|
# draw boxes for visualization
|
||||||
|
if len(outputs) > 0:
|
||||||
|
bbox_xyxy = outputs[:, :4]
|
||||||
|
identities = outputs[:, -1]
|
||||||
|
draw_boxes(im0, bbox_xyxy, identities)
|
||||||
|
|
||||||
|
|
||||||
|
for *xyxy, conf, cls in reversed(det):
|
||||||
|
if save_txt: # Write to file
|
||||||
|
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
|
||||||
|
line = (cls, *xywh, conf) if opt.save_conf else (cls, *xywh) # label format
|
||||||
|
with open(txt_path + '.txt', 'a') as f:
|
||||||
|
f.write(('%g ' * len(line)).rstrip() % line + '\n')
|
||||||
|
|
||||||
|
if cls == 32 and (save_img or view_img): # Add bbox to ball
|
||||||
|
#label = f'{names[int(cls)]}'
|
||||||
|
label = 'ball'
|
||||||
|
plot_one_box(xyxy, im0, label=label, color=[0,0,0], line_thickness=2)
|
||||||
|
|
||||||
|
|
||||||
|
# Write MOT compliant results to file
|
||||||
|
""" if save_txt and len(outputs) != 0:
|
||||||
|
for j, output in enumerate(outputs):
|
||||||
|
bbox_left = output[0]
|
||||||
|
bbox_top = output[1]
|
||||||
|
bbox_w = output[2]
|
||||||
|
bbox_h = output[3]
|
||||||
|
identity = output[-1]
|
||||||
|
with open(txt_path + '.txt', 'a') as f:
|
||||||
|
f.write(('%g ' * 10 + '\n') % (j, identity, bbox_left,
|
||||||
|
bbox_top, bbox_w, bbox_h, -1, -1, -1, -1)) # label format """
|
||||||
|
|
||||||
|
else:
|
||||||
|
deepsort.increment_ages()
|
||||||
|
|
||||||
|
# Print time (inference + NMS)
|
||||||
|
print(f'{s}Done. ({t2 - t1:.3f}s)')
|
||||||
|
|
||||||
|
# Stream results
|
||||||
|
if view_img:
|
||||||
|
cv2.imshow(str(p), im0)
|
||||||
|
if cv2.waitKey(1) == ord('q'): # q to quit
|
||||||
|
raise StopIteration
|
||||||
|
|
||||||
|
# Save results (image with detections)
|
||||||
|
if save_img:
|
||||||
|
if dataset.mode == 'image':
|
||||||
|
cv2.imwrite(save_path, im0)
|
||||||
|
else: # 'video'
|
||||||
|
if vid_path != save_path: # new video
|
||||||
|
vid_path = save_path
|
||||||
|
if isinstance(vid_writer, cv2.VideoWriter):
|
||||||
|
vid_writer.release() # release previous video writer
|
||||||
|
|
||||||
|
fourcc = 'mp4v' # output video codec
|
||||||
|
fps = vid_cap.get(cv2.CAP_PROP_FPS)
|
||||||
|
w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
||||||
|
h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
||||||
|
vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*fourcc), fps, (w, h))
|
||||||
|
vid_writer.write(im0)
|
||||||
|
print(save_path)
|
||||||
|
if save_txt or save_img:
|
||||||
|
s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
|
||||||
|
print(f"Results saved to {save_dir}{s}")
|
||||||
|
|
||||||
|
print(f'Done. ({time.time() - t0:.3f}s)')
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
parser = argparse.ArgumentParser()
|
||||||
|
parser.add_argument('--weights', nargs='+', type=str, default='yolov5l.pt', help='model.pt path(s)')
|
||||||
|
parser.add_argument('--source', type=str, default='data/images', help='source') # file/folder, 0 for webcam
|
||||||
|
parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')
|
||||||
|
parser.add_argument('--conf-thres', type=float, default=0.25, help='object confidence threshold')
|
||||||
|
parser.add_argument('--iou-thres', type=float, default=0.45, help='IOU threshold for NMS')
|
||||||
|
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
|
||||||
|
parser.add_argument('--view-img', action='store_true', help='display results')
|
||||||
|
parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
|
||||||
|
parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
|
||||||
|
parser.add_argument('--classes', nargs='+', type=int, default=[0, 32], help='filter by class: --class 0, or --class 0 2 3')
|
||||||
|
parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
|
||||||
|
parser.add_argument('--augment', action='store_true', help='augmented inference')
|
||||||
|
parser.add_argument('--update', action='store_true', help='update all models')
|
||||||
|
parser.add_argument('--project', default='../win_venv/files/output', help='save results to project/name')
|
||||||
|
parser.add_argument('--name', default='exp', help='save results to project/name')
|
||||||
|
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
|
||||||
|
parser.add_argument("--config_deepsort", type=str, default="deep_sort_pytorch/configs/deep_sort.yaml")
|
||||||
|
opt = parser.parse_args()
|
||||||
|
print(opt)
|
||||||
|
|
||||||
|
with torch.no_grad():
|
||||||
|
if opt.update: # update all models (to fix SourceChangeWarning)
|
||||||
|
for opt.weights in ['yolov5s.pt', 'yolov5m.pt', 'yolov5l.pt', 'yolov5x.pt']:
|
||||||
|
detect()
|
||||||
|
strip_optimizer(opt.weights)
|
||||||
|
else:
|
||||||
|
detect()
|
141
yolov5/hubconf.py
Normal file
141
yolov5/hubconf.py
Normal file
@ -0,0 +1,141 @@
|
|||||||
|
"""File for accessing YOLOv5 via PyTorch Hub https://pytorch.org/hub/
|
||||||
|
|
||||||
|
Usage:
|
||||||
|
import torch
|
||||||
|
model = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True, channels=3, classes=80)
|
||||||
|
"""
|
||||||
|
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
import torch
|
||||||
|
|
||||||
|
from models.yolo import Model
|
||||||
|
from utils.general import set_logging
|
||||||
|
from utils.google_utils import attempt_download
|
||||||
|
|
||||||
|
dependencies = ['torch', 'yaml']
|
||||||
|
set_logging()
|
||||||
|
|
||||||
|
|
||||||
|
def create(name, pretrained, channels, classes, autoshape):
|
||||||
|
"""Creates a specified YOLOv5 model
|
||||||
|
|
||||||
|
Arguments:
|
||||||
|
name (str): name of model, i.e. 'yolov5s'
|
||||||
|
pretrained (bool): load pretrained weights into the model
|
||||||
|
channels (int): number of input channels
|
||||||
|
classes (int): number of model classes
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
pytorch model
|
||||||
|
"""
|
||||||
|
config = Path(__file__).parent / 'models' / f'{name}.yaml' # model.yaml path
|
||||||
|
try:
|
||||||
|
model = Model(config, channels, classes)
|
||||||
|
if pretrained:
|
||||||
|
fname = f'{name}.pt' # checkpoint filename
|
||||||
|
attempt_download(fname) # download if not found locally
|
||||||
|
ckpt = torch.load(fname, map_location=torch.device('cpu')) # load
|
||||||
|
state_dict = ckpt['model'].float().state_dict() # to FP32
|
||||||
|
state_dict = {k: v for k, v in state_dict.items() if model.state_dict()[k].shape == v.shape} # filter
|
||||||
|
model.load_state_dict(state_dict, strict=False) # load
|
||||||
|
if len(ckpt['model'].names) == classes:
|
||||||
|
model.names = ckpt['model'].names # set class names attribute
|
||||||
|
if autoshape:
|
||||||
|
model = model.autoshape() # for file/URI/PIL/cv2/np inputs and NMS
|
||||||
|
return model
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
help_url = 'https://github.com/ultralytics/yolov5/issues/36'
|
||||||
|
s = 'Cache maybe be out of date, try force_reload=True. See %s for help.' % help_url
|
||||||
|
raise Exception(s) from e
|
||||||
|
|
||||||
|
|
||||||
|
def yolov5s(pretrained=False, channels=3, classes=80, autoshape=True):
|
||||||
|
"""YOLOv5-small model from https://github.com/ultralytics/yolov5
|
||||||
|
|
||||||
|
Arguments:
|
||||||
|
pretrained (bool): load pretrained weights into the model, default=False
|
||||||
|
channels (int): number of input channels, default=3
|
||||||
|
classes (int): number of model classes, default=80
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
pytorch model
|
||||||
|
"""
|
||||||
|
return create('yolov5s', pretrained, channels, classes, autoshape)
|
||||||
|
|
||||||
|
|
||||||
|
def yolov5m(pretrained=False, channels=3, classes=80, autoshape=True):
|
||||||
|
"""YOLOv5-medium model from https://github.com/ultralytics/yolov5
|
||||||
|
|
||||||
|
Arguments:
|
||||||
|
pretrained (bool): load pretrained weights into the model, default=False
|
||||||
|
channels (int): number of input channels, default=3
|
||||||
|
classes (int): number of model classes, default=80
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
pytorch model
|
||||||
|
"""
|
||||||
|
return create('yolov5m', pretrained, channels, classes, autoshape)
|
||||||
|
|
||||||
|
|
||||||
|
def yolov5l(pretrained=False, channels=3, classes=80, autoshape=True):
|
||||||
|
"""YOLOv5-large model from https://github.com/ultralytics/yolov5
|
||||||
|
|
||||||
|
Arguments:
|
||||||
|
pretrained (bool): load pretrained weights into the model, default=False
|
||||||
|
channels (int): number of input channels, default=3
|
||||||
|
classes (int): number of model classes, default=80
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
pytorch model
|
||||||
|
"""
|
||||||
|
return create('yolov5l', pretrained, channels, classes, autoshape)
|
||||||
|
|
||||||
|
|
||||||
|
def yolov5x(pretrained=False, channels=3, classes=80, autoshape=True):
|
||||||
|
"""YOLOv5-xlarge model from https://github.com/ultralytics/yolov5
|
||||||
|
|
||||||
|
Arguments:
|
||||||
|
pretrained (bool): load pretrained weights into the model, default=False
|
||||||
|
channels (int): number of input channels, default=3
|
||||||
|
classes (int): number of model classes, default=80
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
pytorch model
|
||||||
|
"""
|
||||||
|
return create('yolov5x', pretrained, channels, classes, autoshape)
|
||||||
|
|
||||||
|
|
||||||
|
def custom(path_or_model='path/to/model.pt', autoshape=True):
|
||||||
|
"""YOLOv5-custom model from https://github.com/ultralytics/yolov5
|
||||||
|
|
||||||
|
Arguments (3 options):
|
||||||
|
path_or_model (str): 'path/to/model.pt'
|
||||||
|
path_or_model (dict): torch.load('path/to/model.pt')
|
||||||
|
path_or_model (nn.Module): torch.load('path/to/model.pt')['model']
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
pytorch model
|
||||||
|
"""
|
||||||
|
model = torch.load(path_or_model) if isinstance(path_or_model, str) else path_or_model # load checkpoint
|
||||||
|
if isinstance(model, dict):
|
||||||
|
model = model['model'] # load model
|
||||||
|
|
||||||
|
hub_model = Model(model.yaml).to(next(model.parameters()).device) # create
|
||||||
|
hub_model.load_state_dict(model.float().state_dict()) # load state_dict
|
||||||
|
hub_model.names = model.names # class names
|
||||||
|
return hub_model.autoshape() if autoshape else hub_model
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
model = create(name='yolov5s', pretrained=True, channels=3, classes=80, autoshape=True) # pretrained example
|
||||||
|
# model = custom(path_or_model='path/to/model.pt') # custom example
|
||||||
|
|
||||||
|
# Verify inference
|
||||||
|
from PIL import Image
|
||||||
|
|
||||||
|
imgs = [Image.open(x) for x in Path('data/images').glob('*.jpg')]
|
||||||
|
results = model(imgs)
|
||||||
|
results.show()
|
||||||
|
results.print()
|
0
yolov5/models/__init__.py
Normal file
0
yolov5/models/__init__.py
Normal file
273
yolov5/models/common.py
Normal file
273
yolov5/models/common.py
Normal file
@ -0,0 +1,273 @@
|
|||||||
|
# This file contains modules common to various models
|
||||||
|
|
||||||
|
import math
|
||||||
|
import numpy as np
|
||||||
|
import requests
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
from PIL import Image, ImageDraw
|
||||||
|
|
||||||
|
from utils.datasets import letterbox
|
||||||
|
from utils.general import non_max_suppression, make_divisible, scale_coords, xyxy2xywh
|
||||||
|
from utils.plots import color_list
|
||||||
|
|
||||||
|
|
||||||
|
def autopad(k, p=None): # kernel, padding
|
||||||
|
# Pad to 'same'
|
||||||
|
if p is None:
|
||||||
|
p = k // 2 if isinstance(k, int) else [x // 2 for x in k] # auto-pad
|
||||||
|
return p
|
||||||
|
|
||||||
|
|
||||||
|
def DWConv(c1, c2, k=1, s=1, act=True):
|
||||||
|
# Depthwise convolution
|
||||||
|
return Conv(c1, c2, k, s, g=math.gcd(c1, c2), act=act)
|
||||||
|
|
||||||
|
|
||||||
|
class Conv(nn.Module):
|
||||||
|
# Standard convolution
|
||||||
|
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
|
||||||
|
super(Conv, self).__init__()
|
||||||
|
self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False)
|
||||||
|
self.bn = nn.BatchNorm2d(c2)
|
||||||
|
self.act = nn.Hardswish() if act is True else (act if isinstance(act, nn.Module) else nn.Identity())
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
return self.act(self.bn(self.conv(x)))
|
||||||
|
|
||||||
|
def fuseforward(self, x):
|
||||||
|
return self.act(self.conv(x))
|
||||||
|
|
||||||
|
|
||||||
|
class Bottleneck(nn.Module):
|
||||||
|
# Standard bottleneck
|
||||||
|
def __init__(self, c1, c2, shortcut=True, g=1, e=0.5): # ch_in, ch_out, shortcut, groups, expansion
|
||||||
|
super(Bottleneck, self).__init__()
|
||||||
|
c_ = int(c2 * e) # hidden channels
|
||||||
|
self.cv1 = Conv(c1, c_, 1, 1)
|
||||||
|
self.cv2 = Conv(c_, c2, 3, 1, g=g)
|
||||||
|
self.add = shortcut and c1 == c2
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
|
||||||
|
|
||||||
|
|
||||||
|
class BottleneckCSP(nn.Module):
|
||||||
|
# CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
|
||||||
|
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
|
||||||
|
super(BottleneckCSP, self).__init__()
|
||||||
|
c_ = int(c2 * e) # hidden channels
|
||||||
|
self.cv1 = Conv(c1, c_, 1, 1)
|
||||||
|
self.cv2 = nn.Conv2d(c1, c_, 1, 1, bias=False)
|
||||||
|
self.cv3 = nn.Conv2d(c_, c_, 1, 1, bias=False)
|
||||||
|
self.cv4 = Conv(2 * c_, c2, 1, 1)
|
||||||
|
self.bn = nn.BatchNorm2d(2 * c_) # applied to cat(cv2, cv3)
|
||||||
|
self.act = nn.LeakyReLU(0.1, inplace=True)
|
||||||
|
self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
y1 = self.cv3(self.m(self.cv1(x)))
|
||||||
|
y2 = self.cv2(x)
|
||||||
|
return self.cv4(self.act(self.bn(torch.cat((y1, y2), dim=1))))
|
||||||
|
|
||||||
|
|
||||||
|
class C3(nn.Module):
|
||||||
|
# CSP Bottleneck with 3 convolutions
|
||||||
|
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
|
||||||
|
super(C3, self).__init__()
|
||||||
|
c_ = int(c2 * e) # hidden channels
|
||||||
|
self.cv1 = Conv(c1, c_, 1, 1)
|
||||||
|
self.cv2 = Conv(c1, c_, 1, 1)
|
||||||
|
self.cv3 = Conv(2 * c_, c2, 1) # act=FReLU(c2)
|
||||||
|
self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
|
||||||
|
# self.m = nn.Sequential(*[CrossConv(c_, c_, 3, 1, g, 1.0, shortcut) for _ in range(n)])
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), dim=1))
|
||||||
|
|
||||||
|
|
||||||
|
class SPP(nn.Module):
|
||||||
|
# Spatial pyramid pooling layer used in YOLOv3-SPP
|
||||||
|
def __init__(self, c1, c2, k=(5, 9, 13)):
|
||||||
|
super(SPP, self).__init__()
|
||||||
|
c_ = c1 // 2 # hidden channels
|
||||||
|
self.cv1 = Conv(c1, c_, 1, 1)
|
||||||
|
self.cv2 = Conv(c_ * (len(k) + 1), c2, 1, 1)
|
||||||
|
self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k])
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
x = self.cv1(x)
|
||||||
|
return self.cv2(torch.cat([x] + [m(x) for m in self.m], 1))
|
||||||
|
|
||||||
|
|
||||||
|
class Focus(nn.Module):
|
||||||
|
# Focus wh information into c-space
|
||||||
|
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
|
||||||
|
super(Focus, self).__init__()
|
||||||
|
self.conv = Conv(c1 * 4, c2, k, s, p, g, act)
|
||||||
|
|
||||||
|
def forward(self, x): # x(b,c,w,h) -> y(b,4c,w/2,h/2)
|
||||||
|
return self.conv(torch.cat([x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]], 1))
|
||||||
|
|
||||||
|
|
||||||
|
class Concat(nn.Module):
|
||||||
|
# Concatenate a list of tensors along dimension
|
||||||
|
def __init__(self, dimension=1):
|
||||||
|
super(Concat, self).__init__()
|
||||||
|
self.d = dimension
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
return torch.cat(x, self.d)
|
||||||
|
|
||||||
|
|
||||||
|
class NMS(nn.Module):
|
||||||
|
# Non-Maximum Suppression (NMS) module
|
||||||
|
conf = 0.25 # confidence threshold
|
||||||
|
iou = 0.45 # IoU threshold
|
||||||
|
classes = None # (optional list) filter by class
|
||||||
|
|
||||||
|
def __init__(self):
|
||||||
|
super(NMS, self).__init__()
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
return non_max_suppression(x[0], conf_thres=self.conf, iou_thres=self.iou, classes=self.classes)
|
||||||
|
|
||||||
|
|
||||||
|
class autoShape(nn.Module):
|
||||||
|
# input-robust model wrapper for passing cv2/np/PIL/torch inputs. Includes preprocessing, inference and NMS
|
||||||
|
img_size = 640 # inference size (pixels)
|
||||||
|
conf = 0.25 # NMS confidence threshold
|
||||||
|
iou = 0.45 # NMS IoU threshold
|
||||||
|
classes = None # (optional list) filter by class
|
||||||
|
|
||||||
|
def __init__(self, model):
|
||||||
|
super(autoShape, self).__init__()
|
||||||
|
self.model = model.eval()
|
||||||
|
|
||||||
|
def autoshape(self):
|
||||||
|
print('autoShape already enabled, skipping... ') # model already converted to model.autoshape()
|
||||||
|
return self
|
||||||
|
|
||||||
|
def forward(self, imgs, size=640, augment=False, profile=False):
|
||||||
|
# Inference from various sources. For height=720, width=1280, RGB images example inputs are:
|
||||||
|
# filename: imgs = 'data/samples/zidane.jpg'
|
||||||
|
# URI: = 'https://github.com/ultralytics/yolov5/releases/download/v1.0/zidane.jpg'
|
||||||
|
# OpenCV: = cv2.imread('image.jpg')[:,:,::-1] # HWC BGR to RGB x(720,1280,3)
|
||||||
|
# PIL: = Image.open('image.jpg') # HWC x(720,1280,3)
|
||||||
|
# numpy: = np.zeros((720,1280,3)) # HWC
|
||||||
|
# torch: = torch.zeros(16,3,720,1280) # BCHW
|
||||||
|
# multiple: = [Image.open('image1.jpg'), Image.open('image2.jpg'), ...] # list of images
|
||||||
|
|
||||||
|
p = next(self.model.parameters()) # for device and type
|
||||||
|
if isinstance(imgs, torch.Tensor): # torch
|
||||||
|
return self.model(imgs.to(p.device).type_as(p), augment, profile) # inference
|
||||||
|
|
||||||
|
# Pre-process
|
||||||
|
n, imgs = (len(imgs), imgs) if isinstance(imgs, list) else (1, [imgs]) # number of images, list of images
|
||||||
|
shape0, shape1 = [], [] # image and inference shapes
|
||||||
|
for i, im in enumerate(imgs):
|
||||||
|
if isinstance(im, str): # filename or uri
|
||||||
|
im = Image.open(requests.get(im, stream=True).raw if im.startswith('http') else im) # open
|
||||||
|
im = np.array(im) # to numpy
|
||||||
|
if im.shape[0] < 5: # image in CHW
|
||||||
|
im = im.transpose((1, 2, 0)) # reverse dataloader .transpose(2, 0, 1)
|
||||||
|
im = im[:, :, :3] if im.ndim == 3 else np.tile(im[:, :, None], 3) # enforce 3ch input
|
||||||
|
s = im.shape[:2] # HWC
|
||||||
|
shape0.append(s) # image shape
|
||||||
|
g = (size / max(s)) # gain
|
||||||
|
shape1.append([y * g for y in s])
|
||||||
|
imgs[i] = im # update
|
||||||
|
shape1 = [make_divisible(x, int(self.stride.max())) for x in np.stack(shape1, 0).max(0)] # inference shape
|
||||||
|
x = [letterbox(im, new_shape=shape1, auto=False)[0] for im in imgs] # pad
|
||||||
|
x = np.stack(x, 0) if n > 1 else x[0][None] # stack
|
||||||
|
x = np.ascontiguousarray(x.transpose((0, 3, 1, 2))) # BHWC to BCHW
|
||||||
|
x = torch.from_numpy(x).to(p.device).type_as(p) / 255. # uint8 to fp16/32
|
||||||
|
|
||||||
|
# Inference
|
||||||
|
with torch.no_grad():
|
||||||
|
y = self.model(x, augment, profile)[0] # forward
|
||||||
|
y = non_max_suppression(y, conf_thres=self.conf, iou_thres=self.iou, classes=self.classes) # NMS
|
||||||
|
|
||||||
|
# Post-process
|
||||||
|
for i in range(n):
|
||||||
|
scale_coords(shape1, y[i][:, :4], shape0[i])
|
||||||
|
|
||||||
|
return Detections(imgs, y, self.names)
|
||||||
|
|
||||||
|
|
||||||
|
class Detections:
|
||||||
|
# detections class for YOLOv5 inference results
|
||||||
|
def __init__(self, imgs, pred, names=None):
|
||||||
|
super(Detections, self).__init__()
|
||||||
|
d = pred[0].device # device
|
||||||
|
gn = [torch.tensor([*[im.shape[i] for i in [1, 0, 1, 0]], 1., 1.], device=d) for im in imgs] # normalizations
|
||||||
|
self.imgs = imgs # list of images as numpy arrays
|
||||||
|
self.pred = pred # list of tensors pred[0] = (xyxy, conf, cls)
|
||||||
|
self.names = names # class names
|
||||||
|
self.xyxy = pred # xyxy pixels
|
||||||
|
self.xywh = [xyxy2xywh(x) for x in pred] # xywh pixels
|
||||||
|
self.xyxyn = [x / g for x, g in zip(self.xyxy, gn)] # xyxy normalized
|
||||||
|
self.xywhn = [x / g for x, g in zip(self.xywh, gn)] # xywh normalized
|
||||||
|
self.n = len(self.pred)
|
||||||
|
|
||||||
|
def display(self, pprint=False, show=False, save=False):
|
||||||
|
colors = color_list()
|
||||||
|
for i, (img, pred) in enumerate(zip(self.imgs, self.pred)):
|
||||||
|
str = f'Image {i + 1}/{len(self.pred)}: {img.shape[0]}x{img.shape[1]} '
|
||||||
|
if pred is not None:
|
||||||
|
for c in pred[:, -1].unique():
|
||||||
|
n = (pred[:, -1] == c).sum() # detections per class
|
||||||
|
str += f'{n} {self.names[int(c)]}s, ' # add to string
|
||||||
|
if show or save:
|
||||||
|
img = Image.fromarray(img.astype(np.uint8)) if isinstance(img, np.ndarray) else img # from np
|
||||||
|
for *box, conf, cls in pred: # xyxy, confidence, class
|
||||||
|
# str += '%s %.2f, ' % (names[int(cls)], conf) # label
|
||||||
|
ImageDraw.Draw(img).rectangle(box, width=4, outline=colors[int(cls) % 10]) # plot
|
||||||
|
if save:
|
||||||
|
f = f'results{i}.jpg'
|
||||||
|
str += f"saved to '{f}'"
|
||||||
|
img.save(f) # save
|
||||||
|
if show:
|
||||||
|
img.show(f'Image {i}') # show
|
||||||
|
if pprint:
|
||||||
|
print(str)
|
||||||
|
|
||||||
|
def print(self):
|
||||||
|
self.display(pprint=True) # print results
|
||||||
|
|
||||||
|
def show(self):
|
||||||
|
self.display(show=True) # show results
|
||||||
|
|
||||||
|
def save(self):
|
||||||
|
self.display(save=True) # save results
|
||||||
|
|
||||||
|
def __len__(self):
|
||||||
|
return self.n
|
||||||
|
|
||||||
|
def tolist(self):
|
||||||
|
# return a list of Detections objects, i.e. 'for result in results.tolist():'
|
||||||
|
x = [Detections([self.imgs[i]], [self.pred[i]], self.names) for i in range(self.n)]
|
||||||
|
for d in x:
|
||||||
|
for k in ['imgs', 'pred', 'xyxy', 'xyxyn', 'xywh', 'xywhn']:
|
||||||
|
setattr(d, k, getattr(d, k)[0]) # pop out of list
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
class Flatten(nn.Module):
|
||||||
|
# Use after nn.AdaptiveAvgPool2d(1) to remove last 2 dimensions
|
||||||
|
@staticmethod
|
||||||
|
def forward(x):
|
||||||
|
return x.view(x.size(0), -1)
|
||||||
|
|
||||||
|
|
||||||
|
class Classify(nn.Module):
|
||||||
|
# Classification head, i.e. x(b,c1,20,20) to x(b,c2)
|
||||||
|
def __init__(self, c1, c2, k=1, s=1, p=None, g=1): # ch_in, ch_out, kernel, stride, padding, groups
|
||||||
|
super(Classify, self).__init__()
|
||||||
|
self.aap = nn.AdaptiveAvgPool2d(1) # to x(b,c1,1,1)
|
||||||
|
self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g) # to x(b,c2,1,1)
|
||||||
|
self.flat = Flatten()
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
z = torch.cat([self.aap(y) for y in (x if isinstance(x, list) else [x])], 1) # cat if list
|
||||||
|
return self.flat(self.conv(z)) # flatten to x(b,c2)
|
133
yolov5/models/experimental.py
Normal file
133
yolov5/models/experimental.py
Normal file
@ -0,0 +1,133 @@
|
|||||||
|
# This file contains experimental modules
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
|
||||||
|
from models.common import Conv, DWConv
|
||||||
|
from utils.google_utils import attempt_download
|
||||||
|
|
||||||
|
|
||||||
|
class CrossConv(nn.Module):
|
||||||
|
# Cross Convolution Downsample
|
||||||
|
def __init__(self, c1, c2, k=3, s=1, g=1, e=1.0, shortcut=False):
|
||||||
|
# ch_in, ch_out, kernel, stride, groups, expansion, shortcut
|
||||||
|
super(CrossConv, self).__init__()
|
||||||
|
c_ = int(c2 * e) # hidden channels
|
||||||
|
self.cv1 = Conv(c1, c_, (1, k), (1, s))
|
||||||
|
self.cv2 = Conv(c_, c2, (k, 1), (s, 1), g=g)
|
||||||
|
self.add = shortcut and c1 == c2
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
|
||||||
|
|
||||||
|
|
||||||
|
class Sum(nn.Module):
|
||||||
|
# Weighted sum of 2 or more layers https://arxiv.org/abs/1911.09070
|
||||||
|
def __init__(self, n, weight=False): # n: number of inputs
|
||||||
|
super(Sum, self).__init__()
|
||||||
|
self.weight = weight # apply weights boolean
|
||||||
|
self.iter = range(n - 1) # iter object
|
||||||
|
if weight:
|
||||||
|
self.w = nn.Parameter(-torch.arange(1., n) / 2, requires_grad=True) # layer weights
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
y = x[0] # no weight
|
||||||
|
if self.weight:
|
||||||
|
w = torch.sigmoid(self.w) * 2
|
||||||
|
for i in self.iter:
|
||||||
|
y = y + x[i + 1] * w[i]
|
||||||
|
else:
|
||||||
|
for i in self.iter:
|
||||||
|
y = y + x[i + 1]
|
||||||
|
return y
|
||||||
|
|
||||||
|
|
||||||
|
class GhostConv(nn.Module):
|
||||||
|
# Ghost Convolution https://github.com/huawei-noah/ghostnet
|
||||||
|
def __init__(self, c1, c2, k=1, s=1, g=1, act=True): # ch_in, ch_out, kernel, stride, groups
|
||||||
|
super(GhostConv, self).__init__()
|
||||||
|
c_ = c2 // 2 # hidden channels
|
||||||
|
self.cv1 = Conv(c1, c_, k, s, None, g, act)
|
||||||
|
self.cv2 = Conv(c_, c_, 5, 1, None, c_, act)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
y = self.cv1(x)
|
||||||
|
return torch.cat([y, self.cv2(y)], 1)
|
||||||
|
|
||||||
|
|
||||||
|
class GhostBottleneck(nn.Module):
|
||||||
|
# Ghost Bottleneck https://github.com/huawei-noah/ghostnet
|
||||||
|
def __init__(self, c1, c2, k, s):
|
||||||
|
super(GhostBottleneck, self).__init__()
|
||||||
|
c_ = c2 // 2
|
||||||
|
self.conv = nn.Sequential(GhostConv(c1, c_, 1, 1), # pw
|
||||||
|
DWConv(c_, c_, k, s, act=False) if s == 2 else nn.Identity(), # dw
|
||||||
|
GhostConv(c_, c2, 1, 1, act=False)) # pw-linear
|
||||||
|
self.shortcut = nn.Sequential(DWConv(c1, c1, k, s, act=False),
|
||||||
|
Conv(c1, c2, 1, 1, act=False)) if s == 2 else nn.Identity()
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
return self.conv(x) + self.shortcut(x)
|
||||||
|
|
||||||
|
|
||||||
|
class MixConv2d(nn.Module):
|
||||||
|
# Mixed Depthwise Conv https://arxiv.org/abs/1907.09595
|
||||||
|
def __init__(self, c1, c2, k=(1, 3), s=1, equal_ch=True):
|
||||||
|
super(MixConv2d, self).__init__()
|
||||||
|
groups = len(k)
|
||||||
|
if equal_ch: # equal c_ per group
|
||||||
|
i = torch.linspace(0, groups - 1E-6, c2).floor() # c2 indices
|
||||||
|
c_ = [(i == g).sum() for g in range(groups)] # intermediate channels
|
||||||
|
else: # equal weight.numel() per group
|
||||||
|
b = [c2] + [0] * groups
|
||||||
|
a = np.eye(groups + 1, groups, k=-1)
|
||||||
|
a -= np.roll(a, 1, axis=1)
|
||||||
|
a *= np.array(k) ** 2
|
||||||
|
a[0] = 1
|
||||||
|
c_ = np.linalg.lstsq(a, b, rcond=None)[0].round() # solve for equal weight indices, ax = b
|
||||||
|
|
||||||
|
self.m = nn.ModuleList([nn.Conv2d(c1, int(c_[g]), k[g], s, k[g] // 2, bias=False) for g in range(groups)])
|
||||||
|
self.bn = nn.BatchNorm2d(c2)
|
||||||
|
self.act = nn.LeakyReLU(0.1, inplace=True)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
return x + self.act(self.bn(torch.cat([m(x) for m in self.m], 1)))
|
||||||
|
|
||||||
|
|
||||||
|
class Ensemble(nn.ModuleList):
|
||||||
|
# Ensemble of models
|
||||||
|
def __init__(self):
|
||||||
|
super(Ensemble, self).__init__()
|
||||||
|
|
||||||
|
def forward(self, x, augment=False):
|
||||||
|
y = []
|
||||||
|
for module in self:
|
||||||
|
y.append(module(x, augment)[0])
|
||||||
|
# y = torch.stack(y).max(0)[0] # max ensemble
|
||||||
|
# y = torch.cat(y, 1) # nms ensemble
|
||||||
|
y = torch.stack(y).mean(0) # mean ensemble
|
||||||
|
return y, None # inference, train output
|
||||||
|
|
||||||
|
|
||||||
|
def attempt_load(weights, map_location=None):
|
||||||
|
# Loads an ensemble of models weights=[a,b,c] or a single model weights=[a] or weights=a
|
||||||
|
model = Ensemble()
|
||||||
|
for w in weights if isinstance(weights, list) else [weights]:
|
||||||
|
attempt_download(w)
|
||||||
|
model.append(torch.load(w, map_location=map_location)['model'].float().fuse().eval()) # load FP32 model
|
||||||
|
|
||||||
|
# Compatibility updates
|
||||||
|
for m in model.modules():
|
||||||
|
if type(m) in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6]:
|
||||||
|
m.inplace = True # pytorch 1.7.0 compatibility
|
||||||
|
elif type(m) is Conv:
|
||||||
|
m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatibility
|
||||||
|
|
||||||
|
if len(model) == 1:
|
||||||
|
return model[-1] # return model
|
||||||
|
else:
|
||||||
|
print('Ensemble created with %s\n' % weights)
|
||||||
|
for k in ['names', 'stride']:
|
||||||
|
setattr(model, k, getattr(model[-1], k))
|
||||||
|
return model # return ensemble
|
97
yolov5/models/export.py
Normal file
97
yolov5/models/export.py
Normal file
@ -0,0 +1,97 @@
|
|||||||
|
"""Exports a YOLOv5 *.pt model to ONNX and TorchScript formats
|
||||||
|
|
||||||
|
Usage:
|
||||||
|
$ export PYTHONPATH="$PWD" && python models/export.py --weights ./weights/yolov5s.pt --img 640 --batch 1
|
||||||
|
"""
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import sys
|
||||||
|
import time
|
||||||
|
|
||||||
|
sys.path.append('./') # to run '$ python *.py' files in subdirectories
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
|
||||||
|
import models
|
||||||
|
from models.experimental import attempt_load
|
||||||
|
from utils.activations import Hardswish, SiLU
|
||||||
|
from utils.general import set_logging, check_img_size
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
parser = argparse.ArgumentParser()
|
||||||
|
parser.add_argument('--weights', type=str, default='./yolov5s.pt', help='weights path') # from yolov5/models/
|
||||||
|
parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='image size') # height, width
|
||||||
|
parser.add_argument('--batch-size', type=int, default=1, help='batch size')
|
||||||
|
opt = parser.parse_args()
|
||||||
|
opt.img_size *= 2 if len(opt.img_size) == 1 else 1 # expand
|
||||||
|
print(opt)
|
||||||
|
set_logging()
|
||||||
|
t = time.time()
|
||||||
|
|
||||||
|
# Load PyTorch model
|
||||||
|
model = attempt_load(opt.weights, map_location=torch.device('cpu')) # load FP32 model
|
||||||
|
labels = model.names
|
||||||
|
|
||||||
|
# Checks
|
||||||
|
gs = int(max(model.stride)) # grid size (max stride)
|
||||||
|
opt.img_size = [check_img_size(x, gs) for x in opt.img_size] # verify img_size are gs-multiples
|
||||||
|
|
||||||
|
# Input
|
||||||
|
img = torch.zeros(opt.batch_size, 3, *opt.img_size) # image size(1,3,320,192) iDetection
|
||||||
|
|
||||||
|
# Update model
|
||||||
|
for k, m in model.named_modules():
|
||||||
|
m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatibility
|
||||||
|
if isinstance(m, models.common.Conv): # assign export-friendly activations
|
||||||
|
if isinstance(m.act, nn.Hardswish):
|
||||||
|
m.act = Hardswish()
|
||||||
|
elif isinstance(m.act, nn.SiLU):
|
||||||
|
m.act = SiLU()
|
||||||
|
# elif isinstance(m, models.yolo.Detect):
|
||||||
|
# m.forward = m.forward_export # assign forward (optional)
|
||||||
|
model.model[-1].export = True # set Detect() layer export=True
|
||||||
|
y = model(img) # dry run
|
||||||
|
|
||||||
|
# TorchScript export
|
||||||
|
try:
|
||||||
|
print('\nStarting TorchScript export with torch %s...' % torch.__version__)
|
||||||
|
f = opt.weights.replace('.pt', '.torchscript.pt') # filename
|
||||||
|
ts = torch.jit.trace(model, img)
|
||||||
|
ts.save(f)
|
||||||
|
print('TorchScript export success, saved as %s' % f)
|
||||||
|
except Exception as e:
|
||||||
|
print('TorchScript export failure: %s' % e)
|
||||||
|
|
||||||
|
# ONNX export
|
||||||
|
try:
|
||||||
|
import onnx
|
||||||
|
|
||||||
|
print('\nStarting ONNX export with onnx %s...' % onnx.__version__)
|
||||||
|
f = opt.weights.replace('.pt', '.onnx') # filename
|
||||||
|
torch.onnx.export(model, img, f, verbose=False, opset_version=12, input_names=['images'],
|
||||||
|
output_names=['classes', 'boxes'] if y is None else ['output'])
|
||||||
|
|
||||||
|
# Checks
|
||||||
|
onnx_model = onnx.load(f) # load onnx model
|
||||||
|
onnx.checker.check_model(onnx_model) # check onnx model
|
||||||
|
# print(onnx.helper.printable_graph(onnx_model.graph)) # print a human readable model
|
||||||
|
print('ONNX export success, saved as %s' % f)
|
||||||
|
except Exception as e:
|
||||||
|
print('ONNX export failure: %s' % e)
|
||||||
|
|
||||||
|
# CoreML export
|
||||||
|
try:
|
||||||
|
import coremltools as ct
|
||||||
|
|
||||||
|
print('\nStarting CoreML export with coremltools %s...' % ct.__version__)
|
||||||
|
# convert model from torchscript and apply pixel scaling as per detect.py
|
||||||
|
model = ct.convert(ts, inputs=[ct.ImageType(name='image', shape=img.shape, scale=1 / 255.0, bias=[0, 0, 0])])
|
||||||
|
f = opt.weights.replace('.pt', '.mlmodel') # filename
|
||||||
|
model.save(f)
|
||||||
|
print('CoreML export success, saved as %s' % f)
|
||||||
|
except Exception as e:
|
||||||
|
print('CoreML export failure: %s' % e)
|
||||||
|
|
||||||
|
# Finish
|
||||||
|
print('\nExport complete (%.2fs). Visualize with https://github.com/lutzroeder/netron.' % (time.time() - t))
|
51
yolov5/models/hub/yolov3-spp.yaml
Normal file
51
yolov5/models/hub/yolov3-spp.yaml
Normal file
@ -0,0 +1,51 @@
|
|||||||
|
# parameters
|
||||||
|
nc: 80 # number of classes
|
||||||
|
depth_multiple: 1.0 # model depth multiple
|
||||||
|
width_multiple: 1.0 # layer channel multiple
|
||||||
|
|
||||||
|
# anchors
|
||||||
|
anchors:
|
||||||
|
- [10,13, 16,30, 33,23] # P3/8
|
||||||
|
- [30,61, 62,45, 59,119] # P4/16
|
||||||
|
- [116,90, 156,198, 373,326] # P5/32
|
||||||
|
|
||||||
|
# darknet53 backbone
|
||||||
|
backbone:
|
||||||
|
# [from, number, module, args]
|
||||||
|
[[-1, 1, Conv, [32, 3, 1]], # 0
|
||||||
|
[-1, 1, Conv, [64, 3, 2]], # 1-P1/2
|
||||||
|
[-1, 1, Bottleneck, [64]],
|
||||||
|
[-1, 1, Conv, [128, 3, 2]], # 3-P2/4
|
||||||
|
[-1, 2, Bottleneck, [128]],
|
||||||
|
[-1, 1, Conv, [256, 3, 2]], # 5-P3/8
|
||||||
|
[-1, 8, Bottleneck, [256]],
|
||||||
|
[-1, 1, Conv, [512, 3, 2]], # 7-P4/16
|
||||||
|
[-1, 8, Bottleneck, [512]],
|
||||||
|
[-1, 1, Conv, [1024, 3, 2]], # 9-P5/32
|
||||||
|
[-1, 4, Bottleneck, [1024]], # 10
|
||||||
|
]
|
||||||
|
|
||||||
|
# YOLOv3-SPP head
|
||||||
|
head:
|
||||||
|
[[-1, 1, Bottleneck, [1024, False]],
|
||||||
|
[-1, 1, SPP, [512, [5, 9, 13]]],
|
||||||
|
[-1, 1, Conv, [1024, 3, 1]],
|
||||||
|
[-1, 1, Conv, [512, 1, 1]],
|
||||||
|
[-1, 1, Conv, [1024, 3, 1]], # 15 (P5/32-large)
|
||||||
|
|
||||||
|
[-2, 1, Conv, [256, 1, 1]],
|
||||||
|
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
||||||
|
[[-1, 8], 1, Concat, [1]], # cat backbone P4
|
||||||
|
[-1, 1, Bottleneck, [512, False]],
|
||||||
|
[-1, 1, Bottleneck, [512, False]],
|
||||||
|
[-1, 1, Conv, [256, 1, 1]],
|
||||||
|
[-1, 1, Conv, [512, 3, 1]], # 22 (P4/16-medium)
|
||||||
|
|
||||||
|
[-2, 1, Conv, [128, 1, 1]],
|
||||||
|
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
||||||
|
[[-1, 6], 1, Concat, [1]], # cat backbone P3
|
||||||
|
[-1, 1, Bottleneck, [256, False]],
|
||||||
|
[-1, 2, Bottleneck, [256, False]], # 27 (P3/8-small)
|
||||||
|
|
||||||
|
[[27, 22, 15], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
|
||||||
|
]
|
41
yolov5/models/hub/yolov3-tiny.yaml
Normal file
41
yolov5/models/hub/yolov3-tiny.yaml
Normal file
@ -0,0 +1,41 @@
|
|||||||
|
# parameters
|
||||||
|
nc: 80 # number of classes
|
||||||
|
depth_multiple: 1.0 # model depth multiple
|
||||||
|
width_multiple: 1.0 # layer channel multiple
|
||||||
|
|
||||||
|
# anchors
|
||||||
|
anchors:
|
||||||
|
- [10,14, 23,27, 37,58] # P4/16
|
||||||
|
- [81,82, 135,169, 344,319] # P5/32
|
||||||
|
|
||||||
|
# YOLOv3-tiny backbone
|
||||||
|
backbone:
|
||||||
|
# [from, number, module, args]
|
||||||
|
[[-1, 1, Conv, [16, 3, 1]], # 0
|
||||||
|
[-1, 1, nn.MaxPool2d, [2, 2, 0]], # 1-P1/2
|
||||||
|
[-1, 1, Conv, [32, 3, 1]],
|
||||||
|
[-1, 1, nn.MaxPool2d, [2, 2, 0]], # 3-P2/4
|
||||||
|
[-1, 1, Conv, [64, 3, 1]],
|
||||||
|
[-1, 1, nn.MaxPool2d, [2, 2, 0]], # 5-P3/8
|
||||||
|
[-1, 1, Conv, [128, 3, 1]],
|
||||||
|
[-1, 1, nn.MaxPool2d, [2, 2, 0]], # 7-P4/16
|
||||||
|
[-1, 1, Conv, [256, 3, 1]],
|
||||||
|
[-1, 1, nn.MaxPool2d, [2, 2, 0]], # 9-P5/32
|
||||||
|
[-1, 1, Conv, [512, 3, 1]],
|
||||||
|
[-1, 1, nn.ZeroPad2d, [[0, 1, 0, 1]]], # 11
|
||||||
|
[-1, 1, nn.MaxPool2d, [2, 1, 0]], # 12
|
||||||
|
]
|
||||||
|
|
||||||
|
# YOLOv3-tiny head
|
||||||
|
head:
|
||||||
|
[[-1, 1, Conv, [1024, 3, 1]],
|
||||||
|
[-1, 1, Conv, [256, 1, 1]],
|
||||||
|
[-1, 1, Conv, [512, 3, 1]], # 15 (P5/32-large)
|
||||||
|
|
||||||
|
[-2, 1, Conv, [128, 1, 1]],
|
||||||
|
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
||||||
|
[[-1, 8], 1, Concat, [1]], # cat backbone P4
|
||||||
|
[-1, 1, Conv, [256, 3, 1]], # 19 (P4/16-medium)
|
||||||
|
|
||||||
|
[[19, 15], 1, Detect, [nc, anchors]], # Detect(P4, P5)
|
||||||
|
]
|
51
yolov5/models/hub/yolov3.yaml
Normal file
51
yolov5/models/hub/yolov3.yaml
Normal file
@ -0,0 +1,51 @@
|
|||||||
|
# parameters
|
||||||
|
nc: 80 # number of classes
|
||||||
|
depth_multiple: 1.0 # model depth multiple
|
||||||
|
width_multiple: 1.0 # layer channel multiple
|
||||||
|
|
||||||
|
# anchors
|
||||||
|
anchors:
|
||||||
|
- [10,13, 16,30, 33,23] # P3/8
|
||||||
|
- [30,61, 62,45, 59,119] # P4/16
|
||||||
|
- [116,90, 156,198, 373,326] # P5/32
|
||||||
|
|
||||||
|
# darknet53 backbone
|
||||||
|
backbone:
|
||||||
|
# [from, number, module, args]
|
||||||
|
[[-1, 1, Conv, [32, 3, 1]], # 0
|
||||||
|
[-1, 1, Conv, [64, 3, 2]], # 1-P1/2
|
||||||
|
[-1, 1, Bottleneck, [64]],
|
||||||
|
[-1, 1, Conv, [128, 3, 2]], # 3-P2/4
|
||||||
|
[-1, 2, Bottleneck, [128]],
|
||||||
|
[-1, 1, Conv, [256, 3, 2]], # 5-P3/8
|
||||||
|
[-1, 8, Bottleneck, [256]],
|
||||||
|
[-1, 1, Conv, [512, 3, 2]], # 7-P4/16
|
||||||
|
[-1, 8, Bottleneck, [512]],
|
||||||
|
[-1, 1, Conv, [1024, 3, 2]], # 9-P5/32
|
||||||
|
[-1, 4, Bottleneck, [1024]], # 10
|
||||||
|
]
|
||||||
|
|
||||||
|
# YOLOv3 head
|
||||||
|
head:
|
||||||
|
[[-1, 1, Bottleneck, [1024, False]],
|
||||||
|
[-1, 1, Conv, [512, [1, 1]]],
|
||||||
|
[-1, 1, Conv, [1024, 3, 1]],
|
||||||
|
[-1, 1, Conv, [512, 1, 1]],
|
||||||
|
[-1, 1, Conv, [1024, 3, 1]], # 15 (P5/32-large)
|
||||||
|
|
||||||
|
[-2, 1, Conv, [256, 1, 1]],
|
||||||
|
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
||||||
|
[[-1, 8], 1, Concat, [1]], # cat backbone P4
|
||||||
|
[-1, 1, Bottleneck, [512, False]],
|
||||||
|
[-1, 1, Bottleneck, [512, False]],
|
||||||
|
[-1, 1, Conv, [256, 1, 1]],
|
||||||
|
[-1, 1, Conv, [512, 3, 1]], # 22 (P4/16-medium)
|
||||||
|
|
||||||
|
[-2, 1, Conv, [128, 1, 1]],
|
||||||
|
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
||||||
|
[[-1, 6], 1, Concat, [1]], # cat backbone P3
|
||||||
|
[-1, 1, Bottleneck, [256, False]],
|
||||||
|
[-1, 2, Bottleneck, [256, False]], # 27 (P3/8-small)
|
||||||
|
|
||||||
|
[[27, 22, 15], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
|
||||||
|
]
|
42
yolov5/models/hub/yolov5-fpn.yaml
Normal file
42
yolov5/models/hub/yolov5-fpn.yaml
Normal file
@ -0,0 +1,42 @@
|
|||||||
|
# parameters
|
||||||
|
nc: 80 # number of classes
|
||||||
|
depth_multiple: 1.0 # model depth multiple
|
||||||
|
width_multiple: 1.0 # layer channel multiple
|
||||||
|
|
||||||
|
# anchors
|
||||||
|
anchors:
|
||||||
|
- [10,13, 16,30, 33,23] # P3/8
|
||||||
|
- [30,61, 62,45, 59,119] # P4/16
|
||||||
|
- [116,90, 156,198, 373,326] # P5/32
|
||||||
|
|
||||||
|
# YOLOv5 backbone
|
||||||
|
backbone:
|
||||||
|
# [from, number, module, args]
|
||||||
|
[[-1, 1, Focus, [64, 3]], # 0-P1/2
|
||||||
|
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
||||||
|
[-1, 3, Bottleneck, [128]],
|
||||||
|
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
||||||
|
[-1, 9, BottleneckCSP, [256]],
|
||||||
|
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
||||||
|
[-1, 9, BottleneckCSP, [512]],
|
||||||
|
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
|
||||||
|
[-1, 1, SPP, [1024, [5, 9, 13]]],
|
||||||
|
[-1, 6, BottleneckCSP, [1024]], # 9
|
||||||
|
]
|
||||||
|
|
||||||
|
# YOLOv5 FPN head
|
||||||
|
head:
|
||||||
|
[[-1, 3, BottleneckCSP, [1024, False]], # 10 (P5/32-large)
|
||||||
|
|
||||||
|
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
||||||
|
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
||||||
|
[-1, 1, Conv, [512, 1, 1]],
|
||||||
|
[-1, 3, BottleneckCSP, [512, False]], # 14 (P4/16-medium)
|
||||||
|
|
||||||
|
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
||||||
|
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
||||||
|
[-1, 1, Conv, [256, 1, 1]],
|
||||||
|
[-1, 3, BottleneckCSP, [256, False]], # 18 (P3/8-small)
|
||||||
|
|
||||||
|
[[18, 14, 10], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
|
||||||
|
]
|
48
yolov5/models/hub/yolov5-panet.yaml
Normal file
48
yolov5/models/hub/yolov5-panet.yaml
Normal file
@ -0,0 +1,48 @@
|
|||||||
|
# parameters
|
||||||
|
nc: 80 # number of classes
|
||||||
|
depth_multiple: 1.0 # model depth multiple
|
||||||
|
width_multiple: 1.0 # layer channel multiple
|
||||||
|
|
||||||
|
# anchors
|
||||||
|
anchors:
|
||||||
|
- [10,13, 16,30, 33,23] # P3/8
|
||||||
|
- [30,61, 62,45, 59,119] # P4/16
|
||||||
|
- [116,90, 156,198, 373,326] # P5/32
|
||||||
|
|
||||||
|
# YOLOv5 backbone
|
||||||
|
backbone:
|
||||||
|
# [from, number, module, args]
|
||||||
|
[[-1, 1, Focus, [64, 3]], # 0-P1/2
|
||||||
|
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
||||||
|
[-1, 3, BottleneckCSP, [128]],
|
||||||
|
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
||||||
|
[-1, 9, BottleneckCSP, [256]],
|
||||||
|
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
||||||
|
[-1, 9, BottleneckCSP, [512]],
|
||||||
|
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
|
||||||
|
[-1, 1, SPP, [1024, [5, 9, 13]]],
|
||||||
|
[-1, 3, BottleneckCSP, [1024, False]], # 9
|
||||||
|
]
|
||||||
|
|
||||||
|
# YOLOv5 PANet head
|
||||||
|
head:
|
||||||
|
[[-1, 1, Conv, [512, 1, 1]],
|
||||||
|
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
||||||
|
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
||||||
|
[-1, 3, BottleneckCSP, [512, False]], # 13
|
||||||
|
|
||||||
|
[-1, 1, Conv, [256, 1, 1]],
|
||||||
|
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
||||||
|
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
||||||
|
[-1, 3, BottleneckCSP, [256, False]], # 17 (P3/8-small)
|
||||||
|
|
||||||
|
[-1, 1, Conv, [256, 3, 2]],
|
||||||
|
[[-1, 14], 1, Concat, [1]], # cat head P4
|
||||||
|
[-1, 3, BottleneckCSP, [512, False]], # 20 (P4/16-medium)
|
||||||
|
|
||||||
|
[-1, 1, Conv, [512, 3, 2]],
|
||||||
|
[[-1, 10], 1, Concat, [1]], # cat head P5
|
||||||
|
[-1, 3, BottleneckCSP, [1024, False]], # 23 (P5/32-large)
|
||||||
|
|
||||||
|
[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
|
||||||
|
]
|
286
yolov5/models/yolo.py
Normal file
286
yolov5/models/yolo.py
Normal file
@ -0,0 +1,286 @@
|
|||||||
|
import argparse
|
||||||
|
import logging
|
||||||
|
import math
|
||||||
|
import sys
|
||||||
|
from copy import deepcopy
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
|
||||||
|
sys.path.append('./') # to run '$ python *.py' files in subdirectories
|
||||||
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
from models.common import Conv, Bottleneck, SPP, DWConv, Focus, BottleneckCSP, C3, Concat, NMS, autoShape
|
||||||
|
from models.experimental import MixConv2d, CrossConv
|
||||||
|
from utils.autoanchor import check_anchor_order
|
||||||
|
from utils.general import make_divisible, check_file, set_logging
|
||||||
|
from utils.torch_utils import time_synchronized, fuse_conv_and_bn, model_info, scale_img, initialize_weights, \
|
||||||
|
select_device, copy_attr
|
||||||
|
|
||||||
|
try:
|
||||||
|
import thop # for FLOPS computation
|
||||||
|
except ImportError:
|
||||||
|
thop = None
|
||||||
|
|
||||||
|
|
||||||
|
class Detect(nn.Module):
|
||||||
|
stride = None # strides computed during build
|
||||||
|
export = False # onnx export
|
||||||
|
|
||||||
|
def __init__(self, nc=80, anchors=(), ch=()): # detection layer
|
||||||
|
super(Detect, self).__init__()
|
||||||
|
self.nc = nc # number of classes
|
||||||
|
self.no = nc + 5 # number of outputs per anchor
|
||||||
|
self.nl = len(anchors) # number of detection layers
|
||||||
|
self.na = len(anchors[0]) // 2 # number of anchors
|
||||||
|
self.grid = [torch.zeros(1)] * self.nl # init grid
|
||||||
|
a = torch.tensor(anchors).float().view(self.nl, -1, 2)
|
||||||
|
self.register_buffer('anchors', a) # shape(nl,na,2)
|
||||||
|
self.register_buffer('anchor_grid', a.clone().view(self.nl, 1, -1, 1, 1, 2)) # shape(nl,1,na,1,1,2)
|
||||||
|
self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch) # output conv
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
# x = x.copy() # for profiling
|
||||||
|
z = [] # inference output
|
||||||
|
self.training |= self.export
|
||||||
|
for i in range(self.nl):
|
||||||
|
x[i] = self.m[i](x[i]) # conv
|
||||||
|
bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85)
|
||||||
|
x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
|
||||||
|
|
||||||
|
if not self.training: # inference
|
||||||
|
if self.grid[i].shape[2:4] != x[i].shape[2:4]:
|
||||||
|
self.grid[i] = self._make_grid(nx, ny).to(x[i].device)
|
||||||
|
|
||||||
|
y = x[i].sigmoid()
|
||||||
|
y[..., 0:2] = (y[..., 0:2] * 2. - 0.5 + self.grid[i].to(x[i].device)) * self.stride[i] # xy
|
||||||
|
y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh
|
||||||
|
z.append(y.view(bs, -1, self.no))
|
||||||
|
|
||||||
|
return x if self.training else (torch.cat(z, 1), x)
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def _make_grid(nx=20, ny=20):
|
||||||
|
yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)])
|
||||||
|
return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float()
|
||||||
|
|
||||||
|
|
||||||
|
class Model(nn.Module):
|
||||||
|
def __init__(self, cfg='yolov5s.yaml', ch=3, nc=None): # model, input channels, number of classes
|
||||||
|
super(Model, self).__init__()
|
||||||
|
if isinstance(cfg, dict):
|
||||||
|
self.yaml = cfg # model dict
|
||||||
|
else: # is *.yaml
|
||||||
|
import yaml # for torch hub
|
||||||
|
self.yaml_file = Path(cfg).name
|
||||||
|
with open(cfg) as f:
|
||||||
|
self.yaml = yaml.load(f, Loader=yaml.FullLoader) # model dict
|
||||||
|
|
||||||
|
# Define model
|
||||||
|
ch = self.yaml['ch'] = self.yaml.get('ch', ch) # input channels
|
||||||
|
if nc and nc != self.yaml['nc']:
|
||||||
|
logger.info('Overriding model.yaml nc=%g with nc=%g' % (self.yaml['nc'], nc))
|
||||||
|
self.yaml['nc'] = nc # override yaml value
|
||||||
|
self.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch]) # model, savelist
|
||||||
|
self.names = [str(i) for i in range(self.yaml['nc'])] # default names
|
||||||
|
# print([x.shape for x in self.forward(torch.zeros(1, ch, 64, 64))])
|
||||||
|
|
||||||
|
# Build strides, anchors
|
||||||
|
m = self.model[-1] # Detect()
|
||||||
|
if isinstance(m, Detect):
|
||||||
|
s = 128 # 2x min stride
|
||||||
|
m.stride = torch.tensor([s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))]) # forward
|
||||||
|
m.anchors /= m.stride.view(-1, 1, 1)
|
||||||
|
check_anchor_order(m)
|
||||||
|
self.stride = m.stride
|
||||||
|
self._initialize_biases() # only run once
|
||||||
|
# print('Strides: %s' % m.stride.tolist())
|
||||||
|
|
||||||
|
# Init weights, biases
|
||||||
|
initialize_weights(self)
|
||||||
|
self.info()
|
||||||
|
logger.info('')
|
||||||
|
|
||||||
|
def forward(self, x, augment=False, profile=False):
|
||||||
|
if augment:
|
||||||
|
img_size = x.shape[-2:] # height, width
|
||||||
|
s = [1, 0.83, 0.67] # scales
|
||||||
|
f = [None, 3, None] # flips (2-ud, 3-lr)
|
||||||
|
y = [] # outputs
|
||||||
|
for si, fi in zip(s, f):
|
||||||
|
xi = scale_img(x.flip(fi) if fi else x, si)
|
||||||
|
yi = self.forward_once(xi)[0] # forward
|
||||||
|
# cv2.imwrite('img%g.jpg' % s, 255 * xi[0].numpy().transpose((1, 2, 0))[:, :, ::-1]) # save
|
||||||
|
yi[..., :4] /= si # de-scale
|
||||||
|
if fi == 2:
|
||||||
|
yi[..., 1] = img_size[0] - yi[..., 1] # de-flip ud
|
||||||
|
elif fi == 3:
|
||||||
|
yi[..., 0] = img_size[1] - yi[..., 0] # de-flip lr
|
||||||
|
y.append(yi)
|
||||||
|
return torch.cat(y, 1), None # augmented inference, train
|
||||||
|
else:
|
||||||
|
return self.forward_once(x, profile) # single-scale inference, train
|
||||||
|
|
||||||
|
def forward_once(self, x, profile=False):
|
||||||
|
y, dt = [], [] # outputs
|
||||||
|
for m in self.model:
|
||||||
|
if m.f != -1: # if not from previous layer
|
||||||
|
x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers
|
||||||
|
|
||||||
|
if profile:
|
||||||
|
o = thop.profile(m, inputs=(x,), verbose=False)[0] / 1E9 * 2 if thop else 0 # FLOPS
|
||||||
|
t = time_synchronized()
|
||||||
|
for _ in range(10):
|
||||||
|
_ = m(x)
|
||||||
|
dt.append((time_synchronized() - t) * 100)
|
||||||
|
print('%10.1f%10.0f%10.1fms %-40s' % (o, m.np, dt[-1], m.type))
|
||||||
|
|
||||||
|
x = m(x) # run
|
||||||
|
y.append(x if m.i in self.save else None) # save output
|
||||||
|
|
||||||
|
if profile:
|
||||||
|
print('%.1fms total' % sum(dt))
|
||||||
|
return x
|
||||||
|
|
||||||
|
def _initialize_biases(self, cf=None): # initialize biases into Detect(), cf is class frequency
|
||||||
|
# https://arxiv.org/abs/1708.02002 section 3.3
|
||||||
|
# cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1.
|
||||||
|
m = self.model[-1] # Detect() module
|
||||||
|
for mi, s in zip(m.m, m.stride): # from
|
||||||
|
b = mi.bias.view(m.na, -1) # conv.bias(255) to (3,85)
|
||||||
|
b.data[:, 4] += math.log(8 / (640 / s) ** 2) # obj (8 objects per 640 image)
|
||||||
|
b.data[:, 5:] += math.log(0.6 / (m.nc - 0.99)) if cf is None else torch.log(cf / cf.sum()) # cls
|
||||||
|
mi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
|
||||||
|
|
||||||
|
def _print_biases(self):
|
||||||
|
m = self.model[-1] # Detect() module
|
||||||
|
for mi in m.m: # from
|
||||||
|
b = mi.bias.detach().view(m.na, -1).T # conv.bias(255) to (3,85)
|
||||||
|
print(('%6g Conv2d.bias:' + '%10.3g' * 6) % (mi.weight.shape[1], *b[:5].mean(1).tolist(), b[5:].mean()))
|
||||||
|
|
||||||
|
# def _print_weights(self):
|
||||||
|
# for m in self.model.modules():
|
||||||
|
# if type(m) is Bottleneck:
|
||||||
|
# print('%10.3g' % (m.w.detach().sigmoid() * 2)) # shortcut weights
|
||||||
|
|
||||||
|
def fuse(self): # fuse model Conv2d() + BatchNorm2d() layers
|
||||||
|
print('Fusing layers... ')
|
||||||
|
for m in self.model.modules():
|
||||||
|
if type(m) is Conv and hasattr(m, 'bn'):
|
||||||
|
m.conv = fuse_conv_and_bn(m.conv, m.bn) # update conv
|
||||||
|
delattr(m, 'bn') # remove batchnorm
|
||||||
|
m.forward = m.fuseforward # update forward
|
||||||
|
self.info()
|
||||||
|
return self
|
||||||
|
|
||||||
|
def nms(self, mode=True): # add or remove NMS module
|
||||||
|
present = type(self.model[-1]) is NMS # last layer is NMS
|
||||||
|
if mode and not present:
|
||||||
|
print('Adding NMS... ')
|
||||||
|
m = NMS() # module
|
||||||
|
m.f = -1 # from
|
||||||
|
m.i = self.model[-1].i + 1 # index
|
||||||
|
self.model.add_module(name='%s' % m.i, module=m) # add
|
||||||
|
self.eval()
|
||||||
|
elif not mode and present:
|
||||||
|
print('Removing NMS... ')
|
||||||
|
self.model = self.model[:-1] # remove
|
||||||
|
return self
|
||||||
|
|
||||||
|
def autoshape(self): # add autoShape module
|
||||||
|
print('Adding autoShape... ')
|
||||||
|
m = autoShape(self) # wrap model
|
||||||
|
copy_attr(m, self, include=('yaml', 'nc', 'hyp', 'names', 'stride'), exclude=()) # copy attributes
|
||||||
|
return m
|
||||||
|
|
||||||
|
def info(self, verbose=False, img_size=640): # print model information
|
||||||
|
model_info(self, verbose, img_size)
|
||||||
|
|
||||||
|
|
||||||
|
def parse_model(d, ch): # model_dict, input_channels(3)
|
||||||
|
logger.info('\n%3s%18s%3s%10s %-40s%-30s' % ('', 'from', 'n', 'params', 'module', 'arguments'))
|
||||||
|
anchors, nc, gd, gw = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple']
|
||||||
|
na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors # number of anchors
|
||||||
|
no = na * (nc + 5) # number of outputs = anchors * (classes + 5)
|
||||||
|
|
||||||
|
layers, save, c2 = [], [], ch[-1] # layers, savelist, ch out
|
||||||
|
for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']): # from, number, module, args
|
||||||
|
m = eval(m) if isinstance(m, str) else m # eval strings
|
||||||
|
for j, a in enumerate(args):
|
||||||
|
try:
|
||||||
|
args[j] = eval(a) if isinstance(a, str) else a # eval strings
|
||||||
|
except:
|
||||||
|
pass
|
||||||
|
|
||||||
|
n = max(round(n * gd), 1) if n > 1 else n # depth gain
|
||||||
|
if m in [Conv, Bottleneck, SPP, DWConv, MixConv2d, Focus, CrossConv, BottleneckCSP, C3]:
|
||||||
|
c1, c2 = ch[f], args[0]
|
||||||
|
|
||||||
|
# Normal
|
||||||
|
# if i > 0 and args[0] != no: # channel expansion factor
|
||||||
|
# ex = 1.75 # exponential (default 2.0)
|
||||||
|
# e = math.log(c2 / ch[1]) / math.log(2)
|
||||||
|
# c2 = int(ch[1] * ex ** e)
|
||||||
|
# if m != Focus:
|
||||||
|
|
||||||
|
c2 = make_divisible(c2 * gw, 8) if c2 != no else c2
|
||||||
|
|
||||||
|
# Experimental
|
||||||
|
# if i > 0 and args[0] != no: # channel expansion factor
|
||||||
|
# ex = 1 + gw # exponential (default 2.0)
|
||||||
|
# ch1 = 32 # ch[1]
|
||||||
|
# e = math.log(c2 / ch1) / math.log(2) # level 1-n
|
||||||
|
# c2 = int(ch1 * ex ** e)
|
||||||
|
# if m != Focus:
|
||||||
|
# c2 = make_divisible(c2, 8) if c2 != no else c2
|
||||||
|
|
||||||
|
args = [c1, c2, *args[1:]]
|
||||||
|
if m in [BottleneckCSP, C3]:
|
||||||
|
args.insert(2, n)
|
||||||
|
n = 1
|
||||||
|
elif m is nn.BatchNorm2d:
|
||||||
|
args = [ch[f]]
|
||||||
|
elif m is Concat:
|
||||||
|
c2 = sum([ch[-1 if x == -1 else x + 1] for x in f])
|
||||||
|
elif m is Detect:
|
||||||
|
args.append([ch[x + 1] for x in f])
|
||||||
|
if isinstance(args[1], int): # number of anchors
|
||||||
|
args[1] = [list(range(args[1] * 2))] * len(f)
|
||||||
|
else:
|
||||||
|
c2 = ch[f]
|
||||||
|
|
||||||
|
m_ = nn.Sequential(*[m(*args) for _ in range(n)]) if n > 1 else m(*args) # module
|
||||||
|
t = str(m)[8:-2].replace('__main__.', '') # module type
|
||||||
|
np = sum([x.numel() for x in m_.parameters()]) # number params
|
||||||
|
m_.i, m_.f, m_.type, m_.np = i, f, t, np # attach index, 'from' index, type, number params
|
||||||
|
logger.info('%3s%18s%3s%10.0f %-40s%-30s' % (i, f, n, np, t, args)) # print
|
||||||
|
save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1) # append to savelist
|
||||||
|
layers.append(m_)
|
||||||
|
ch.append(c2)
|
||||||
|
return nn.Sequential(*layers), sorted(save)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
parser = argparse.ArgumentParser()
|
||||||
|
parser.add_argument('--cfg', type=str, default='yolov5s.yaml', help='model.yaml')
|
||||||
|
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
|
||||||
|
opt = parser.parse_args()
|
||||||
|
opt.cfg = check_file(opt.cfg) # check file
|
||||||
|
set_logging()
|
||||||
|
device = select_device(opt.device)
|
||||||
|
|
||||||
|
# Create model
|
||||||
|
model = Model(opt.cfg).to(device)
|
||||||
|
model.train()
|
||||||
|
|
||||||
|
# Profile
|
||||||
|
# img = torch.rand(8 if torch.cuda.is_available() else 1, 3, 640, 640).to(device)
|
||||||
|
# y = model(img, profile=True)
|
||||||
|
|
||||||
|
# Tensorboard
|
||||||
|
# from torch.utils.tensorboard import SummaryWriter
|
||||||
|
# tb_writer = SummaryWriter()
|
||||||
|
# print("Run 'tensorboard --logdir=models/runs' to view tensorboard at http://localhost:6006/")
|
||||||
|
# tb_writer.add_graph(model.model, img) # add model to tensorboard
|
||||||
|
# tb_writer.add_image('test', img[0], dataformats='CWH') # add model to tensorboard
|
48
yolov5/models/yolov5l.yaml
Normal file
48
yolov5/models/yolov5l.yaml
Normal file
@ -0,0 +1,48 @@
|
|||||||
|
# parameters
|
||||||
|
nc: 80 # number of classes
|
||||||
|
depth_multiple: 1.0 # model depth multiple
|
||||||
|
width_multiple: 1.0 # layer channel multiple
|
||||||
|
|
||||||
|
# anchors
|
||||||
|
anchors:
|
||||||
|
- [10,13, 16,30, 33,23] # P3/8
|
||||||
|
- [30,61, 62,45, 59,119] # P4/16
|
||||||
|
- [116,90, 156,198, 373,326] # P5/32
|
||||||
|
|
||||||
|
# YOLOv5 backbone
|
||||||
|
backbone:
|
||||||
|
# [from, number, module, args]
|
||||||
|
[[-1, 1, Focus, [64, 3]], # 0-P1/2
|
||||||
|
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
||||||
|
[-1, 3, BottleneckCSP, [128]],
|
||||||
|
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
||||||
|
[-1, 9, BottleneckCSP, [256]],
|
||||||
|
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
||||||
|
[-1, 9, BottleneckCSP, [512]],
|
||||||
|
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
|
||||||
|
[-1, 1, SPP, [1024, [5, 9, 13]]],
|
||||||
|
[-1, 3, BottleneckCSP, [1024, False]], # 9
|
||||||
|
]
|
||||||
|
|
||||||
|
# YOLOv5 head
|
||||||
|
head:
|
||||||
|
[[-1, 1, Conv, [512, 1, 1]],
|
||||||
|
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
||||||
|
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
||||||
|
[-1, 3, BottleneckCSP, [512, False]], # 13
|
||||||
|
|
||||||
|
[-1, 1, Conv, [256, 1, 1]],
|
||||||
|
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
||||||
|
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
||||||
|
[-1, 3, BottleneckCSP, [256, False]], # 17 (P3/8-small)
|
||||||
|
|
||||||
|
[-1, 1, Conv, [256, 3, 2]],
|
||||||
|
[[-1, 14], 1, Concat, [1]], # cat head P4
|
||||||
|
[-1, 3, BottleneckCSP, [512, False]], # 20 (P4/16-medium)
|
||||||
|
|
||||||
|
[-1, 1, Conv, [512, 3, 2]],
|
||||||
|
[[-1, 10], 1, Concat, [1]], # cat head P5
|
||||||
|
[-1, 3, BottleneckCSP, [1024, False]], # 23 (P5/32-large)
|
||||||
|
|
||||||
|
[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
|
||||||
|
]
|
48
yolov5/models/yolov5m.yaml
Normal file
48
yolov5/models/yolov5m.yaml
Normal file
@ -0,0 +1,48 @@
|
|||||||
|
# parameters
|
||||||
|
nc: 80 # number of classes
|
||||||
|
depth_multiple: 0.67 # model depth multiple
|
||||||
|
width_multiple: 0.75 # layer channel multiple
|
||||||
|
|
||||||
|
# anchors
|
||||||
|
anchors:
|
||||||
|
- [10,13, 16,30, 33,23] # P3/8
|
||||||
|
- [30,61, 62,45, 59,119] # P4/16
|
||||||
|
- [116,90, 156,198, 373,326] # P5/32
|
||||||
|
|
||||||
|
# YOLOv5 backbone
|
||||||
|
backbone:
|
||||||
|
# [from, number, module, args]
|
||||||
|
[[-1, 1, Focus, [64, 3]], # 0-P1/2
|
||||||
|
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
||||||
|
[-1, 3, BottleneckCSP, [128]],
|
||||||
|
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
||||||
|
[-1, 9, BottleneckCSP, [256]],
|
||||||
|
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
||||||
|
[-1, 9, BottleneckCSP, [512]],
|
||||||
|
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
|
||||||
|
[-1, 1, SPP, [1024, [5, 9, 13]]],
|
||||||
|
[-1, 3, BottleneckCSP, [1024, False]], # 9
|
||||||
|
]
|
||||||
|
|
||||||
|
# YOLOv5 head
|
||||||
|
head:
|
||||||
|
[[-1, 1, Conv, [512, 1, 1]],
|
||||||
|
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
||||||
|
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
||||||
|
[-1, 3, BottleneckCSP, [512, False]], # 13
|
||||||
|
|
||||||
|
[-1, 1, Conv, [256, 1, 1]],
|
||||||
|
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
||||||
|
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
||||||
|
[-1, 3, BottleneckCSP, [256, False]], # 17 (P3/8-small)
|
||||||
|
|
||||||
|
[-1, 1, Conv, [256, 3, 2]],
|
||||||
|
[[-1, 14], 1, Concat, [1]], # cat head P4
|
||||||
|
[-1, 3, BottleneckCSP, [512, False]], # 20 (P4/16-medium)
|
||||||
|
|
||||||
|
[-1, 1, Conv, [512, 3, 2]],
|
||||||
|
[[-1, 10], 1, Concat, [1]], # cat head P5
|
||||||
|
[-1, 3, BottleneckCSP, [1024, False]], # 23 (P5/32-large)
|
||||||
|
|
||||||
|
[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
|
||||||
|
]
|
48
yolov5/models/yolov5s.yaml
Normal file
48
yolov5/models/yolov5s.yaml
Normal file
@ -0,0 +1,48 @@
|
|||||||
|
# parameters
|
||||||
|
nc: 80 # number of classes
|
||||||
|
depth_multiple: 0.33 # model depth multiple
|
||||||
|
width_multiple: 0.50 # layer channel multiple
|
||||||
|
|
||||||
|
# anchors
|
||||||
|
anchors:
|
||||||
|
- [10,13, 16,30, 33,23] # P3/8
|
||||||
|
- [30,61, 62,45, 59,119] # P4/16
|
||||||
|
- [116,90, 156,198, 373,326] # P5/32
|
||||||
|
|
||||||
|
# YOLOv5 backbone
|
||||||
|
backbone:
|
||||||
|
# [from, number, module, args]
|
||||||
|
[[-1, 1, Focus, [64, 3]], # 0-P1/2
|
||||||
|
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
||||||
|
[-1, 3, BottleneckCSP, [128]],
|
||||||
|
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
||||||
|
[-1, 9, BottleneckCSP, [256]],
|
||||||
|
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
||||||
|
[-1, 9, BottleneckCSP, [512]],
|
||||||
|
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
|
||||||
|
[-1, 1, SPP, [1024, [5, 9, 13]]],
|
||||||
|
[-1, 3, BottleneckCSP, [1024, False]], # 9
|
||||||
|
]
|
||||||
|
|
||||||
|
# YOLOv5 head
|
||||||
|
head:
|
||||||
|
[[-1, 1, Conv, [512, 1, 1]],
|
||||||
|
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
||||||
|
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
||||||
|
[-1, 3, BottleneckCSP, [512, False]], # 13
|
||||||
|
|
||||||
|
[-1, 1, Conv, [256, 1, 1]],
|
||||||
|
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
||||||
|
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
||||||
|
[-1, 3, BottleneckCSP, [256, False]], # 17 (P3/8-small)
|
||||||
|
|
||||||
|
[-1, 1, Conv, [256, 3, 2]],
|
||||||
|
[[-1, 14], 1, Concat, [1]], # cat head P4
|
||||||
|
[-1, 3, BottleneckCSP, [512, False]], # 20 (P4/16-medium)
|
||||||
|
|
||||||
|
[-1, 1, Conv, [512, 3, 2]],
|
||||||
|
[[-1, 10], 1, Concat, [1]], # cat head P5
|
||||||
|
[-1, 3, BottleneckCSP, [1024, False]], # 23 (P5/32-large)
|
||||||
|
|
||||||
|
[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
|
||||||
|
]
|
48
yolov5/models/yolov5x.yaml
Normal file
48
yolov5/models/yolov5x.yaml
Normal file
@ -0,0 +1,48 @@
|
|||||||
|
# parameters
|
||||||
|
nc: 80 # number of classes
|
||||||
|
depth_multiple: 1.33 # model depth multiple
|
||||||
|
width_multiple: 1.25 # layer channel multiple
|
||||||
|
|
||||||
|
# anchors
|
||||||
|
anchors:
|
||||||
|
- [10,13, 16,30, 33,23] # P3/8
|
||||||
|
- [30,61, 62,45, 59,119] # P4/16
|
||||||
|
- [116,90, 156,198, 373,326] # P5/32
|
||||||
|
|
||||||
|
# YOLOv5 backbone
|
||||||
|
backbone:
|
||||||
|
# [from, number, module, args]
|
||||||
|
[[-1, 1, Focus, [64, 3]], # 0-P1/2
|
||||||
|
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
||||||
|
[-1, 3, BottleneckCSP, [128]],
|
||||||
|
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
||||||
|
[-1, 9, BottleneckCSP, [256]],
|
||||||
|
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
||||||
|
[-1, 9, BottleneckCSP, [512]],
|
||||||
|
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
|
||||||
|
[-1, 1, SPP, [1024, [5, 9, 13]]],
|
||||||
|
[-1, 3, BottleneckCSP, [1024, False]], # 9
|
||||||
|
]
|
||||||
|
|
||||||
|
# YOLOv5 head
|
||||||
|
head:
|
||||||
|
[[-1, 1, Conv, [512, 1, 1]],
|
||||||
|
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
||||||
|
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
||||||
|
[-1, 3, BottleneckCSP, [512, False]], # 13
|
||||||
|
|
||||||
|
[-1, 1, Conv, [256, 1, 1]],
|
||||||
|
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
||||||
|
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
||||||
|
[-1, 3, BottleneckCSP, [256, False]], # 17 (P3/8-small)
|
||||||
|
|
||||||
|
[-1, 1, Conv, [256, 3, 2]],
|
||||||
|
[[-1, 14], 1, Concat, [1]], # cat head P4
|
||||||
|
[-1, 3, BottleneckCSP, [512, False]], # 20 (P4/16-medium)
|
||||||
|
|
||||||
|
[-1, 1, Conv, [512, 3, 2]],
|
||||||
|
[[-1, 10], 1, Concat, [1]], # cat head P5
|
||||||
|
[-1, 3, BottleneckCSP, [1024, False]], # 23 (P5/32-large)
|
||||||
|
|
||||||
|
[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
|
||||||
|
]
|
227
yolov5/player.py
Normal file
227
yolov5/player.py
Normal file
@ -0,0 +1,227 @@
|
|||||||
|
import numpy as np
|
||||||
|
import cv2
|
||||||
|
import torch
|
||||||
|
import colorsys
|
||||||
|
from sklearn.cluster import KMeans
|
||||||
|
from collections import Counter
|
||||||
|
|
||||||
|
class Player:
|
||||||
|
|
||||||
|
def __init__(self,id,color=None,team=None,x=None,y=None):
|
||||||
|
self.id = id
|
||||||
|
self.x = x
|
||||||
|
self.y = y
|
||||||
|
self.team = team
|
||||||
|
self.color = color
|
||||||
|
|
||||||
|
def updatePosition(self, x, y):
|
||||||
|
self.x = x
|
||||||
|
self.y = y
|
||||||
|
|
||||||
|
def assignTeam(self, players):
|
||||||
|
if self.team is None:
|
||||||
|
temp_list = []
|
||||||
|
for key in players:
|
||||||
|
temp_list.append(players[key].color)
|
||||||
|
color_matrix = np.vstack((temp_list))
|
||||||
|
clt = KMeans(n_clusters=3)
|
||||||
|
clt.fit(color_matrix)
|
||||||
|
n_pixels = len(clt.labels_)
|
||||||
|
counter = Counter(clt.labels_)
|
||||||
|
perc = {}
|
||||||
|
for i in counter:
|
||||||
|
perc[i] = np.round(counter[i]/n_pixels, 2)
|
||||||
|
perc = dict(sorted(perc.items()))
|
||||||
|
|
||||||
|
main_colors = clt.cluster_centers_
|
||||||
|
|
||||||
|
max_value = max(perc, key=perc.get)
|
||||||
|
med_temp = list(sorted(perc.values()))[-2]
|
||||||
|
med_value = list(perc.keys())[list(perc.values()).index(med_temp)]
|
||||||
|
min_value = min(perc, key=perc.get)
|
||||||
|
|
||||||
|
# hsv_player = cv2.cvtColor(np.uint8([[self.color]]), cv2.COLOR_BGR2HSV)
|
||||||
|
|
||||||
|
# bgr_max = np.uint8([[main_colors[max_value]]])
|
||||||
|
# hsv_max = cv2.cvtColor(bgr_max, cv2.COLOR_BGR2HSV)
|
||||||
|
|
||||||
|
# bgr_med = np.uint8([[main_colors[med_value]]])
|
||||||
|
# hsv_med = cv2.cvtColor(bgr_med, cv2.COLOR_BGR2HSV)
|
||||||
|
|
||||||
|
# bgr_min = np.uint8([[main_colors[min_value]]])
|
||||||
|
# hsv_min = cv2.cvtColor(bgr_min, cv2.COLOR_BGR2HSV)
|
||||||
|
|
||||||
|
# adjust_array = np.array([10, 10, 40])
|
||||||
|
|
||||||
|
# lower_team1 = np.subtract(hsv_max, adjust_array)
|
||||||
|
# upper_team1 = np.add(hsv_max, adjust_array)
|
||||||
|
|
||||||
|
# lower_team2 = np.subtract(hsv_med, adjust_array)
|
||||||
|
# upper_team2 = np.add(hsv_med, adjust_array)
|
||||||
|
|
||||||
|
# lower_team3 = np.subtract(hsv_min, adjust_array)
|
||||||
|
# upper_team3 = np.add(hsv_min, adjust_array)
|
||||||
|
|
||||||
|
# mask_team1 = cv2.inRange(hsv_player, lower_team1, upper_team1)
|
||||||
|
# mask_team2 = cv2.inRange(hsv_player, lower_team2, upper_team2)
|
||||||
|
# mask_team3 = cv2.inRange(hsv_player, lower_team3, upper_team3)
|
||||||
|
|
||||||
|
# nonZero1 = cv2.countNonZero(mask_team1)
|
||||||
|
# nonZero2 = cv2.countNonZero(mask_team2)
|
||||||
|
# nonZero3 = cv2.countNonZero(mask_team3)
|
||||||
|
|
||||||
|
# maxNonZero = max(nonZero1, nonZero2, nonZero3)
|
||||||
|
|
||||||
|
# if maxNonZero == nonZero1:
|
||||||
|
# self.team = 1
|
||||||
|
# self.color = main_colors[max_value]
|
||||||
|
# elif maxNonZero == nonZero2:
|
||||||
|
# self.team = 2
|
||||||
|
# self.color = main_colors[med_value]
|
||||||
|
# else:
|
||||||
|
# self.team = 3
|
||||||
|
# self.color = main_colors[min_value]
|
||||||
|
|
||||||
|
|
||||||
|
distances = np.sqrt(np.sum((main_colors-self.color)**2,axis=1))
|
||||||
|
|
||||||
|
index_of_smallest = np.where(distances==np.amin(distances))
|
||||||
|
smallest_distance = main_colors[index_of_smallest]
|
||||||
|
if np.all(smallest_distance == main_colors[max_value]):
|
||||||
|
self.color = smallest_distance.flatten()
|
||||||
|
self.team = "Team_1"
|
||||||
|
# print(self.color, self.team)
|
||||||
|
elif np.all(smallest_distance == main_colors[med_value]):
|
||||||
|
self.color = smallest_distance.flatten()
|
||||||
|
self.team = "Team_2"
|
||||||
|
# print(self.color, self.team)
|
||||||
|
else:
|
||||||
|
self.color = self.color
|
||||||
|
self.team = "Other"
|
||||||
|
# print(self.color, self.team)
|
||||||
|
|
||||||
|
# print(smallest_distance)
|
||||||
|
# print (main_colors[max_value], main_colors[med_value], main_colors[min_value])
|
||||||
|
|
||||||
|
def k_means(img):
|
||||||
|
clt = KMeans(n_clusters=4)
|
||||||
|
clt = clt.fit(img.reshape(-1, 3))
|
||||||
|
n_pixels = len(clt.labels_)
|
||||||
|
counter = Counter(clt.labels_)
|
||||||
|
perc = {}
|
||||||
|
for i in counter:
|
||||||
|
perc[i] = np.round(counter[i]/n_pixels, 2)
|
||||||
|
perc = dict(sorted(perc.items()))
|
||||||
|
|
||||||
|
return perc, clt.cluster_centers_
|
||||||
|
|
||||||
|
|
||||||
|
def detectPlayerColor(img,x1,x2,y1,y2):
|
||||||
|
crop = img[y1:y2, x1:x2]
|
||||||
|
height, width, channels = crop.shape
|
||||||
|
qrt = crop[int(height/4):int(height/2), int(width/5):int(width/1.25)]
|
||||||
|
|
||||||
|
perc, colors = k_means(qrt)
|
||||||
|
max_value = max(perc, key=perc.get)
|
||||||
|
return colors[max_value]
|
||||||
|
|
||||||
|
def check_color_manual(img,x1,x2,y1,y2):
|
||||||
|
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
|
||||||
|
crop = hsv[y1:y2, x1:x2]
|
||||||
|
|
||||||
|
height, width, channels = crop.shape
|
||||||
|
qrt = crop[int(height/4):int(height/2), int(width/5):int(width/1.25)]
|
||||||
|
|
||||||
|
# rgb
|
||||||
|
team1 = np.array([37,69,234])
|
||||||
|
team2 = np.array([255,217,215])
|
||||||
|
team3 = np.array([0,0,0])
|
||||||
|
|
||||||
|
# hsv
|
||||||
|
lower_team1 = np.array([-5, 225, 215])
|
||||||
|
upper_team1 = np.array([15, 245, 295])
|
||||||
|
|
||||||
|
lower_team2 = np.array([108, 33, 215])
|
||||||
|
upper_team2 = np.array([128, 53, 295])
|
||||||
|
|
||||||
|
lower_team3 = np.array([144, 25, 11])
|
||||||
|
upper_team3 = np.array([164, 45, 91])
|
||||||
|
|
||||||
|
mask_team1 = cv2.inRange(qrt, lower_team1, upper_team1)
|
||||||
|
mask_team2 = cv2.inRange(qrt, lower_team2, upper_team2)
|
||||||
|
mask_team3 = cv2.inRange(qrt, lower_team3, upper_team3)
|
||||||
|
|
||||||
|
# out1 = cv2.bitwise_and(crop, crop, mask=mask_team1)
|
||||||
|
# out2 = cv2.bitwise_and(crop, crop, mask=mask_team2)
|
||||||
|
|
||||||
|
nonZero1 = cv2.countNonZero(mask_team1)
|
||||||
|
nonZero2 = cv2.countNonZero(mask_team2)
|
||||||
|
nonZero3 = cv2.countNonZero(mask_team3)
|
||||||
|
|
||||||
|
maxNonZero = max(nonZero1, nonZero2, nonZero3)
|
||||||
|
|
||||||
|
if maxNonZero == nonZero1:
|
||||||
|
team = 1
|
||||||
|
color = team1
|
||||||
|
elif maxNonZero == nonZero2:
|
||||||
|
team = 2
|
||||||
|
color = team2
|
||||||
|
else:
|
||||||
|
team = 3
|
||||||
|
color = team3
|
||||||
|
|
||||||
|
return (team, color)
|
||||||
|
|
||||||
|
def check_color_manual2(clicks,img,x1,x2,y1,y2):
|
||||||
|
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
|
||||||
|
crop = hsv[y1:y2, x1:x2]
|
||||||
|
|
||||||
|
height, width, channels = crop.shape
|
||||||
|
qrt = crop[int(height/4):int(height/2), int(width/5):int(width/1.25)]
|
||||||
|
|
||||||
|
team1 = np.array(clicks[0])
|
||||||
|
team2 = np.array(clicks[1])
|
||||||
|
team3 = np.array(clicks[2])
|
||||||
|
|
||||||
|
bgr_A = np.uint8([[clicks[0]]])
|
||||||
|
hsv_A = cv2.cvtColor(bgr_A, cv2.COLOR_BGR2HSV)
|
||||||
|
|
||||||
|
bgr_B = np.uint8([[clicks[1]]])
|
||||||
|
hsv_B = cv2.cvtColor(bgr_B, cv2.COLOR_BGR2HSV)
|
||||||
|
|
||||||
|
bgr_C = np.uint8([[clicks[2]]])
|
||||||
|
hsv_C = cv2.cvtColor(bgr_C, cv2.COLOR_BGR2HSV)
|
||||||
|
|
||||||
|
adjust_array = np.array([10, 10, 40])
|
||||||
|
|
||||||
|
lower_team1 = np.subtract(hsv_A, adjust_array)
|
||||||
|
upper_team1 = np.add(hsv_A, adjust_array)
|
||||||
|
|
||||||
|
lower_team2 = np.subtract(hsv_B, adjust_array)
|
||||||
|
upper_team2 = np.add(hsv_B, adjust_array)
|
||||||
|
|
||||||
|
lower_team3 = np.subtract(hsv_C, adjust_array)
|
||||||
|
upper_team3 = np.add(hsv_C, adjust_array)
|
||||||
|
|
||||||
|
mask_team1 = cv2.inRange(qrt, lower_team1, upper_team1)
|
||||||
|
mask_team2 = cv2.inRange(qrt, lower_team2, upper_team2)
|
||||||
|
mask_team3 = cv2.inRange(qrt, lower_team3, upper_team3)
|
||||||
|
|
||||||
|
nonZero1 = cv2.countNonZero(mask_team1)
|
||||||
|
nonZero2 = cv2.countNonZero(mask_team2)
|
||||||
|
nonZero3 = cv2.countNonZero(mask_team3)
|
||||||
|
|
||||||
|
maxNonZero = max(nonZero1, nonZero2, nonZero3)
|
||||||
|
|
||||||
|
if maxNonZero == nonZero1:
|
||||||
|
team = 1
|
||||||
|
color = team1
|
||||||
|
elif maxNonZero == nonZero2:
|
||||||
|
team = 2
|
||||||
|
color = team2
|
||||||
|
else:
|
||||||
|
team = 3
|
||||||
|
color = team3
|
||||||
|
# print (color)
|
||||||
|
return (team, color)
|
||||||
|
|
30
yolov5/requirements.txt
Normal file
30
yolov5/requirements.txt
Normal file
@ -0,0 +1,30 @@
|
|||||||
|
# pip install -r requirements.txt
|
||||||
|
|
||||||
|
# base ----------------------------------------
|
||||||
|
Cython
|
||||||
|
matplotlib>=3.2.2
|
||||||
|
numpy>=1.18.5
|
||||||
|
opencv-python>=4.1.2
|
||||||
|
Pillow
|
||||||
|
PyYAML>=5.3
|
||||||
|
scipy>=1.4.1
|
||||||
|
tensorboard>=2.2
|
||||||
|
torch>=1.7.0
|
||||||
|
torchvision>=0.8.1
|
||||||
|
tqdm>=4.41.0
|
||||||
|
|
||||||
|
# logging -------------------------------------
|
||||||
|
# wandb
|
||||||
|
|
||||||
|
# plotting ------------------------------------
|
||||||
|
seaborn>=0.11.0
|
||||||
|
pandas
|
||||||
|
|
||||||
|
# export --------------------------------------
|
||||||
|
# coremltools==4.0
|
||||||
|
# onnx>=1.8.0
|
||||||
|
# scikit-learn==0.19.2 # for coreml quantization
|
||||||
|
|
||||||
|
# extras --------------------------------------
|
||||||
|
thop # FLOPS computation
|
||||||
|
pycocotools>=2.0 # COCO mAP
|
334
yolov5/test.py
Normal file
334
yolov5/test.py
Normal file
@ -0,0 +1,334 @@
|
|||||||
|
import argparse
|
||||||
|
import json
|
||||||
|
import os
|
||||||
|
from pathlib import Path
|
||||||
|
from threading import Thread
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
import torch
|
||||||
|
import yaml
|
||||||
|
from tqdm import tqdm
|
||||||
|
|
||||||
|
from models.experimental import attempt_load
|
||||||
|
from utils.datasets import create_dataloader
|
||||||
|
from utils.general import coco80_to_coco91_class, check_dataset, check_file, check_img_size, box_iou, \
|
||||||
|
non_max_suppression, scale_coords, xyxy2xywh, xywh2xyxy, set_logging, increment_path
|
||||||
|
from utils.loss import compute_loss
|
||||||
|
from utils.metrics import ap_per_class, ConfusionMatrix
|
||||||
|
from utils.plots import plot_images, output_to_target, plot_study_txt
|
||||||
|
from utils.torch_utils import select_device, time_synchronized
|
||||||
|
|
||||||
|
|
||||||
|
def test(data,
|
||||||
|
weights=None,
|
||||||
|
batch_size=32,
|
||||||
|
imgsz=640,
|
||||||
|
conf_thres=0.001,
|
||||||
|
iou_thres=0.6, # for NMS
|
||||||
|
save_json=False,
|
||||||
|
single_cls=False,
|
||||||
|
augment=False,
|
||||||
|
verbose=False,
|
||||||
|
model=None,
|
||||||
|
dataloader=None,
|
||||||
|
save_dir=Path(''), # for saving images
|
||||||
|
save_txt=False, # for auto-labelling
|
||||||
|
save_hybrid=False, # for hybrid auto-labelling
|
||||||
|
save_conf=False, # save auto-label confidences
|
||||||
|
plots=True,
|
||||||
|
log_imgs=0): # number of logged images
|
||||||
|
|
||||||
|
# Initialize/load model and set device
|
||||||
|
training = model is not None
|
||||||
|
if training: # called by train.py
|
||||||
|
device = next(model.parameters()).device # get model device
|
||||||
|
|
||||||
|
else: # called directly
|
||||||
|
set_logging()
|
||||||
|
device = select_device(opt.device, batch_size=batch_size)
|
||||||
|
|
||||||
|
# Directories
|
||||||
|
save_dir = Path(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok)) # increment run
|
||||||
|
(save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
|
||||||
|
|
||||||
|
# Load model
|
||||||
|
model = attempt_load(weights, map_location=device) # load FP32 model
|
||||||
|
imgsz = check_img_size(imgsz, s=model.stride.max()) # check img_size
|
||||||
|
|
||||||
|
# Multi-GPU disabled, incompatible with .half() https://github.com/ultralytics/yolov5/issues/99
|
||||||
|
# if device.type != 'cpu' and torch.cuda.device_count() > 1:
|
||||||
|
# model = nn.DataParallel(model)
|
||||||
|
|
||||||
|
# Half
|
||||||
|
half = device.type != 'cpu' # half precision only supported on CUDA
|
||||||
|
if half:
|
||||||
|
model.half()
|
||||||
|
|
||||||
|
# Configure
|
||||||
|
model.eval()
|
||||||
|
is_coco = data.endswith('coco.yaml') # is COCO dataset
|
||||||
|
with open(data) as f:
|
||||||
|
data = yaml.load(f, Loader=yaml.FullLoader) # model dict
|
||||||
|
check_dataset(data) # check
|
||||||
|
nc = 1 if single_cls else int(data['nc']) # number of classes
|
||||||
|
iouv = torch.linspace(0.5, 0.95, 10).to(device) # iou vector for mAP@0.5:0.95
|
||||||
|
niou = iouv.numel()
|
||||||
|
|
||||||
|
# Logging
|
||||||
|
log_imgs, wandb = min(log_imgs, 100), None # ceil
|
||||||
|
try:
|
||||||
|
import wandb # Weights & Biases
|
||||||
|
except ImportError:
|
||||||
|
log_imgs = 0
|
||||||
|
|
||||||
|
# Dataloader
|
||||||
|
if not training:
|
||||||
|
img = torch.zeros((1, 3, imgsz, imgsz), device=device) # init img
|
||||||
|
_ = model(img.half() if half else img) if device.type != 'cpu' else None # run once
|
||||||
|
path = data['test'] if opt.task == 'test' else data['val'] # path to val/test images
|
||||||
|
dataloader = create_dataloader(path, imgsz, batch_size, model.stride.max(), opt, pad=0.5, rect=True)[0]
|
||||||
|
|
||||||
|
seen = 0
|
||||||
|
confusion_matrix = ConfusionMatrix(nc=nc)
|
||||||
|
names = {k: v for k, v in enumerate(model.names if hasattr(model, 'names') else model.module.names)}
|
||||||
|
coco91class = coco80_to_coco91_class()
|
||||||
|
s = ('%20s' + '%12s' * 6) % ('Class', 'Images', 'Targets', 'P', 'R', 'mAP@.5', 'mAP@.5:.95')
|
||||||
|
p, r, f1, mp, mr, map50, map, t0, t1 = 0., 0., 0., 0., 0., 0., 0., 0., 0.
|
||||||
|
loss = torch.zeros(3, device=device)
|
||||||
|
jdict, stats, ap, ap_class, wandb_images = [], [], [], [], []
|
||||||
|
for batch_i, (img, targets, paths, shapes) in enumerate(tqdm(dataloader, desc=s)):
|
||||||
|
img = img.to(device, non_blocking=True)
|
||||||
|
img = img.half() if half else img.float() # uint8 to fp16/32
|
||||||
|
img /= 255.0 # 0 - 255 to 0.0 - 1.0
|
||||||
|
targets = targets.to(device)
|
||||||
|
nb, _, height, width = img.shape # batch size, channels, height, width
|
||||||
|
|
||||||
|
with torch.no_grad():
|
||||||
|
# Run model
|
||||||
|
t = time_synchronized()
|
||||||
|
inf_out, train_out = model(img, augment=augment) # inference and training outputs
|
||||||
|
t0 += time_synchronized() - t
|
||||||
|
|
||||||
|
# Compute loss
|
||||||
|
if training:
|
||||||
|
loss += compute_loss([x.float() for x in train_out], targets, model)[1][:3] # box, obj, cls
|
||||||
|
|
||||||
|
# Run NMS
|
||||||
|
targets[:, 2:] *= torch.Tensor([width, height, width, height]).to(device) # to pixels
|
||||||
|
lb = [targets[targets[:, 0] == i, 1:] for i in range(nb)] if save_hybrid else [] # for autolabelling
|
||||||
|
t = time_synchronized()
|
||||||
|
output = non_max_suppression(inf_out, conf_thres=conf_thres, iou_thres=iou_thres, labels=lb)
|
||||||
|
t1 += time_synchronized() - t
|
||||||
|
|
||||||
|
# Statistics per image
|
||||||
|
for si, pred in enumerate(output):
|
||||||
|
labels = targets[targets[:, 0] == si, 1:]
|
||||||
|
nl = len(labels)
|
||||||
|
tcls = labels[:, 0].tolist() if nl else [] # target class
|
||||||
|
path = Path(paths[si])
|
||||||
|
seen += 1
|
||||||
|
|
||||||
|
if len(pred) == 0:
|
||||||
|
if nl:
|
||||||
|
stats.append((torch.zeros(0, niou, dtype=torch.bool), torch.Tensor(), torch.Tensor(), tcls))
|
||||||
|
continue
|
||||||
|
|
||||||
|
# Predictions
|
||||||
|
predn = pred.clone()
|
||||||
|
scale_coords(img[si].shape[1:], predn[:, :4], shapes[si][0], shapes[si][1]) # native-space pred
|
||||||
|
|
||||||
|
# Append to text file
|
||||||
|
if save_txt:
|
||||||
|
gn = torch.tensor(shapes[si][0])[[1, 0, 1, 0]] # normalization gain whwh
|
||||||
|
for *xyxy, conf, cls in predn.tolist():
|
||||||
|
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
|
||||||
|
line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format
|
||||||
|
with open(save_dir / 'labels' / (path.stem + '.txt'), 'a') as f:
|
||||||
|
f.write(('%g ' * len(line)).rstrip() % line + '\n')
|
||||||
|
|
||||||
|
# W&B logging
|
||||||
|
if plots and len(wandb_images) < log_imgs:
|
||||||
|
box_data = [{"position": {"minX": xyxy[0], "minY": xyxy[1], "maxX": xyxy[2], "maxY": xyxy[3]},
|
||||||
|
"class_id": int(cls),
|
||||||
|
"box_caption": "%s %.3f" % (names[cls], conf),
|
||||||
|
"scores": {"class_score": conf},
|
||||||
|
"domain": "pixel"} for *xyxy, conf, cls in pred.tolist()]
|
||||||
|
boxes = {"predictions": {"box_data": box_data, "class_labels": names}} # inference-space
|
||||||
|
wandb_images.append(wandb.Image(img[si], boxes=boxes, caption=path.name))
|
||||||
|
|
||||||
|
# Append to pycocotools JSON dictionary
|
||||||
|
if save_json:
|
||||||
|
# [{"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}, ...
|
||||||
|
image_id = int(path.stem) if path.stem.isnumeric() else path.stem
|
||||||
|
box = xyxy2xywh(predn[:, :4]) # xywh
|
||||||
|
box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner
|
||||||
|
for p, b in zip(pred.tolist(), box.tolist()):
|
||||||
|
jdict.append({'image_id': image_id,
|
||||||
|
'category_id': coco91class[int(p[5])] if is_coco else int(p[5]),
|
||||||
|
'bbox': [round(x, 3) for x in b],
|
||||||
|
'score': round(p[4], 5)})
|
||||||
|
|
||||||
|
# Assign all predictions as incorrect
|
||||||
|
correct = torch.zeros(pred.shape[0], niou, dtype=torch.bool, device=device)
|
||||||
|
if nl:
|
||||||
|
detected = [] # target indices
|
||||||
|
tcls_tensor = labels[:, 0]
|
||||||
|
|
||||||
|
# target boxes
|
||||||
|
tbox = xywh2xyxy(labels[:, 1:5])
|
||||||
|
scale_coords(img[si].shape[1:], tbox, shapes[si][0], shapes[si][1]) # native-space labels
|
||||||
|
if plots:
|
||||||
|
confusion_matrix.process_batch(pred, torch.cat((labels[:, 0:1], tbox), 1))
|
||||||
|
|
||||||
|
# Per target class
|
||||||
|
for cls in torch.unique(tcls_tensor):
|
||||||
|
ti = (cls == tcls_tensor).nonzero(as_tuple=False).view(-1) # prediction indices
|
||||||
|
pi = (cls == pred[:, 5]).nonzero(as_tuple=False).view(-1) # target indices
|
||||||
|
|
||||||
|
# Search for detections
|
||||||
|
if pi.shape[0]:
|
||||||
|
# Prediction to target ious
|
||||||
|
ious, i = box_iou(predn[pi, :4], tbox[ti]).max(1) # best ious, indices
|
||||||
|
|
||||||
|
# Append detections
|
||||||
|
detected_set = set()
|
||||||
|
for j in (ious > iouv[0]).nonzero(as_tuple=False):
|
||||||
|
d = ti[i[j]] # detected target
|
||||||
|
if d.item() not in detected_set:
|
||||||
|
detected_set.add(d.item())
|
||||||
|
detected.append(d)
|
||||||
|
correct[pi[j]] = ious[j] > iouv # iou_thres is 1xn
|
||||||
|
if len(detected) == nl: # all targets already located in image
|
||||||
|
break
|
||||||
|
|
||||||
|
# Append statistics (correct, conf, pcls, tcls)
|
||||||
|
stats.append((correct.cpu(), pred[:, 4].cpu(), pred[:, 5].cpu(), tcls))
|
||||||
|
|
||||||
|
# Plot images
|
||||||
|
if plots and batch_i < 3:
|
||||||
|
f = save_dir / f'test_batch{batch_i}_labels.jpg' # labels
|
||||||
|
Thread(target=plot_images, args=(img, targets, paths, f, names), daemon=True).start()
|
||||||
|
f = save_dir / f'test_batch{batch_i}_pred.jpg' # predictions
|
||||||
|
Thread(target=plot_images, args=(img, output_to_target(output), paths, f, names), daemon=True).start()
|
||||||
|
|
||||||
|
# Compute statistics
|
||||||
|
stats = [np.concatenate(x, 0) for x in zip(*stats)] # to numpy
|
||||||
|
if len(stats) and stats[0].any():
|
||||||
|
p, r, ap, f1, ap_class = ap_per_class(*stats, plot=plots, save_dir=save_dir, names=names)
|
||||||
|
p, r, ap50, ap = p[:, 0], r[:, 0], ap[:, 0], ap.mean(1) # [P, R, AP@0.5, AP@0.5:0.95]
|
||||||
|
mp, mr, map50, map = p.mean(), r.mean(), ap50.mean(), ap.mean()
|
||||||
|
nt = np.bincount(stats[3].astype(np.int64), minlength=nc) # number of targets per class
|
||||||
|
else:
|
||||||
|
nt = torch.zeros(1)
|
||||||
|
|
||||||
|
# Print results
|
||||||
|
pf = '%20s' + '%12.3g' * 6 # print format
|
||||||
|
print(pf % ('all', seen, nt.sum(), mp, mr, map50, map))
|
||||||
|
|
||||||
|
# Print results per class
|
||||||
|
if verbose and nc > 1 and len(stats):
|
||||||
|
for i, c in enumerate(ap_class):
|
||||||
|
print(pf % (names[c], seen, nt[c], p[i], r[i], ap50[i], ap[i]))
|
||||||
|
|
||||||
|
# Print speeds
|
||||||
|
t = tuple(x / seen * 1E3 for x in (t0, t1, t0 + t1)) + (imgsz, imgsz, batch_size) # tuple
|
||||||
|
if not training:
|
||||||
|
print('Speed: %.1f/%.1f/%.1f ms inference/NMS/total per %gx%g image at batch-size %g' % t)
|
||||||
|
|
||||||
|
# Plots
|
||||||
|
if plots:
|
||||||
|
confusion_matrix.plot(save_dir=save_dir, names=list(names.values()))
|
||||||
|
if wandb and wandb.run:
|
||||||
|
wandb.log({"Images": wandb_images})
|
||||||
|
wandb.log({"Validation": [wandb.Image(str(f), caption=f.name) for f in sorted(save_dir.glob('test*.jpg'))]})
|
||||||
|
|
||||||
|
# Save JSON
|
||||||
|
if save_json and len(jdict):
|
||||||
|
w = Path(weights[0] if isinstance(weights, list) else weights).stem if weights is not None else '' # weights
|
||||||
|
anno_json = '../coco/annotations/instances_val2017.json' # annotations json
|
||||||
|
pred_json = str(save_dir / f"{w}_predictions.json") # predictions json
|
||||||
|
print('\nEvaluating pycocotools mAP... saving %s...' % pred_json)
|
||||||
|
with open(pred_json, 'w') as f:
|
||||||
|
json.dump(jdict, f)
|
||||||
|
|
||||||
|
try: # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
|
||||||
|
from pycocotools.coco import COCO
|
||||||
|
from pycocotools.cocoeval import COCOeval
|
||||||
|
|
||||||
|
anno = COCO(anno_json) # init annotations api
|
||||||
|
pred = anno.loadRes(pred_json) # init predictions api
|
||||||
|
eval = COCOeval(anno, pred, 'bbox')
|
||||||
|
if is_coco:
|
||||||
|
eval.params.imgIds = [int(Path(x).stem) for x in dataloader.dataset.img_files] # image IDs to evaluate
|
||||||
|
eval.evaluate()
|
||||||
|
eval.accumulate()
|
||||||
|
eval.summarize()
|
||||||
|
map, map50 = eval.stats[:2] # update results (mAP@0.5:0.95, mAP@0.5)
|
||||||
|
except Exception as e:
|
||||||
|
print(f'pycocotools unable to run: {e}')
|
||||||
|
|
||||||
|
# Return results
|
||||||
|
if not training:
|
||||||
|
s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
|
||||||
|
print(f"Results saved to {save_dir}{s}")
|
||||||
|
model.float() # for training
|
||||||
|
maps = np.zeros(nc) + map
|
||||||
|
for i, c in enumerate(ap_class):
|
||||||
|
maps[c] = ap[i]
|
||||||
|
return (mp, mr, map50, map, *(loss.cpu() / len(dataloader)).tolist()), maps, t
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
parser = argparse.ArgumentParser(prog='test.py')
|
||||||
|
parser.add_argument('--weights', nargs='+', type=str, default='yolov5s.pt', help='model.pt path(s)')
|
||||||
|
parser.add_argument('--data', type=str, default='data/coco128.yaml', help='*.data path')
|
||||||
|
parser.add_argument('--batch-size', type=int, default=32, help='size of each image batch')
|
||||||
|
parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')
|
||||||
|
parser.add_argument('--conf-thres', type=float, default=0.001, help='object confidence threshold')
|
||||||
|
parser.add_argument('--iou-thres', type=float, default=0.6, help='IOU threshold for NMS')
|
||||||
|
parser.add_argument('--task', default='val', help="'val', 'test', 'study'")
|
||||||
|
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
|
||||||
|
parser.add_argument('--single-cls', action='store_true', help='treat as single-class dataset')
|
||||||
|
parser.add_argument('--augment', action='store_true', help='augmented inference')
|
||||||
|
parser.add_argument('--verbose', action='store_true', help='report mAP by class')
|
||||||
|
parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
|
||||||
|
parser.add_argument('--save-hybrid', action='store_true', help='save label+prediction hybrid results to *.txt')
|
||||||
|
parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
|
||||||
|
parser.add_argument('--save-json', action='store_true', help='save a cocoapi-compatible JSON results file')
|
||||||
|
parser.add_argument('--project', default='runs/test', help='save to project/name')
|
||||||
|
parser.add_argument('--name', default='exp', help='save to project/name')
|
||||||
|
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
|
||||||
|
opt = parser.parse_args()
|
||||||
|
opt.save_json |= opt.data.endswith('coco.yaml')
|
||||||
|
opt.data = check_file(opt.data) # check file
|
||||||
|
print(opt)
|
||||||
|
|
||||||
|
if opt.task in ['val', 'test']: # run normally
|
||||||
|
test(opt.data,
|
||||||
|
opt.weights,
|
||||||
|
opt.batch_size,
|
||||||
|
opt.img_size,
|
||||||
|
opt.conf_thres,
|
||||||
|
opt.iou_thres,
|
||||||
|
opt.save_json,
|
||||||
|
opt.single_cls,
|
||||||
|
opt.augment,
|
||||||
|
opt.verbose,
|
||||||
|
save_txt=opt.save_txt | opt.save_hybrid,
|
||||||
|
save_hybrid=opt.save_hybrid,
|
||||||
|
save_conf=opt.save_conf,
|
||||||
|
)
|
||||||
|
|
||||||
|
elif opt.task == 'study': # run over a range of settings and save/plot
|
||||||
|
for weights in ['yolov5s.pt', 'yolov5m.pt', 'yolov5l.pt', 'yolov5x.pt']:
|
||||||
|
f = 'study_%s_%s.txt' % (Path(opt.data).stem, Path(weights).stem) # filename to save to
|
||||||
|
x = list(range(320, 800, 64)) # x axis
|
||||||
|
y = [] # y axis
|
||||||
|
for i in x: # img-size
|
||||||
|
print('\nRunning %s point %s...' % (f, i))
|
||||||
|
r, _, t = test(opt.data, weights, opt.batch_size, i, opt.conf_thres, opt.iou_thres, opt.save_json,
|
||||||
|
plots=False)
|
||||||
|
y.append(r + t) # results and times
|
||||||
|
np.savetxt(f, y, fmt='%10.4g') # save
|
||||||
|
os.system('zip -r study.zip study_*.txt')
|
||||||
|
plot_study_txt(f, x) # plot
|
595
yolov5/train.py
Normal file
595
yolov5/train.py
Normal file
@ -0,0 +1,595 @@
|
|||||||
|
import argparse
|
||||||
|
import logging
|
||||||
|
import math
|
||||||
|
import os
|
||||||
|
import random
|
||||||
|
import time
|
||||||
|
from pathlib import Path
|
||||||
|
from threading import Thread
|
||||||
|
from warnings import warn
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
import torch.distributed as dist
|
||||||
|
import torch.nn as nn
|
||||||
|
import torch.nn.functional as F
|
||||||
|
import torch.optim as optim
|
||||||
|
import torch.optim.lr_scheduler as lr_scheduler
|
||||||
|
import torch.utils.data
|
||||||
|
import yaml
|
||||||
|
from torch.cuda import amp
|
||||||
|
from torch.nn.parallel import DistributedDataParallel as DDP
|
||||||
|
from torch.utils.tensorboard import SummaryWriter
|
||||||
|
from tqdm import tqdm
|
||||||
|
|
||||||
|
import test # import test.py to get mAP after each epoch
|
||||||
|
from models.experimental import attempt_load
|
||||||
|
from models.yolo import Model
|
||||||
|
from utils.autoanchor import check_anchors
|
||||||
|
from utils.datasets import create_dataloader
|
||||||
|
from utils.general import labels_to_class_weights, increment_path, labels_to_image_weights, init_seeds, \
|
||||||
|
fitness, strip_optimizer, get_latest_run, check_dataset, check_file, check_git_status, check_img_size, \
|
||||||
|
print_mutation, set_logging
|
||||||
|
from utils.google_utils import attempt_download
|
||||||
|
from utils.loss import compute_loss
|
||||||
|
from utils.plots import plot_images, plot_labels, plot_results, plot_evolution
|
||||||
|
from utils.torch_utils import ModelEMA, select_device, intersect_dicts, torch_distributed_zero_first
|
||||||
|
|
||||||
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
try:
|
||||||
|
import wandb
|
||||||
|
except ImportError:
|
||||||
|
wandb = None
|
||||||
|
logger.info("Install Weights & Biases for experiment logging via 'pip install wandb' (recommended)")
|
||||||
|
|
||||||
|
|
||||||
|
def train(hyp, opt, device, tb_writer=None, wandb=None):
|
||||||
|
logger.info(f'Hyperparameters {hyp}')
|
||||||
|
save_dir, epochs, batch_size, total_batch_size, weights, rank = \
|
||||||
|
Path(opt.save_dir), opt.epochs, opt.batch_size, opt.total_batch_size, opt.weights, opt.global_rank
|
||||||
|
|
||||||
|
# Directories
|
||||||
|
wdir = save_dir / 'weights'
|
||||||
|
wdir.mkdir(parents=True, exist_ok=True) # make dir
|
||||||
|
last = wdir / 'last.pt'
|
||||||
|
best = wdir / 'best.pt'
|
||||||
|
results_file = save_dir / 'results.txt'
|
||||||
|
|
||||||
|
# Save run settings
|
||||||
|
with open(save_dir / 'hyp.yaml', 'w') as f:
|
||||||
|
yaml.dump(hyp, f, sort_keys=False)
|
||||||
|
with open(save_dir / 'opt.yaml', 'w') as f:
|
||||||
|
yaml.dump(vars(opt), f, sort_keys=False)
|
||||||
|
|
||||||
|
# Configure
|
||||||
|
plots = not opt.evolve # create plots
|
||||||
|
cuda = device.type != 'cpu'
|
||||||
|
init_seeds(2 + rank)
|
||||||
|
with open(opt.data) as f:
|
||||||
|
data_dict = yaml.load(f, Loader=yaml.FullLoader) # data dict
|
||||||
|
with torch_distributed_zero_first(rank):
|
||||||
|
check_dataset(data_dict) # check
|
||||||
|
train_path = data_dict['train']
|
||||||
|
test_path = data_dict['val']
|
||||||
|
nc = 1 if opt.single_cls else int(data_dict['nc']) # number of classes
|
||||||
|
names = ['item'] if opt.single_cls and len(data_dict['names']) != 1 else data_dict['names'] # class names
|
||||||
|
assert len(names) == nc, '%g names found for nc=%g dataset in %s' % (len(names), nc, opt.data) # check
|
||||||
|
|
||||||
|
# Model
|
||||||
|
pretrained = weights.endswith('.pt')
|
||||||
|
if pretrained:
|
||||||
|
with torch_distributed_zero_first(rank):
|
||||||
|
attempt_download(weights) # download if not found locally
|
||||||
|
ckpt = torch.load(weights, map_location=device) # load checkpoint
|
||||||
|
if hyp.get('anchors'):
|
||||||
|
ckpt['model'].yaml['anchors'] = round(hyp['anchors']) # force autoanchor
|
||||||
|
model = Model(opt.cfg or ckpt['model'].yaml, ch=3, nc=nc).to(device) # create
|
||||||
|
exclude = ['anchor'] if opt.cfg or hyp.get('anchors') else [] # exclude keys
|
||||||
|
state_dict = ckpt['model'].float().state_dict() # to FP32
|
||||||
|
state_dict = intersect_dicts(state_dict, model.state_dict(), exclude=exclude) # intersect
|
||||||
|
model.load_state_dict(state_dict, strict=False) # load
|
||||||
|
logger.info('Transferred %g/%g items from %s' % (len(state_dict), len(model.state_dict()), weights)) # report
|
||||||
|
else:
|
||||||
|
model = Model(opt.cfg, ch=3, nc=nc).to(device) # create
|
||||||
|
|
||||||
|
# Freeze
|
||||||
|
freeze = [] # parameter names to freeze (full or partial)
|
||||||
|
for k, v in model.named_parameters():
|
||||||
|
v.requires_grad = True # train all layers
|
||||||
|
if any(x in k for x in freeze):
|
||||||
|
print('freezing %s' % k)
|
||||||
|
v.requires_grad = False
|
||||||
|
|
||||||
|
# Optimizer
|
||||||
|
nbs = 64 # nominal batch size
|
||||||
|
accumulate = max(round(nbs / total_batch_size), 1) # accumulate loss before optimizing
|
||||||
|
hyp['weight_decay'] *= total_batch_size * accumulate / nbs # scale weight_decay
|
||||||
|
|
||||||
|
pg0, pg1, pg2 = [], [], [] # optimizer parameter groups
|
||||||
|
for k, v in model.named_modules():
|
||||||
|
if hasattr(v, 'bias') and isinstance(v.bias, nn.Parameter):
|
||||||
|
pg2.append(v.bias) # biases
|
||||||
|
if isinstance(v, nn.BatchNorm2d):
|
||||||
|
pg0.append(v.weight) # no decay
|
||||||
|
elif hasattr(v, 'weight') and isinstance(v.weight, nn.Parameter):
|
||||||
|
pg1.append(v.weight) # apply decay
|
||||||
|
|
||||||
|
if opt.adam:
|
||||||
|
optimizer = optim.Adam(pg0, lr=hyp['lr0'], betas=(hyp['momentum'], 0.999)) # adjust beta1 to momentum
|
||||||
|
else:
|
||||||
|
optimizer = optim.SGD(pg0, lr=hyp['lr0'], momentum=hyp['momentum'], nesterov=True)
|
||||||
|
|
||||||
|
optimizer.add_param_group({'params': pg1, 'weight_decay': hyp['weight_decay']}) # add pg1 with weight_decay
|
||||||
|
optimizer.add_param_group({'params': pg2}) # add pg2 (biases)
|
||||||
|
logger.info('Optimizer groups: %g .bias, %g conv.weight, %g other' % (len(pg2), len(pg1), len(pg0)))
|
||||||
|
del pg0, pg1, pg2
|
||||||
|
|
||||||
|
# Scheduler https://arxiv.org/pdf/1812.01187.pdf
|
||||||
|
# https://pytorch.org/docs/stable/_modules/torch/optim/lr_scheduler.html#OneCycleLR
|
||||||
|
lf = lambda x: ((1 + math.cos(x * math.pi / epochs)) / 2) * (1 - hyp['lrf']) + hyp['lrf'] # cosine
|
||||||
|
scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
|
||||||
|
# plot_lr_scheduler(optimizer, scheduler, epochs)
|
||||||
|
|
||||||
|
# Logging
|
||||||
|
if wandb and wandb.run is None:
|
||||||
|
opt.hyp = hyp # add hyperparameters
|
||||||
|
wandb_run = wandb.init(config=opt, resume="allow",
|
||||||
|
project='YOLOv5' if opt.project == 'runs/train' else Path(opt.project).stem,
|
||||||
|
name=save_dir.stem,
|
||||||
|
id=ckpt.get('wandb_id') if 'ckpt' in locals() else None)
|
||||||
|
loggers = {'wandb': wandb} # loggers dict
|
||||||
|
|
||||||
|
# Resume
|
||||||
|
start_epoch, best_fitness = 0, 0.0
|
||||||
|
if pretrained:
|
||||||
|
# Optimizer
|
||||||
|
if ckpt['optimizer'] is not None:
|
||||||
|
optimizer.load_state_dict(ckpt['optimizer'])
|
||||||
|
best_fitness = ckpt['best_fitness']
|
||||||
|
|
||||||
|
# Results
|
||||||
|
if ckpt.get('training_results') is not None:
|
||||||
|
with open(results_file, 'w') as file:
|
||||||
|
file.write(ckpt['training_results']) # write results.txt
|
||||||
|
|
||||||
|
# Epochs
|
||||||
|
start_epoch = ckpt['epoch'] + 1
|
||||||
|
if opt.resume:
|
||||||
|
assert start_epoch > 0, '%s training to %g epochs is finished, nothing to resume.' % (weights, epochs)
|
||||||
|
if epochs < start_epoch:
|
||||||
|
logger.info('%s has been trained for %g epochs. Fine-tuning for %g additional epochs.' %
|
||||||
|
(weights, ckpt['epoch'], epochs))
|
||||||
|
epochs += ckpt['epoch'] # finetune additional epochs
|
||||||
|
|
||||||
|
del ckpt, state_dict
|
||||||
|
|
||||||
|
# Image sizes
|
||||||
|
gs = int(max(model.stride)) # grid size (max stride)
|
||||||
|
imgsz, imgsz_test = [check_img_size(x, gs) for x in opt.img_size] # verify imgsz are gs-multiples
|
||||||
|
|
||||||
|
# DP mode
|
||||||
|
if cuda and rank == -1 and torch.cuda.device_count() > 1:
|
||||||
|
model = torch.nn.DataParallel(model)
|
||||||
|
|
||||||
|
# SyncBatchNorm
|
||||||
|
if opt.sync_bn and cuda and rank != -1:
|
||||||
|
model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)
|
||||||
|
logger.info('Using SyncBatchNorm()')
|
||||||
|
|
||||||
|
# EMA
|
||||||
|
ema = ModelEMA(model) if rank in [-1, 0] else None
|
||||||
|
|
||||||
|
# DDP mode
|
||||||
|
if cuda and rank != -1:
|
||||||
|
model = DDP(model, device_ids=[opt.local_rank], output_device=opt.local_rank)
|
||||||
|
|
||||||
|
# Trainloader
|
||||||
|
dataloader, dataset = create_dataloader(train_path, imgsz, batch_size, gs, opt,
|
||||||
|
hyp=hyp, augment=True, cache=opt.cache_images, rect=opt.rect, rank=rank,
|
||||||
|
world_size=opt.world_size, workers=opt.workers,
|
||||||
|
image_weights=opt.image_weights)
|
||||||
|
mlc = np.concatenate(dataset.labels, 0)[:, 0].max() # max label class
|
||||||
|
nb = len(dataloader) # number of batches
|
||||||
|
assert mlc < nc, 'Label class %g exceeds nc=%g in %s. Possible class labels are 0-%g' % (mlc, nc, opt.data, nc - 1)
|
||||||
|
|
||||||
|
# Process 0
|
||||||
|
if rank in [-1, 0]:
|
||||||
|
ema.updates = start_epoch * nb // accumulate # set EMA updates
|
||||||
|
testloader = create_dataloader(test_path, imgsz_test, total_batch_size, gs, opt, # testloader
|
||||||
|
hyp=hyp, cache=opt.cache_images and not opt.notest, rect=True,
|
||||||
|
rank=-1, world_size=opt.world_size, workers=opt.workers, pad=0.5)[0]
|
||||||
|
|
||||||
|
if not opt.resume:
|
||||||
|
labels = np.concatenate(dataset.labels, 0)
|
||||||
|
c = torch.tensor(labels[:, 0]) # classes
|
||||||
|
# cf = torch.bincount(c.long(), minlength=nc) + 1. # frequency
|
||||||
|
# model._initialize_biases(cf.to(device))
|
||||||
|
if plots:
|
||||||
|
plot_labels(labels, save_dir, loggers)
|
||||||
|
if tb_writer:
|
||||||
|
tb_writer.add_histogram('classes', c, 0)
|
||||||
|
|
||||||
|
# Anchors
|
||||||
|
if not opt.noautoanchor:
|
||||||
|
check_anchors(dataset, model=model, thr=hyp['anchor_t'], imgsz=imgsz)
|
||||||
|
|
||||||
|
# Model parameters
|
||||||
|
hyp['cls'] *= nc / 80. # scale coco-tuned hyp['cls'] to current dataset
|
||||||
|
model.nc = nc # attach number of classes to model
|
||||||
|
model.hyp = hyp # attach hyperparameters to model
|
||||||
|
model.gr = 1.0 # iou loss ratio (obj_loss = 1.0 or iou)
|
||||||
|
model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) * nc # attach class weights
|
||||||
|
model.names = names
|
||||||
|
|
||||||
|
# Start training
|
||||||
|
t0 = time.time()
|
||||||
|
nw = max(round(hyp['warmup_epochs'] * nb), 1000) # number of warmup iterations, max(3 epochs, 1k iterations)
|
||||||
|
# nw = min(nw, (epochs - start_epoch) / 2 * nb) # limit warmup to < 1/2 of training
|
||||||
|
maps = np.zeros(nc) # mAP per class
|
||||||
|
results = (0, 0, 0, 0, 0, 0, 0) # P, R, mAP@.5, mAP@.5-.95, val_loss(box, obj, cls)
|
||||||
|
scheduler.last_epoch = start_epoch - 1 # do not move
|
||||||
|
scaler = amp.GradScaler(enabled=cuda)
|
||||||
|
logger.info('Image sizes %g train, %g test\n'
|
||||||
|
'Using %g dataloader workers\nLogging results to %s\n'
|
||||||
|
'Starting training for %g epochs...' % (imgsz, imgsz_test, dataloader.num_workers, save_dir, epochs))
|
||||||
|
for epoch in range(start_epoch, epochs): # epoch ------------------------------------------------------------------
|
||||||
|
model.train()
|
||||||
|
|
||||||
|
# Update image weights (optional)
|
||||||
|
if opt.image_weights:
|
||||||
|
# Generate indices
|
||||||
|
if rank in [-1, 0]:
|
||||||
|
cw = model.class_weights.cpu().numpy() * (1 - maps) ** 2 / nc # class weights
|
||||||
|
iw = labels_to_image_weights(dataset.labels, nc=nc, class_weights=cw) # image weights
|
||||||
|
dataset.indices = random.choices(range(dataset.n), weights=iw, k=dataset.n) # rand weighted idx
|
||||||
|
# Broadcast if DDP
|
||||||
|
if rank != -1:
|
||||||
|
indices = (torch.tensor(dataset.indices) if rank == 0 else torch.zeros(dataset.n)).int()
|
||||||
|
dist.broadcast(indices, 0)
|
||||||
|
if rank != 0:
|
||||||
|
dataset.indices = indices.cpu().numpy()
|
||||||
|
|
||||||
|
# Update mosaic border
|
||||||
|
# b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
|
||||||
|
# dataset.mosaic_border = [b - imgsz, -b] # height, width borders
|
||||||
|
|
||||||
|
mloss = torch.zeros(4, device=device) # mean losses
|
||||||
|
if rank != -1:
|
||||||
|
dataloader.sampler.set_epoch(epoch)
|
||||||
|
pbar = enumerate(dataloader)
|
||||||
|
logger.info(('\n' + '%10s' * 8) % ('Epoch', 'gpu_mem', 'box', 'obj', 'cls', 'total', 'targets', 'img_size'))
|
||||||
|
if rank in [-1, 0]:
|
||||||
|
pbar = tqdm(pbar, total=nb) # progress bar
|
||||||
|
optimizer.zero_grad()
|
||||||
|
for i, (imgs, targets, paths, _) in pbar: # batch -------------------------------------------------------------
|
||||||
|
ni = i + nb * epoch # number integrated batches (since train start)
|
||||||
|
imgs = imgs.to(device, non_blocking=True).float() / 255.0 # uint8 to float32, 0-255 to 0.0-1.0
|
||||||
|
|
||||||
|
# Warmup
|
||||||
|
if ni <= nw:
|
||||||
|
xi = [0, nw] # x interp
|
||||||
|
# model.gr = np.interp(ni, xi, [0.0, 1.0]) # iou loss ratio (obj_loss = 1.0 or iou)
|
||||||
|
accumulate = max(1, np.interp(ni, xi, [1, nbs / total_batch_size]).round())
|
||||||
|
for j, x in enumerate(optimizer.param_groups):
|
||||||
|
# bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
|
||||||
|
x['lr'] = np.interp(ni, xi, [hyp['warmup_bias_lr'] if j == 2 else 0.0, x['initial_lr'] * lf(epoch)])
|
||||||
|
if 'momentum' in x:
|
||||||
|
x['momentum'] = np.interp(ni, xi, [hyp['warmup_momentum'], hyp['momentum']])
|
||||||
|
|
||||||
|
# Multi-scale
|
||||||
|
if opt.multi_scale:
|
||||||
|
sz = random.randrange(imgsz * 0.5, imgsz * 1.5 + gs) // gs * gs # size
|
||||||
|
sf = sz / max(imgs.shape[2:]) # scale factor
|
||||||
|
if sf != 1:
|
||||||
|
ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]] # new shape (stretched to gs-multiple)
|
||||||
|
imgs = F.interpolate(imgs, size=ns, mode='bilinear', align_corners=False)
|
||||||
|
|
||||||
|
# Forward
|
||||||
|
with amp.autocast(enabled=cuda):
|
||||||
|
pred = model(imgs) # forward
|
||||||
|
loss, loss_items = compute_loss(pred, targets.to(device), model) # loss scaled by batch_size
|
||||||
|
if rank != -1:
|
||||||
|
loss *= opt.world_size # gradient averaged between devices in DDP mode
|
||||||
|
|
||||||
|
# Backward
|
||||||
|
scaler.scale(loss).backward()
|
||||||
|
|
||||||
|
# Optimize
|
||||||
|
if ni % accumulate == 0:
|
||||||
|
scaler.step(optimizer) # optimizer.step
|
||||||
|
scaler.update()
|
||||||
|
optimizer.zero_grad()
|
||||||
|
if ema:
|
||||||
|
ema.update(model)
|
||||||
|
|
||||||
|
# Print
|
||||||
|
if rank in [-1, 0]:
|
||||||
|
mloss = (mloss * i + loss_items) / (i + 1) # update mean losses
|
||||||
|
mem = '%.3gG' % (torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0) # (GB)
|
||||||
|
s = ('%10s' * 2 + '%10.4g' * 6) % (
|
||||||
|
'%g/%g' % (epoch, epochs - 1), mem, *mloss, targets.shape[0], imgs.shape[-1])
|
||||||
|
pbar.set_description(s)
|
||||||
|
|
||||||
|
# Plot
|
||||||
|
if plots and ni < 3:
|
||||||
|
f = save_dir / f'train_batch{ni}.jpg' # filename
|
||||||
|
Thread(target=plot_images, args=(imgs, targets, paths, f), daemon=True).start()
|
||||||
|
# if tb_writer:
|
||||||
|
# tb_writer.add_image(f, result, dataformats='HWC', global_step=epoch)
|
||||||
|
# tb_writer.add_graph(model, imgs) # add model to tensorboard
|
||||||
|
elif plots and ni == 3 and wandb:
|
||||||
|
wandb.log({"Mosaics": [wandb.Image(str(x), caption=x.name) for x in save_dir.glob('train*.jpg')]})
|
||||||
|
|
||||||
|
# end batch ------------------------------------------------------------------------------------------------
|
||||||
|
# end epoch ----------------------------------------------------------------------------------------------------
|
||||||
|
|
||||||
|
# Scheduler
|
||||||
|
lr = [x['lr'] for x in optimizer.param_groups] # for tensorboard
|
||||||
|
scheduler.step()
|
||||||
|
|
||||||
|
# DDP process 0 or single-GPU
|
||||||
|
if rank in [-1, 0]:
|
||||||
|
# mAP
|
||||||
|
if ema:
|
||||||
|
ema.update_attr(model, include=['yaml', 'nc', 'hyp', 'gr', 'names', 'stride', 'class_weights'])
|
||||||
|
final_epoch = epoch + 1 == epochs
|
||||||
|
if not opt.notest or final_epoch: # Calculate mAP
|
||||||
|
results, maps, times = test.test(opt.data,
|
||||||
|
batch_size=total_batch_size,
|
||||||
|
imgsz=imgsz_test,
|
||||||
|
model=ema.ema,
|
||||||
|
single_cls=opt.single_cls,
|
||||||
|
dataloader=testloader,
|
||||||
|
save_dir=save_dir,
|
||||||
|
plots=plots and final_epoch,
|
||||||
|
log_imgs=opt.log_imgs if wandb else 0)
|
||||||
|
|
||||||
|
# Write
|
||||||
|
with open(results_file, 'a') as f:
|
||||||
|
f.write(s + '%10.4g' * 7 % results + '\n') # P, R, mAP@.5, mAP@.5-.95, val_loss(box, obj, cls)
|
||||||
|
if len(opt.name) and opt.bucket:
|
||||||
|
os.system('gsutil cp %s gs://%s/results/results%s.txt' % (results_file, opt.bucket, opt.name))
|
||||||
|
|
||||||
|
# Log
|
||||||
|
tags = ['train/box_loss', 'train/obj_loss', 'train/cls_loss', # train loss
|
||||||
|
'metrics/precision', 'metrics/recall', 'metrics/mAP_0.5', 'metrics/mAP_0.5:0.95',
|
||||||
|
'val/box_loss', 'val/obj_loss', 'val/cls_loss', # val loss
|
||||||
|
'x/lr0', 'x/lr1', 'x/lr2'] # params
|
||||||
|
for x, tag in zip(list(mloss[:-1]) + list(results) + lr, tags):
|
||||||
|
if tb_writer:
|
||||||
|
tb_writer.add_scalar(tag, x, epoch) # tensorboard
|
||||||
|
if wandb:
|
||||||
|
wandb.log({tag: x}) # W&B
|
||||||
|
|
||||||
|
# Update best mAP
|
||||||
|
fi = fitness(np.array(results).reshape(1, -1)) # weighted combination of [P, R, mAP@.5, mAP@.5-.95]
|
||||||
|
if fi > best_fitness:
|
||||||
|
best_fitness = fi
|
||||||
|
|
||||||
|
# Save model
|
||||||
|
save = (not opt.nosave) or (final_epoch and not opt.evolve)
|
||||||
|
if save:
|
||||||
|
with open(results_file, 'r') as f: # create checkpoint
|
||||||
|
ckpt = {'epoch': epoch,
|
||||||
|
'best_fitness': best_fitness,
|
||||||
|
'training_results': f.read(),
|
||||||
|
'model': ema.ema,
|
||||||
|
'optimizer': None if final_epoch else optimizer.state_dict(),
|
||||||
|
'wandb_id': wandb_run.id if wandb else None}
|
||||||
|
|
||||||
|
# Save last, best and delete
|
||||||
|
torch.save(ckpt, last)
|
||||||
|
if best_fitness == fi:
|
||||||
|
torch.save(ckpt, best)
|
||||||
|
del ckpt
|
||||||
|
# end epoch ----------------------------------------------------------------------------------------------------
|
||||||
|
# end training
|
||||||
|
|
||||||
|
if rank in [-1, 0]:
|
||||||
|
# Strip optimizers
|
||||||
|
final = best if best.exists() else last # final model
|
||||||
|
for f in [last, best]:
|
||||||
|
if f.exists():
|
||||||
|
strip_optimizer(f) # strip optimizers
|
||||||
|
if opt.bucket:
|
||||||
|
os.system(f'gsutil cp {final} gs://{opt.bucket}/weights') # upload
|
||||||
|
|
||||||
|
# Plots
|
||||||
|
if plots:
|
||||||
|
plot_results(save_dir=save_dir) # save as results.png
|
||||||
|
if wandb:
|
||||||
|
files = ['results.png', 'precision_recall_curve.png', 'confusion_matrix.png']
|
||||||
|
wandb.log({"Results": [wandb.Image(str(save_dir / f), caption=f) for f in files
|
||||||
|
if (save_dir / f).exists()]})
|
||||||
|
if opt.log_artifacts:
|
||||||
|
wandb.log_artifact(artifact_or_path=str(final), type='model', name=save_dir.stem)
|
||||||
|
|
||||||
|
# Test best.pt
|
||||||
|
logger.info('%g epochs completed in %.3f hours.\n' % (epoch - start_epoch + 1, (time.time() - t0) / 3600))
|
||||||
|
if opt.data.endswith('coco.yaml') and nc == 80: # if COCO
|
||||||
|
for conf, iou, save_json in ([0.25, 0.45, False], [0.001, 0.65, True]): # speed, mAP tests
|
||||||
|
results, _, _ = test.test(opt.data,
|
||||||
|
batch_size=total_batch_size,
|
||||||
|
imgsz=imgsz_test,
|
||||||
|
conf_thres=conf,
|
||||||
|
iou_thres=iou,
|
||||||
|
model=attempt_load(final, device).half(),
|
||||||
|
single_cls=opt.single_cls,
|
||||||
|
dataloader=testloader,
|
||||||
|
save_dir=save_dir,
|
||||||
|
save_json=save_json,
|
||||||
|
plots=False)
|
||||||
|
|
||||||
|
else:
|
||||||
|
dist.destroy_process_group()
|
||||||
|
|
||||||
|
wandb.run.finish() if wandb and wandb.run else None
|
||||||
|
torch.cuda.empty_cache()
|
||||||
|
return results
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
parser = argparse.ArgumentParser()
|
||||||
|
parser.add_argument('--weights', type=str, default='yolov5s.pt', help='initial weights path')
|
||||||
|
parser.add_argument('--cfg', type=str, default='', help='model.yaml path')
|
||||||
|
parser.add_argument('--data', type=str, default='data/coco128.yaml', help='data.yaml path')
|
||||||
|
parser.add_argument('--hyp', type=str, default='data/hyp.scratch.yaml', help='hyperparameters path')
|
||||||
|
parser.add_argument('--epochs', type=int, default=300)
|
||||||
|
parser.add_argument('--batch-size', type=int, default=16, help='total batch size for all GPUs')
|
||||||
|
parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='[train, test] image sizes')
|
||||||
|
parser.add_argument('--rect', action='store_true', help='rectangular training')
|
||||||
|
parser.add_argument('--resume', nargs='?', const=True, default=False, help='resume most recent training')
|
||||||
|
parser.add_argument('--nosave', action='store_true', help='only save final checkpoint')
|
||||||
|
parser.add_argument('--notest', action='store_true', help='only test final epoch')
|
||||||
|
parser.add_argument('--noautoanchor', action='store_true', help='disable autoanchor check')
|
||||||
|
parser.add_argument('--evolve', action='store_true', help='evolve hyperparameters')
|
||||||
|
parser.add_argument('--bucket', type=str, default='', help='gsutil bucket')
|
||||||
|
parser.add_argument('--cache-images', action='store_true', help='cache images for faster training')
|
||||||
|
parser.add_argument('--image-weights', action='store_true', help='use weighted image selection for training')
|
||||||
|
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
|
||||||
|
parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%')
|
||||||
|
parser.add_argument('--single-cls', action='store_true', help='train multi-class data as single-class')
|
||||||
|
parser.add_argument('--adam', action='store_true', help='use torch.optim.Adam() optimizer')
|
||||||
|
parser.add_argument('--sync-bn', action='store_true', help='use SyncBatchNorm, only available in DDP mode')
|
||||||
|
parser.add_argument('--local_rank', type=int, default=-1, help='DDP parameter, do not modify')
|
||||||
|
parser.add_argument('--log-imgs', type=int, default=16, help='number of images for W&B logging, max 100')
|
||||||
|
parser.add_argument('--log-artifacts', action='store_true', help='log artifacts, i.e. final trained model')
|
||||||
|
parser.add_argument('--workers', type=int, default=8, help='maximum number of dataloader workers')
|
||||||
|
parser.add_argument('--project', default='runs/train', help='save to project/name')
|
||||||
|
parser.add_argument('--name', default='exp', help='save to project/name')
|
||||||
|
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
|
||||||
|
opt = parser.parse_args()
|
||||||
|
|
||||||
|
# Set DDP variables
|
||||||
|
opt.total_batch_size = opt.batch_size
|
||||||
|
opt.world_size = int(os.environ['WORLD_SIZE']) if 'WORLD_SIZE' in os.environ else 1
|
||||||
|
opt.global_rank = int(os.environ['RANK']) if 'RANK' in os.environ else -1
|
||||||
|
set_logging(opt.global_rank)
|
||||||
|
if opt.global_rank in [-1, 0]:
|
||||||
|
check_git_status()
|
||||||
|
|
||||||
|
# Resume
|
||||||
|
if opt.resume: # resume an interrupted run
|
||||||
|
ckpt = opt.resume if isinstance(opt.resume, str) else get_latest_run() # specified or most recent path
|
||||||
|
assert os.path.isfile(ckpt), 'ERROR: --resume checkpoint does not exist'
|
||||||
|
apriori = opt.global_rank, opt.local_rank
|
||||||
|
with open(Path(ckpt).parent.parent / 'opt.yaml') as f:
|
||||||
|
opt = argparse.Namespace(**yaml.load(f, Loader=yaml.FullLoader)) # replace
|
||||||
|
opt.cfg, opt.weights, opt.resume, opt.global_rank, opt.local_rank = '', ckpt, True, *apriori # reinstate
|
||||||
|
logger.info('Resuming training from %s' % ckpt)
|
||||||
|
else:
|
||||||
|
# opt.hyp = opt.hyp or ('hyp.finetune.yaml' if opt.weights else 'hyp.scratch.yaml')
|
||||||
|
opt.data, opt.cfg, opt.hyp = check_file(opt.data), check_file(opt.cfg), check_file(opt.hyp) # check files
|
||||||
|
assert len(opt.cfg) or len(opt.weights), 'either --cfg or --weights must be specified'
|
||||||
|
opt.img_size.extend([opt.img_size[-1]] * (2 - len(opt.img_size))) # extend to 2 sizes (train, test)
|
||||||
|
opt.name = 'evolve' if opt.evolve else opt.name
|
||||||
|
opt.save_dir = increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok | opt.evolve) # increment run
|
||||||
|
|
||||||
|
# DDP mode
|
||||||
|
device = select_device(opt.device, batch_size=opt.batch_size)
|
||||||
|
if opt.local_rank != -1:
|
||||||
|
assert torch.cuda.device_count() > opt.local_rank
|
||||||
|
torch.cuda.set_device(opt.local_rank)
|
||||||
|
device = torch.device('cuda', opt.local_rank)
|
||||||
|
dist.init_process_group(backend='nccl', init_method='env://') # distributed backend
|
||||||
|
assert opt.batch_size % opt.world_size == 0, '--batch-size must be multiple of CUDA device count'
|
||||||
|
opt.batch_size = opt.total_batch_size // opt.world_size
|
||||||
|
|
||||||
|
# Hyperparameters
|
||||||
|
with open(opt.hyp) as f:
|
||||||
|
hyp = yaml.load(f, Loader=yaml.FullLoader) # load hyps
|
||||||
|
if 'box' not in hyp:
|
||||||
|
warn('Compatibility: %s missing "box" which was renamed from "giou" in %s' %
|
||||||
|
(opt.hyp, 'https://github.com/ultralytics/yolov5/pull/1120'))
|
||||||
|
hyp['box'] = hyp.pop('giou')
|
||||||
|
|
||||||
|
# Train
|
||||||
|
logger.info(opt)
|
||||||
|
if not opt.evolve:
|
||||||
|
tb_writer = None # init loggers
|
||||||
|
if opt.global_rank in [-1, 0]:
|
||||||
|
logger.info(f'Start Tensorboard with "tensorboard --logdir {opt.project}", view at http://localhost:6006/')
|
||||||
|
tb_writer = SummaryWriter(opt.save_dir) # Tensorboard
|
||||||
|
train(hyp, opt, device, tb_writer, wandb)
|
||||||
|
|
||||||
|
# Evolve hyperparameters (optional)
|
||||||
|
else:
|
||||||
|
# Hyperparameter evolution metadata (mutation scale 0-1, lower_limit, upper_limit)
|
||||||
|
meta = {'lr0': (1, 1e-5, 1e-1), # initial learning rate (SGD=1E-2, Adam=1E-3)
|
||||||
|
'lrf': (1, 0.01, 1.0), # final OneCycleLR learning rate (lr0 * lrf)
|
||||||
|
'momentum': (0.3, 0.6, 0.98), # SGD momentum/Adam beta1
|
||||||
|
'weight_decay': (1, 0.0, 0.001), # optimizer weight decay
|
||||||
|
'warmup_epochs': (1, 0.0, 5.0), # warmup epochs (fractions ok)
|
||||||
|
'warmup_momentum': (1, 0.0, 0.95), # warmup initial momentum
|
||||||
|
'warmup_bias_lr': (1, 0.0, 0.2), # warmup initial bias lr
|
||||||
|
'box': (1, 0.02, 0.2), # box loss gain
|
||||||
|
'cls': (1, 0.2, 4.0), # cls loss gain
|
||||||
|
'cls_pw': (1, 0.5, 2.0), # cls BCELoss positive_weight
|
||||||
|
'obj': (1, 0.2, 4.0), # obj loss gain (scale with pixels)
|
||||||
|
'obj_pw': (1, 0.5, 2.0), # obj BCELoss positive_weight
|
||||||
|
'iou_t': (0, 0.1, 0.7), # IoU training threshold
|
||||||
|
'anchor_t': (1, 2.0, 8.0), # anchor-multiple threshold
|
||||||
|
'anchors': (2, 2.0, 10.0), # anchors per output grid (0 to ignore)
|
||||||
|
'fl_gamma': (0, 0.0, 2.0), # focal loss gamma (efficientDet default gamma=1.5)
|
||||||
|
'hsv_h': (1, 0.0, 0.1), # image HSV-Hue augmentation (fraction)
|
||||||
|
'hsv_s': (1, 0.0, 0.9), # image HSV-Saturation augmentation (fraction)
|
||||||
|
'hsv_v': (1, 0.0, 0.9), # image HSV-Value augmentation (fraction)
|
||||||
|
'degrees': (1, 0.0, 45.0), # image rotation (+/- deg)
|
||||||
|
'translate': (1, 0.0, 0.9), # image translation (+/- fraction)
|
||||||
|
'scale': (1, 0.0, 0.9), # image scale (+/- gain)
|
||||||
|
'shear': (1, 0.0, 10.0), # image shear (+/- deg)
|
||||||
|
'perspective': (0, 0.0, 0.001), # image perspective (+/- fraction), range 0-0.001
|
||||||
|
'flipud': (1, 0.0, 1.0), # image flip up-down (probability)
|
||||||
|
'fliplr': (0, 0.0, 1.0), # image flip left-right (probability)
|
||||||
|
'mosaic': (1, 0.0, 1.0), # image mixup (probability)
|
||||||
|
'mixup': (1, 0.0, 1.0)} # image mixup (probability)
|
||||||
|
|
||||||
|
assert opt.local_rank == -1, 'DDP mode not implemented for --evolve'
|
||||||
|
opt.notest, opt.nosave = True, True # only test/save final epoch
|
||||||
|
# ei = [isinstance(x, (int, float)) for x in hyp.values()] # evolvable indices
|
||||||
|
yaml_file = Path(opt.save_dir) / 'hyp_evolved.yaml' # save best result here
|
||||||
|
if opt.bucket:
|
||||||
|
os.system('gsutil cp gs://%s/evolve.txt .' % opt.bucket) # download evolve.txt if exists
|
||||||
|
|
||||||
|
for _ in range(300): # generations to evolve
|
||||||
|
if Path('evolve.txt').exists(): # if evolve.txt exists: select best hyps and mutate
|
||||||
|
# Select parent(s)
|
||||||
|
parent = 'single' # parent selection method: 'single' or 'weighted'
|
||||||
|
x = np.loadtxt('evolve.txt', ndmin=2)
|
||||||
|
n = min(5, len(x)) # number of previous results to consider
|
||||||
|
x = x[np.argsort(-fitness(x))][:n] # top n mutations
|
||||||
|
w = fitness(x) - fitness(x).min() # weights
|
||||||
|
if parent == 'single' or len(x) == 1:
|
||||||
|
# x = x[random.randint(0, n - 1)] # random selection
|
||||||
|
x = x[random.choices(range(n), weights=w)[0]] # weighted selection
|
||||||
|
elif parent == 'weighted':
|
||||||
|
x = (x * w.reshape(n, 1)).sum(0) / w.sum() # weighted combination
|
||||||
|
|
||||||
|
# Mutate
|
||||||
|
mp, s = 0.8, 0.2 # mutation probability, sigma
|
||||||
|
npr = np.random
|
||||||
|
npr.seed(int(time.time()))
|
||||||
|
g = np.array([x[0] for x in meta.values()]) # gains 0-1
|
||||||
|
ng = len(meta)
|
||||||
|
v = np.ones(ng)
|
||||||
|
while all(v == 1): # mutate until a change occurs (prevent duplicates)
|
||||||
|
v = (g * (npr.random(ng) < mp) * npr.randn(ng) * npr.random() * s + 1).clip(0.3, 3.0)
|
||||||
|
for i, k in enumerate(hyp.keys()): # plt.hist(v.ravel(), 300)
|
||||||
|
hyp[k] = float(x[i + 7] * v[i]) # mutate
|
||||||
|
|
||||||
|
# Constrain to limits
|
||||||
|
for k, v in meta.items():
|
||||||
|
hyp[k] = max(hyp[k], v[1]) # lower limit
|
||||||
|
hyp[k] = min(hyp[k], v[2]) # upper limit
|
||||||
|
hyp[k] = round(hyp[k], 5) # significant digits
|
||||||
|
|
||||||
|
# Train mutation
|
||||||
|
results = train(hyp.copy(), opt, device, wandb=wandb)
|
||||||
|
|
||||||
|
# Write mutation results
|
||||||
|
print_mutation(hyp.copy(), results, yaml_file, opt.bucket)
|
||||||
|
|
||||||
|
# Plot results
|
||||||
|
plot_evolution(yaml_file)
|
||||||
|
print(f'Hyperparameter evolution complete. Best results saved as: {yaml_file}\n'
|
||||||
|
f'Command to train a new model with these hyperparameters: $ python train.py --hyp {yaml_file}')
|
1222
yolov5/tutorial.ipynb
Normal file
1222
yolov5/tutorial.ipynb
Normal file
File diff suppressed because one or more lines are too long
0
yolov5/utils/__init__.py
Normal file
0
yolov5/utils/__init__.py
Normal file
72
yolov5/utils/activations.py
Normal file
72
yolov5/utils/activations.py
Normal file
@ -0,0 +1,72 @@
|
|||||||
|
# Activation functions
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
import torch.nn.functional as F
|
||||||
|
|
||||||
|
|
||||||
|
# SiLU https://arxiv.org/pdf/1905.02244.pdf ----------------------------------------------------------------------------
|
||||||
|
class SiLU(nn.Module): # export-friendly version of nn.SiLU()
|
||||||
|
@staticmethod
|
||||||
|
def forward(x):
|
||||||
|
return x * torch.sigmoid(x)
|
||||||
|
|
||||||
|
|
||||||
|
class Hardswish(nn.Module): # export-friendly version of nn.Hardswish()
|
||||||
|
@staticmethod
|
||||||
|
def forward(x):
|
||||||
|
# return x * F.hardsigmoid(x) # for torchscript and CoreML
|
||||||
|
return x * F.hardtanh(x + 3, 0., 6.) / 6. # for torchscript, CoreML and ONNX
|
||||||
|
|
||||||
|
|
||||||
|
class MemoryEfficientSwish(nn.Module):
|
||||||
|
class F(torch.autograd.Function):
|
||||||
|
@staticmethod
|
||||||
|
def forward(ctx, x):
|
||||||
|
ctx.save_for_backward(x)
|
||||||
|
return x * torch.sigmoid(x)
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def backward(ctx, grad_output):
|
||||||
|
x = ctx.saved_tensors[0]
|
||||||
|
sx = torch.sigmoid(x)
|
||||||
|
return grad_output * (sx * (1 + x * (1 - sx)))
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
return self.F.apply(x)
|
||||||
|
|
||||||
|
|
||||||
|
# Mish https://github.com/digantamisra98/Mish --------------------------------------------------------------------------
|
||||||
|
class Mish(nn.Module):
|
||||||
|
@staticmethod
|
||||||
|
def forward(x):
|
||||||
|
return x * F.softplus(x).tanh()
|
||||||
|
|
||||||
|
|
||||||
|
class MemoryEfficientMish(nn.Module):
|
||||||
|
class F(torch.autograd.Function):
|
||||||
|
@staticmethod
|
||||||
|
def forward(ctx, x):
|
||||||
|
ctx.save_for_backward(x)
|
||||||
|
return x.mul(torch.tanh(F.softplus(x))) # x * tanh(ln(1 + exp(x)))
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def backward(ctx, grad_output):
|
||||||
|
x = ctx.saved_tensors[0]
|
||||||
|
sx = torch.sigmoid(x)
|
||||||
|
fx = F.softplus(x).tanh()
|
||||||
|
return grad_output * (fx + x * sx * (1 - fx * fx))
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
return self.F.apply(x)
|
||||||
|
|
||||||
|
|
||||||
|
# FReLU https://arxiv.org/abs/2007.11824 -------------------------------------------------------------------------------
|
||||||
|
class FReLU(nn.Module):
|
||||||
|
def __init__(self, c1, k=3): # ch_in, kernel
|
||||||
|
super().__init__()
|
||||||
|
self.conv = nn.Conv2d(c1, c1, k, 1, 1, groups=c1, bias=False)
|
||||||
|
self.bn = nn.BatchNorm2d(c1)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
return torch.max(x, self.bn(self.conv(x)))
|
151
yolov5/utils/autoanchor.py
Normal file
151
yolov5/utils/autoanchor.py
Normal file
@ -0,0 +1,151 @@
|
|||||||
|
# Auto-anchor utils
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
import torch
|
||||||
|
import yaml
|
||||||
|
from scipy.cluster.vq import kmeans
|
||||||
|
from tqdm import tqdm
|
||||||
|
|
||||||
|
|
||||||
|
def check_anchor_order(m):
|
||||||
|
# Check anchor order against stride order for YOLOv5 Detect() module m, and correct if necessary
|
||||||
|
a = m.anchor_grid.prod(-1).view(-1) # anchor area
|
||||||
|
da = a[-1] - a[0] # delta a
|
||||||
|
ds = m.stride[-1] - m.stride[0] # delta s
|
||||||
|
if da.sign() != ds.sign(): # same order
|
||||||
|
print('Reversing anchor order')
|
||||||
|
m.anchors[:] = m.anchors.flip(0)
|
||||||
|
m.anchor_grid[:] = m.anchor_grid.flip(0)
|
||||||
|
|
||||||
|
|
||||||
|
def check_anchors(dataset, model, thr=4.0, imgsz=640):
|
||||||
|
# Check anchor fit to data, recompute if necessary
|
||||||
|
print('\nAnalyzing anchors... ', end='')
|
||||||
|
m = model.module.model[-1] if hasattr(model, 'module') else model.model[-1] # Detect()
|
||||||
|
shapes = imgsz * dataset.shapes / dataset.shapes.max(1, keepdims=True)
|
||||||
|
scale = np.random.uniform(0.9, 1.1, size=(shapes.shape[0], 1)) # augment scale
|
||||||
|
wh = torch.tensor(np.concatenate([l[:, 3:5] * s for s, l in zip(shapes * scale, dataset.labels)])).float() # wh
|
||||||
|
|
||||||
|
def metric(k): # compute metric
|
||||||
|
r = wh[:, None] / k[None]
|
||||||
|
x = torch.min(r, 1. / r).min(2)[0] # ratio metric
|
||||||
|
best = x.max(1)[0] # best_x
|
||||||
|
aat = (x > 1. / thr).float().sum(1).mean() # anchors above threshold
|
||||||
|
bpr = (best > 1. / thr).float().mean() # best possible recall
|
||||||
|
return bpr, aat
|
||||||
|
|
||||||
|
bpr, aat = metric(m.anchor_grid.clone().cpu().view(-1, 2))
|
||||||
|
print('anchors/target = %.2f, Best Possible Recall (BPR) = %.4f' % (aat, bpr), end='')
|
||||||
|
if bpr < 0.98: # threshold to recompute
|
||||||
|
print('. Attempting to improve anchors, please wait...')
|
||||||
|
na = m.anchor_grid.numel() // 2 # number of anchors
|
||||||
|
new_anchors = kmean_anchors(dataset, n=na, img_size=imgsz, thr=thr, gen=1000, verbose=False)
|
||||||
|
new_bpr = metric(new_anchors.reshape(-1, 2))[0]
|
||||||
|
if new_bpr > bpr: # replace anchors
|
||||||
|
new_anchors = torch.tensor(new_anchors, device=m.anchors.device).type_as(m.anchors)
|
||||||
|
m.anchor_grid[:] = new_anchors.clone().view_as(m.anchor_grid) # for inference
|
||||||
|
m.anchors[:] = new_anchors.clone().view_as(m.anchors) / m.stride.to(m.anchors.device).view(-1, 1, 1) # loss
|
||||||
|
check_anchor_order(m)
|
||||||
|
print('New anchors saved to model. Update model *.yaml to use these anchors in the future.')
|
||||||
|
else:
|
||||||
|
print('Original anchors better than new anchors. Proceeding with original anchors.')
|
||||||
|
print('') # newline
|
||||||
|
|
||||||
|
|
||||||
|
def kmean_anchors(path='./data/coco128.yaml', n=9, img_size=640, thr=4.0, gen=1000, verbose=True):
|
||||||
|
""" Creates kmeans-evolved anchors from training dataset
|
||||||
|
|
||||||
|
Arguments:
|
||||||
|
path: path to dataset *.yaml, or a loaded dataset
|
||||||
|
n: number of anchors
|
||||||
|
img_size: image size used for training
|
||||||
|
thr: anchor-label wh ratio threshold hyperparameter hyp['anchor_t'] used for training, default=4.0
|
||||||
|
gen: generations to evolve anchors using genetic algorithm
|
||||||
|
verbose: print all results
|
||||||
|
|
||||||
|
Return:
|
||||||
|
k: kmeans evolved anchors
|
||||||
|
|
||||||
|
Usage:
|
||||||
|
from utils.autoanchor import *; _ = kmean_anchors()
|
||||||
|
"""
|
||||||
|
thr = 1. / thr
|
||||||
|
|
||||||
|
def metric(k, wh): # compute metrics
|
||||||
|
r = wh[:, None] / k[None]
|
||||||
|
x = torch.min(r, 1. / r).min(2)[0] # ratio metric
|
||||||
|
# x = wh_iou(wh, torch.tensor(k)) # iou metric
|
||||||
|
return x, x.max(1)[0] # x, best_x
|
||||||
|
|
||||||
|
def anchor_fitness(k): # mutation fitness
|
||||||
|
_, best = metric(torch.tensor(k, dtype=torch.float32), wh)
|
||||||
|
return (best * (best > thr).float()).mean() # fitness
|
||||||
|
|
||||||
|
def print_results(k):
|
||||||
|
k = k[np.argsort(k.prod(1))] # sort small to large
|
||||||
|
x, best = metric(k, wh0)
|
||||||
|
bpr, aat = (best > thr).float().mean(), (x > thr).float().mean() * n # best possible recall, anch > thr
|
||||||
|
print('thr=%.2f: %.4f best possible recall, %.2f anchors past thr' % (thr, bpr, aat))
|
||||||
|
print('n=%g, img_size=%s, metric_all=%.3f/%.3f-mean/best, past_thr=%.3f-mean: ' %
|
||||||
|
(n, img_size, x.mean(), best.mean(), x[x > thr].mean()), end='')
|
||||||
|
for i, x in enumerate(k):
|
||||||
|
print('%i,%i' % (round(x[0]), round(x[1])), end=', ' if i < len(k) - 1 else '\n') # use in *.cfg
|
||||||
|
return k
|
||||||
|
|
||||||
|
if isinstance(path, str): # *.yaml file
|
||||||
|
with open(path) as f:
|
||||||
|
data_dict = yaml.load(f, Loader=yaml.FullLoader) # model dict
|
||||||
|
from utils.datasets import LoadImagesAndLabels
|
||||||
|
dataset = LoadImagesAndLabels(data_dict['train'], augment=True, rect=True)
|
||||||
|
else:
|
||||||
|
dataset = path # dataset
|
||||||
|
|
||||||
|
# Get label wh
|
||||||
|
shapes = img_size * dataset.shapes / dataset.shapes.max(1, keepdims=True)
|
||||||
|
wh0 = np.concatenate([l[:, 3:5] * s for s, l in zip(shapes, dataset.labels)]) # wh
|
||||||
|
|
||||||
|
# Filter
|
||||||
|
i = (wh0 < 3.0).any(1).sum()
|
||||||
|
if i:
|
||||||
|
print('WARNING: Extremely small objects found. '
|
||||||
|
'%g of %g labels are < 3 pixels in width or height.' % (i, len(wh0)))
|
||||||
|
wh = wh0[(wh0 >= 2.0).any(1)] # filter > 2 pixels
|
||||||
|
|
||||||
|
# Kmeans calculation
|
||||||
|
print('Running kmeans for %g anchors on %g points...' % (n, len(wh)))
|
||||||
|
s = wh.std(0) # sigmas for whitening
|
||||||
|
k, dist = kmeans(wh / s, n, iter=30) # points, mean distance
|
||||||
|
k *= s
|
||||||
|
wh = torch.tensor(wh, dtype=torch.float32) # filtered
|
||||||
|
wh0 = torch.tensor(wh0, dtype=torch.float32) # unfiltered
|
||||||
|
k = print_results(k)
|
||||||
|
|
||||||
|
# Plot
|
||||||
|
# k, d = [None] * 20, [None] * 20
|
||||||
|
# for i in tqdm(range(1, 21)):
|
||||||
|
# k[i-1], d[i-1] = kmeans(wh / s, i) # points, mean distance
|
||||||
|
# fig, ax = plt.subplots(1, 2, figsize=(14, 7), tight_layout=True)
|
||||||
|
# ax = ax.ravel()
|
||||||
|
# ax[0].plot(np.arange(1, 21), np.array(d) ** 2, marker='.')
|
||||||
|
# fig, ax = plt.subplots(1, 2, figsize=(14, 7)) # plot wh
|
||||||
|
# ax[0].hist(wh[wh[:, 0]<100, 0],400)
|
||||||
|
# ax[1].hist(wh[wh[:, 1]<100, 1],400)
|
||||||
|
# fig.savefig('wh.png', dpi=200)
|
||||||
|
|
||||||
|
# Evolve
|
||||||
|
npr = np.random
|
||||||
|
f, sh, mp, s = anchor_fitness(k), k.shape, 0.9, 0.1 # fitness, generations, mutation prob, sigma
|
||||||
|
pbar = tqdm(range(gen), desc='Evolving anchors with Genetic Algorithm') # progress bar
|
||||||
|
for _ in pbar:
|
||||||
|
v = np.ones(sh)
|
||||||
|
while (v == 1).all(): # mutate until a change occurs (prevent duplicates)
|
||||||
|
v = ((npr.random(sh) < mp) * npr.random() * npr.randn(*sh) * s + 1).clip(0.3, 3.0)
|
||||||
|
kg = (k.copy() * v).clip(min=2.0)
|
||||||
|
fg = anchor_fitness(kg)
|
||||||
|
if fg > f:
|
||||||
|
f, k = fg, kg.copy()
|
||||||
|
pbar.desc = 'Evolving anchors with Genetic Algorithm: fitness = %.4f' % f
|
||||||
|
if verbose:
|
||||||
|
print_results(k)
|
||||||
|
|
||||||
|
return print_results(k)
|
934
yolov5/utils/datasets.py
Normal file
934
yolov5/utils/datasets.py
Normal file
@ -0,0 +1,934 @@
|
|||||||
|
# Dataset utils and dataloaders
|
||||||
|
|
||||||
|
import glob
|
||||||
|
import logging
|
||||||
|
import math
|
||||||
|
import os
|
||||||
|
import random
|
||||||
|
import shutil
|
||||||
|
import time
|
||||||
|
from itertools import repeat
|
||||||
|
from multiprocessing.pool import ThreadPool
|
||||||
|
from pathlib import Path
|
||||||
|
from threading import Thread
|
||||||
|
|
||||||
|
import cv2
|
||||||
|
import numpy as np
|
||||||
|
import torch
|
||||||
|
from PIL import Image, ExifTags
|
||||||
|
from torch.utils.data import Dataset
|
||||||
|
from tqdm import tqdm
|
||||||
|
|
||||||
|
from utils.general import xyxy2xywh, xywh2xyxy, clean_str
|
||||||
|
from utils.torch_utils import torch_distributed_zero_first
|
||||||
|
|
||||||
|
# Parameters
|
||||||
|
help_url = 'https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data'
|
||||||
|
img_formats = ['bmp', 'jpg', 'jpeg', 'png', 'tif', 'tiff', 'dng'] # acceptable image suffixes
|
||||||
|
vid_formats = ['mov', 'avi', 'mp4', 'mpg', 'mpeg', 'm4v', 'wmv', 'mkv'] # acceptable video suffixes
|
||||||
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
# Get orientation exif tag
|
||||||
|
for orientation in ExifTags.TAGS.keys():
|
||||||
|
if ExifTags.TAGS[orientation] == 'Orientation':
|
||||||
|
break
|
||||||
|
|
||||||
|
|
||||||
|
def get_hash(files):
|
||||||
|
# Returns a single hash value of a list of files
|
||||||
|
return sum(os.path.getsize(f) for f in files if os.path.isfile(f))
|
||||||
|
|
||||||
|
|
||||||
|
def exif_size(img):
|
||||||
|
# Returns exif-corrected PIL size
|
||||||
|
s = img.size # (width, height)
|
||||||
|
try:
|
||||||
|
rotation = dict(img._getexif().items())[orientation]
|
||||||
|
if rotation == 6: # rotation 270
|
||||||
|
s = (s[1], s[0])
|
||||||
|
elif rotation == 8: # rotation 90
|
||||||
|
s = (s[1], s[0])
|
||||||
|
except:
|
||||||
|
pass
|
||||||
|
|
||||||
|
return s
|
||||||
|
|
||||||
|
|
||||||
|
def create_dataloader(path, imgsz, batch_size, stride, opt, hyp=None, augment=False, cache=False, pad=0.0, rect=False,
|
||||||
|
rank=-1, world_size=1, workers=8, image_weights=False):
|
||||||
|
# Make sure only the first process in DDP process the dataset first, and the following others can use the cache
|
||||||
|
with torch_distributed_zero_first(rank):
|
||||||
|
dataset = LoadImagesAndLabels(path, imgsz, batch_size,
|
||||||
|
augment=augment, # augment images
|
||||||
|
hyp=hyp, # augmentation hyperparameters
|
||||||
|
rect=rect, # rectangular training
|
||||||
|
cache_images=cache,
|
||||||
|
single_cls=opt.single_cls,
|
||||||
|
stride=int(stride),
|
||||||
|
pad=pad,
|
||||||
|
rank=rank,
|
||||||
|
image_weights=image_weights)
|
||||||
|
|
||||||
|
batch_size = min(batch_size, len(dataset))
|
||||||
|
nw = min([os.cpu_count() // world_size, batch_size if batch_size > 1 else 0, workers]) # number of workers
|
||||||
|
sampler = torch.utils.data.distributed.DistributedSampler(dataset) if rank != -1 else None
|
||||||
|
loader = torch.utils.data.DataLoader if image_weights else InfiniteDataLoader
|
||||||
|
# Use torch.utils.data.DataLoader() if dataset.properties will update during training else InfiniteDataLoader()
|
||||||
|
dataloader = loader(dataset,
|
||||||
|
batch_size=batch_size,
|
||||||
|
num_workers=nw,
|
||||||
|
sampler=sampler,
|
||||||
|
pin_memory=True,
|
||||||
|
collate_fn=LoadImagesAndLabels.collate_fn)
|
||||||
|
return dataloader, dataset
|
||||||
|
|
||||||
|
|
||||||
|
class InfiniteDataLoader(torch.utils.data.dataloader.DataLoader):
|
||||||
|
""" Dataloader that reuses workers
|
||||||
|
|
||||||
|
Uses same syntax as vanilla DataLoader
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, *args, **kwargs):
|
||||||
|
super().__init__(*args, **kwargs)
|
||||||
|
object.__setattr__(self, 'batch_sampler', _RepeatSampler(self.batch_sampler))
|
||||||
|
self.iterator = super().__iter__()
|
||||||
|
|
||||||
|
def __len__(self):
|
||||||
|
return len(self.batch_sampler.sampler)
|
||||||
|
|
||||||
|
def __iter__(self):
|
||||||
|
for i in range(len(self)):
|
||||||
|
yield next(self.iterator)
|
||||||
|
|
||||||
|
|
||||||
|
class _RepeatSampler(object):
|
||||||
|
""" Sampler that repeats forever
|
||||||
|
|
||||||
|
Args:
|
||||||
|
sampler (Sampler)
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, sampler):
|
||||||
|
self.sampler = sampler
|
||||||
|
|
||||||
|
def __iter__(self):
|
||||||
|
while True:
|
||||||
|
yield from iter(self.sampler)
|
||||||
|
|
||||||
|
|
||||||
|
class LoadImages: # for inference
|
||||||
|
def __init__(self, path, img_size=640):
|
||||||
|
p = str(Path(path)) # os-agnostic
|
||||||
|
p = os.path.abspath(p) # absolute path
|
||||||
|
if '*' in p:
|
||||||
|
files = sorted(glob.glob(p, recursive=True)) # glob
|
||||||
|
elif os.path.isdir(p):
|
||||||
|
files = sorted(glob.glob(os.path.join(p, '*.*'))) # dir
|
||||||
|
elif os.path.isfile(p):
|
||||||
|
files = [p] # files
|
||||||
|
else:
|
||||||
|
raise Exception('ERROR: %s does not exist' % p)
|
||||||
|
|
||||||
|
images = [x for x in files if x.split('.')[-1].lower() in img_formats]
|
||||||
|
videos = [x for x in files if x.split('.')[-1].lower() in vid_formats]
|
||||||
|
ni, nv = len(images), len(videos)
|
||||||
|
|
||||||
|
self.img_size = img_size
|
||||||
|
self.files = images + videos
|
||||||
|
self.nf = ni + nv # number of files
|
||||||
|
self.video_flag = [False] * ni + [True] * nv
|
||||||
|
self.mode = 'image'
|
||||||
|
if any(videos):
|
||||||
|
self.new_video(videos[0]) # new video
|
||||||
|
else:
|
||||||
|
self.cap = None
|
||||||
|
assert self.nf > 0, 'No images or videos found in %s. Supported formats are:\nimages: %s\nvideos: %s' % \
|
||||||
|
(p, img_formats, vid_formats)
|
||||||
|
|
||||||
|
def __iter__(self):
|
||||||
|
self.count = 0
|
||||||
|
return self
|
||||||
|
|
||||||
|
def __next__(self):
|
||||||
|
if self.count == self.nf:
|
||||||
|
raise StopIteration
|
||||||
|
path = self.files[self.count]
|
||||||
|
|
||||||
|
if self.video_flag[self.count]:
|
||||||
|
# Read video
|
||||||
|
self.mode = 'video'
|
||||||
|
ret_val, img0 = self.cap.read()
|
||||||
|
if not ret_val:
|
||||||
|
self.count += 1
|
||||||
|
self.cap.release()
|
||||||
|
if self.count == self.nf: # last video
|
||||||
|
raise StopIteration
|
||||||
|
else:
|
||||||
|
path = self.files[self.count]
|
||||||
|
self.new_video(path)
|
||||||
|
ret_val, img0 = self.cap.read()
|
||||||
|
|
||||||
|
self.frame += 1
|
||||||
|
# print('video %g/%g (%g/%g) %s: ' % (self.count + 1, self.nf, self.frame, self.nframes, path), end='')
|
||||||
|
print('video %g/%g (%g/%g) : ' % (self.count + 1, self.nf, self.frame, self.nframes), end='')
|
||||||
|
|
||||||
|
else:
|
||||||
|
# Read image
|
||||||
|
self.count += 1
|
||||||
|
img0 = cv2.imread(path) # BGR
|
||||||
|
assert img0 is not None, 'Image Not Found ' + path
|
||||||
|
print('image %g/%g %s: ' % (self.count, self.nf, path), end='')
|
||||||
|
|
||||||
|
# Padded resize
|
||||||
|
img = letterbox(img0, new_shape=self.img_size)[0]
|
||||||
|
|
||||||
|
# Convert
|
||||||
|
img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
|
||||||
|
img = np.ascontiguousarray(img)
|
||||||
|
|
||||||
|
return path, img, img0, self.cap
|
||||||
|
|
||||||
|
def new_video(self, path):
|
||||||
|
self.frame = 0
|
||||||
|
self.cap = cv2.VideoCapture(path)
|
||||||
|
self.nframes = int(self.cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
||||||
|
|
||||||
|
def __len__(self):
|
||||||
|
return self.nf # number of files
|
||||||
|
|
||||||
|
|
||||||
|
class LoadWebcam: # for inference
|
||||||
|
def __init__(self, pipe='0', img_size=640):
|
||||||
|
self.img_size = img_size
|
||||||
|
|
||||||
|
if pipe.isnumeric():
|
||||||
|
pipe = eval(pipe) # local camera
|
||||||
|
# pipe = 'rtsp://192.168.1.64/1' # IP camera
|
||||||
|
# pipe = 'rtsp://username:password@192.168.1.64/1' # IP camera with login
|
||||||
|
# pipe = 'http://wmccpinetop.axiscam.net/mjpg/video.mjpg' # IP golf camera
|
||||||
|
|
||||||
|
self.pipe = pipe
|
||||||
|
self.cap = cv2.VideoCapture(pipe) # video capture object
|
||||||
|
self.cap.set(cv2.CAP_PROP_BUFFERSIZE, 3) # set buffer size
|
||||||
|
|
||||||
|
def __iter__(self):
|
||||||
|
self.count = -1
|
||||||
|
return self
|
||||||
|
|
||||||
|
def __next__(self):
|
||||||
|
self.count += 1
|
||||||
|
if cv2.waitKey(1) == ord('q'): # q to quit
|
||||||
|
self.cap.release()
|
||||||
|
cv2.destroyAllWindows()
|
||||||
|
raise StopIteration
|
||||||
|
|
||||||
|
# Read frame
|
||||||
|
if self.pipe == 0: # local camera
|
||||||
|
ret_val, img0 = self.cap.read()
|
||||||
|
img0 = cv2.flip(img0, 1) # flip left-right
|
||||||
|
else: # IP camera
|
||||||
|
n = 0
|
||||||
|
while True:
|
||||||
|
n += 1
|
||||||
|
self.cap.grab()
|
||||||
|
if n % 30 == 0: # skip frames
|
||||||
|
ret_val, img0 = self.cap.retrieve()
|
||||||
|
if ret_val:
|
||||||
|
break
|
||||||
|
|
||||||
|
# Print
|
||||||
|
assert ret_val, 'Camera Error %s' % self.pipe
|
||||||
|
img_path = 'webcam.jpg'
|
||||||
|
print('webcam %g: ' % self.count, end='')
|
||||||
|
|
||||||
|
# Padded resize
|
||||||
|
img = letterbox(img0, new_shape=self.img_size)[0]
|
||||||
|
|
||||||
|
# Convert
|
||||||
|
img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
|
||||||
|
img = np.ascontiguousarray(img)
|
||||||
|
|
||||||
|
return img_path, img, img0, None
|
||||||
|
|
||||||
|
def __len__(self):
|
||||||
|
return 0
|
||||||
|
|
||||||
|
|
||||||
|
class LoadStreams: # multiple IP or RTSP cameras
|
||||||
|
def __init__(self, sources='streams.txt', img_size=640):
|
||||||
|
self.mode = 'stream'
|
||||||
|
self.img_size = img_size
|
||||||
|
|
||||||
|
if os.path.isfile(sources):
|
||||||
|
with open(sources, 'r') as f:
|
||||||
|
sources = [x.strip() for x in f.read().strip().splitlines() if len(x.strip())]
|
||||||
|
else:
|
||||||
|
sources = [sources]
|
||||||
|
|
||||||
|
n = len(sources)
|
||||||
|
self.imgs = [None] * n
|
||||||
|
self.sources = [clean_str(x) for x in sources] # clean source names for later
|
||||||
|
for i, s in enumerate(sources):
|
||||||
|
# Start the thread to read frames from the video stream
|
||||||
|
print('%g/%g: %s... ' % (i + 1, n, s), end='')
|
||||||
|
cap = cv2.VideoCapture(eval(s) if s.isnumeric() else s)
|
||||||
|
assert cap.isOpened(), 'Failed to open %s' % s
|
||||||
|
w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
||||||
|
h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
||||||
|
fps = cap.get(cv2.CAP_PROP_FPS) % 100
|
||||||
|
_, self.imgs[i] = cap.read() # guarantee first frame
|
||||||
|
thread = Thread(target=self.update, args=([i, cap]), daemon=True)
|
||||||
|
print(' success (%gx%g at %.2f FPS).' % (w, h, fps))
|
||||||
|
thread.start()
|
||||||
|
print('') # newline
|
||||||
|
|
||||||
|
# check for common shapes
|
||||||
|
s = np.stack([letterbox(x, new_shape=self.img_size)[0].shape for x in self.imgs], 0) # inference shapes
|
||||||
|
self.rect = np.unique(s, axis=0).shape[0] == 1 # rect inference if all shapes equal
|
||||||
|
if not self.rect:
|
||||||
|
print('WARNING: Different stream shapes detected. For optimal performance supply similarly-shaped streams.')
|
||||||
|
|
||||||
|
def update(self, index, cap):
|
||||||
|
# Read next stream frame in a daemon thread
|
||||||
|
n = 0
|
||||||
|
while cap.isOpened():
|
||||||
|
n += 1
|
||||||
|
# _, self.imgs[index] = cap.read()
|
||||||
|
cap.grab()
|
||||||
|
if n == 4: # read every 4th frame
|
||||||
|
_, self.imgs[index] = cap.retrieve()
|
||||||
|
n = 0
|
||||||
|
time.sleep(0.01) # wait time
|
||||||
|
|
||||||
|
def __iter__(self):
|
||||||
|
self.count = -1
|
||||||
|
return self
|
||||||
|
|
||||||
|
def __next__(self):
|
||||||
|
self.count += 1
|
||||||
|
img0 = self.imgs.copy()
|
||||||
|
if cv2.waitKey(1) == ord('q'): # q to quit
|
||||||
|
cv2.destroyAllWindows()
|
||||||
|
raise StopIteration
|
||||||
|
|
||||||
|
# Letterbox
|
||||||
|
img = [letterbox(x, new_shape=self.img_size, auto=self.rect)[0] for x in img0]
|
||||||
|
|
||||||
|
# Stack
|
||||||
|
img = np.stack(img, 0)
|
||||||
|
|
||||||
|
# Convert
|
||||||
|
img = img[:, :, :, ::-1].transpose(0, 3, 1, 2) # BGR to RGB, to bsx3x416x416
|
||||||
|
img = np.ascontiguousarray(img)
|
||||||
|
|
||||||
|
return self.sources, img, img0, None
|
||||||
|
|
||||||
|
def __len__(self):
|
||||||
|
return 0 # 1E12 frames = 32 streams at 30 FPS for 30 years
|
||||||
|
|
||||||
|
|
||||||
|
def img2label_paths(img_paths):
|
||||||
|
# Define label paths as a function of image paths
|
||||||
|
sa, sb = os.sep + 'images' + os.sep, os.sep + 'labels' + os.sep # /images/, /labels/ substrings
|
||||||
|
return [x.replace(sa, sb, 1).replace('.' + x.split('.')[-1], '.txt') for x in img_paths]
|
||||||
|
|
||||||
|
|
||||||
|
class LoadImagesAndLabels(Dataset): # for training/testing
|
||||||
|
def __init__(self, path, img_size=640, batch_size=16, augment=False, hyp=None, rect=False, image_weights=False,
|
||||||
|
cache_images=False, single_cls=False, stride=32, pad=0.0, rank=-1):
|
||||||
|
self.img_size = img_size
|
||||||
|
self.augment = augment
|
||||||
|
self.hyp = hyp
|
||||||
|
self.image_weights = image_weights
|
||||||
|
self.rect = False if image_weights else rect
|
||||||
|
self.mosaic = self.augment and not self.rect # load 4 images at a time into a mosaic (only during training)
|
||||||
|
self.mosaic_border = [-img_size // 2, -img_size // 2]
|
||||||
|
self.stride = stride
|
||||||
|
|
||||||
|
try:
|
||||||
|
f = [] # image files
|
||||||
|
for p in path if isinstance(path, list) else [path]:
|
||||||
|
p = Path(p) # os-agnostic
|
||||||
|
if p.is_dir(): # dir
|
||||||
|
f += glob.glob(str(p / '**' / '*.*'), recursive=True)
|
||||||
|
elif p.is_file(): # file
|
||||||
|
with open(p, 'r') as t:
|
||||||
|
t = t.read().strip().splitlines()
|
||||||
|
parent = str(p.parent) + os.sep
|
||||||
|
f += [x.replace('./', parent) if x.startswith('./') else x for x in t] # local to global path
|
||||||
|
else:
|
||||||
|
raise Exception('%s does not exist' % p)
|
||||||
|
self.img_files = sorted([x.replace('/', os.sep) for x in f if x.split('.')[-1].lower() in img_formats])
|
||||||
|
assert self.img_files, 'No images found'
|
||||||
|
except Exception as e:
|
||||||
|
raise Exception('Error loading data from %s: %s\nSee %s' % (path, e, help_url))
|
||||||
|
|
||||||
|
# Check cache
|
||||||
|
self.label_files = img2label_paths(self.img_files) # labels
|
||||||
|
cache_path = Path(self.label_files[0]).parent.with_suffix('.cache') # cached labels
|
||||||
|
if cache_path.is_file():
|
||||||
|
cache = torch.load(cache_path) # load
|
||||||
|
if cache['hash'] != get_hash(self.label_files + self.img_files) or 'results' not in cache: # changed
|
||||||
|
cache = self.cache_labels(cache_path) # re-cache
|
||||||
|
else:
|
||||||
|
cache = self.cache_labels(cache_path) # cache
|
||||||
|
|
||||||
|
# Display cache
|
||||||
|
[nf, nm, ne, nc, n] = cache.pop('results') # found, missing, empty, corrupted, total
|
||||||
|
desc = f"Scanning '{cache_path}' for images and labels... {nf} found, {nm} missing, {ne} empty, {nc} corrupted"
|
||||||
|
tqdm(None, desc=desc, total=n, initial=n)
|
||||||
|
assert nf > 0 or not augment, f'No labels found in {cache_path}. Can not train without labels. See {help_url}'
|
||||||
|
|
||||||
|
# Read cache
|
||||||
|
cache.pop('hash') # remove hash
|
||||||
|
labels, shapes = zip(*cache.values())
|
||||||
|
self.labels = list(labels)
|
||||||
|
self.shapes = np.array(shapes, dtype=np.float64)
|
||||||
|
self.img_files = list(cache.keys()) # update
|
||||||
|
self.label_files = img2label_paths(cache.keys()) # update
|
||||||
|
if single_cls:
|
||||||
|
for x in self.labels:
|
||||||
|
x[:, 0] = 0
|
||||||
|
|
||||||
|
n = len(shapes) # number of images
|
||||||
|
bi = np.floor(np.arange(n) / batch_size).astype(np.int) # batch index
|
||||||
|
nb = bi[-1] + 1 # number of batches
|
||||||
|
self.batch = bi # batch index of image
|
||||||
|
self.n = n
|
||||||
|
self.indices = range(n)
|
||||||
|
|
||||||
|
# Rectangular Training
|
||||||
|
if self.rect:
|
||||||
|
# Sort by aspect ratio
|
||||||
|
s = self.shapes # wh
|
||||||
|
ar = s[:, 1] / s[:, 0] # aspect ratio
|
||||||
|
irect = ar.argsort()
|
||||||
|
self.img_files = [self.img_files[i] for i in irect]
|
||||||
|
self.label_files = [self.label_files[i] for i in irect]
|
||||||
|
self.labels = [self.labels[i] for i in irect]
|
||||||
|
self.shapes = s[irect] # wh
|
||||||
|
ar = ar[irect]
|
||||||
|
|
||||||
|
# Set training image shapes
|
||||||
|
shapes = [[1, 1]] * nb
|
||||||
|
for i in range(nb):
|
||||||
|
ari = ar[bi == i]
|
||||||
|
mini, maxi = ari.min(), ari.max()
|
||||||
|
if maxi < 1:
|
||||||
|
shapes[i] = [maxi, 1]
|
||||||
|
elif mini > 1:
|
||||||
|
shapes[i] = [1, 1 / mini]
|
||||||
|
|
||||||
|
self.batch_shapes = np.ceil(np.array(shapes) * img_size / stride + pad).astype(np.int) * stride
|
||||||
|
|
||||||
|
# Cache images into memory for faster training (WARNING: large datasets may exceed system RAM)
|
||||||
|
self.imgs = [None] * n
|
||||||
|
if cache_images:
|
||||||
|
gb = 0 # Gigabytes of cached images
|
||||||
|
self.img_hw0, self.img_hw = [None] * n, [None] * n
|
||||||
|
results = ThreadPool(8).imap(lambda x: load_image(*x), zip(repeat(self), range(n))) # 8 threads
|
||||||
|
pbar = tqdm(enumerate(results), total=n)
|
||||||
|
for i, x in pbar:
|
||||||
|
self.imgs[i], self.img_hw0[i], self.img_hw[i] = x # img, hw_original, hw_resized = load_image(self, i)
|
||||||
|
gb += self.imgs[i].nbytes
|
||||||
|
pbar.desc = 'Caching images (%.1fGB)' % (gb / 1E9)
|
||||||
|
|
||||||
|
def cache_labels(self, path=Path('./labels.cache')):
|
||||||
|
# Cache dataset labels, check images and read shapes
|
||||||
|
x = {} # dict
|
||||||
|
nm, nf, ne, nc = 0, 0, 0, 0 # number missing, found, empty, duplicate
|
||||||
|
pbar = tqdm(zip(self.img_files, self.label_files), desc='Scanning images', total=len(self.img_files))
|
||||||
|
for i, (im_file, lb_file) in enumerate(pbar):
|
||||||
|
try:
|
||||||
|
# verify images
|
||||||
|
im = Image.open(im_file)
|
||||||
|
im.verify() # PIL verify
|
||||||
|
shape = exif_size(im) # image size
|
||||||
|
assert (shape[0] > 9) & (shape[1] > 9), 'image size <10 pixels'
|
||||||
|
|
||||||
|
# verify labels
|
||||||
|
if os.path.isfile(lb_file):
|
||||||
|
nf += 1 # label found
|
||||||
|
with open(lb_file, 'r') as f:
|
||||||
|
l = np.array([x.split() for x in f.read().strip().splitlines()], dtype=np.float32) # labels
|
||||||
|
if len(l):
|
||||||
|
assert l.shape[1] == 5, 'labels require 5 columns each'
|
||||||
|
assert (l >= 0).all(), 'negative labels'
|
||||||
|
assert (l[:, 1:] <= 1).all(), 'non-normalized or out of bounds coordinate labels'
|
||||||
|
assert np.unique(l, axis=0).shape[0] == l.shape[0], 'duplicate labels'
|
||||||
|
else:
|
||||||
|
ne += 1 # label empty
|
||||||
|
l = np.zeros((0, 5), dtype=np.float32)
|
||||||
|
else:
|
||||||
|
nm += 1 # label missing
|
||||||
|
l = np.zeros((0, 5), dtype=np.float32)
|
||||||
|
x[im_file] = [l, shape]
|
||||||
|
except Exception as e:
|
||||||
|
nc += 1
|
||||||
|
print('WARNING: Ignoring corrupted image and/or label %s: %s' % (im_file, e))
|
||||||
|
|
||||||
|
pbar.desc = f"Scanning '{path.parent / path.stem}' for images and labels... " \
|
||||||
|
f"{nf} found, {nm} missing, {ne} empty, {nc} corrupted"
|
||||||
|
|
||||||
|
if nf == 0:
|
||||||
|
print(f'WARNING: No labels found in {path}. See {help_url}')
|
||||||
|
|
||||||
|
x['hash'] = get_hash(self.label_files + self.img_files)
|
||||||
|
x['results'] = [nf, nm, ne, nc, i + 1]
|
||||||
|
torch.save(x, path) # save for next time
|
||||||
|
logging.info(f"New cache created: {path}")
|
||||||
|
return x
|
||||||
|
|
||||||
|
def __len__(self):
|
||||||
|
return len(self.img_files)
|
||||||
|
|
||||||
|
# def __iter__(self):
|
||||||
|
# self.count = -1
|
||||||
|
# print('ran dataset iter')
|
||||||
|
# #self.shuffled_vector = np.random.permutation(self.nF) if self.augment else np.arange(self.nF)
|
||||||
|
# return self
|
||||||
|
|
||||||
|
def __getitem__(self, index):
|
||||||
|
index = self.indices[index] # linear, shuffled, or image_weights
|
||||||
|
|
||||||
|
hyp = self.hyp
|
||||||
|
mosaic = self.mosaic and random.random() < hyp['mosaic']
|
||||||
|
if mosaic:
|
||||||
|
# Load mosaic
|
||||||
|
img, labels = load_mosaic(self, index)
|
||||||
|
shapes = None
|
||||||
|
|
||||||
|
# MixUp https://arxiv.org/pdf/1710.09412.pdf
|
||||||
|
if random.random() < hyp['mixup']:
|
||||||
|
img2, labels2 = load_mosaic(self, random.randint(0, self.n - 1))
|
||||||
|
r = np.random.beta(8.0, 8.0) # mixup ratio, alpha=beta=8.0
|
||||||
|
img = (img * r + img2 * (1 - r)).astype(np.uint8)
|
||||||
|
labels = np.concatenate((labels, labels2), 0)
|
||||||
|
|
||||||
|
else:
|
||||||
|
# Load image
|
||||||
|
img, (h0, w0), (h, w) = load_image(self, index)
|
||||||
|
|
||||||
|
# Letterbox
|
||||||
|
shape = self.batch_shapes[self.batch[index]] if self.rect else self.img_size # final letterboxed shape
|
||||||
|
img, ratio, pad = letterbox(img, shape, auto=False, scaleup=self.augment)
|
||||||
|
shapes = (h0, w0), ((h / h0, w / w0), pad) # for COCO mAP rescaling
|
||||||
|
|
||||||
|
# Load labels
|
||||||
|
labels = []
|
||||||
|
x = self.labels[index]
|
||||||
|
if x.size > 0:
|
||||||
|
# Normalized xywh to pixel xyxy format
|
||||||
|
labels = x.copy()
|
||||||
|
labels[:, 1] = ratio[0] * w * (x[:, 1] - x[:, 3] / 2) + pad[0] # pad width
|
||||||
|
labels[:, 2] = ratio[1] * h * (x[:, 2] - x[:, 4] / 2) + pad[1] # pad height
|
||||||
|
labels[:, 3] = ratio[0] * w * (x[:, 1] + x[:, 3] / 2) + pad[0]
|
||||||
|
labels[:, 4] = ratio[1] * h * (x[:, 2] + x[:, 4] / 2) + pad[1]
|
||||||
|
|
||||||
|
if self.augment:
|
||||||
|
# Augment imagespace
|
||||||
|
if not mosaic:
|
||||||
|
img, labels = random_perspective(img, labels,
|
||||||
|
degrees=hyp['degrees'],
|
||||||
|
translate=hyp['translate'],
|
||||||
|
scale=hyp['scale'],
|
||||||
|
shear=hyp['shear'],
|
||||||
|
perspective=hyp['perspective'])
|
||||||
|
|
||||||
|
# Augment colorspace
|
||||||
|
augment_hsv(img, hgain=hyp['hsv_h'], sgain=hyp['hsv_s'], vgain=hyp['hsv_v'])
|
||||||
|
|
||||||
|
# Apply cutouts
|
||||||
|
# if random.random() < 0.9:
|
||||||
|
# labels = cutout(img, labels)
|
||||||
|
|
||||||
|
nL = len(labels) # number of labels
|
||||||
|
if nL:
|
||||||
|
labels[:, 1:5] = xyxy2xywh(labels[:, 1:5]) # convert xyxy to xywh
|
||||||
|
labels[:, [2, 4]] /= img.shape[0] # normalized height 0-1
|
||||||
|
labels[:, [1, 3]] /= img.shape[1] # normalized width 0-1
|
||||||
|
|
||||||
|
if self.augment:
|
||||||
|
# flip up-down
|
||||||
|
if random.random() < hyp['flipud']:
|
||||||
|
img = np.flipud(img)
|
||||||
|
if nL:
|
||||||
|
labels[:, 2] = 1 - labels[:, 2]
|
||||||
|
|
||||||
|
# flip left-right
|
||||||
|
if random.random() < hyp['fliplr']:
|
||||||
|
img = np.fliplr(img)
|
||||||
|
if nL:
|
||||||
|
labels[:, 1] = 1 - labels[:, 1]
|
||||||
|
|
||||||
|
labels_out = torch.zeros((nL, 6))
|
||||||
|
if nL:
|
||||||
|
labels_out[:, 1:] = torch.from_numpy(labels)
|
||||||
|
|
||||||
|
# Convert
|
||||||
|
img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
|
||||||
|
img = np.ascontiguousarray(img)
|
||||||
|
|
||||||
|
return torch.from_numpy(img), labels_out, self.img_files[index], shapes
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def collate_fn(batch):
|
||||||
|
img, label, path, shapes = zip(*batch) # transposed
|
||||||
|
for i, l in enumerate(label):
|
||||||
|
l[:, 0] = i # add target image index for build_targets()
|
||||||
|
return torch.stack(img, 0), torch.cat(label, 0), path, shapes
|
||||||
|
|
||||||
|
|
||||||
|
# Ancillary functions --------------------------------------------------------------------------------------------------
|
||||||
|
def load_image(self, index):
|
||||||
|
# loads 1 image from dataset, returns img, original hw, resized hw
|
||||||
|
img = self.imgs[index]
|
||||||
|
if img is None: # not cached
|
||||||
|
path = self.img_files[index]
|
||||||
|
img = cv2.imread(path) # BGR
|
||||||
|
assert img is not None, 'Image Not Found ' + path
|
||||||
|
h0, w0 = img.shape[:2] # orig hw
|
||||||
|
r = self.img_size / max(h0, w0) # resize image to img_size
|
||||||
|
if r != 1: # always resize down, only resize up if training with augmentation
|
||||||
|
interp = cv2.INTER_AREA if r < 1 and not self.augment else cv2.INTER_LINEAR
|
||||||
|
img = cv2.resize(img, (int(w0 * r), int(h0 * r)), interpolation=interp)
|
||||||
|
return img, (h0, w0), img.shape[:2] # img, hw_original, hw_resized
|
||||||
|
else:
|
||||||
|
return self.imgs[index], self.img_hw0[index], self.img_hw[index] # img, hw_original, hw_resized
|
||||||
|
|
||||||
|
|
||||||
|
def augment_hsv(img, hgain=0.5, sgain=0.5, vgain=0.5):
|
||||||
|
r = np.random.uniform(-1, 1, 3) * [hgain, sgain, vgain] + 1 # random gains
|
||||||
|
hue, sat, val = cv2.split(cv2.cvtColor(img, cv2.COLOR_BGR2HSV))
|
||||||
|
dtype = img.dtype # uint8
|
||||||
|
|
||||||
|
x = np.arange(0, 256, dtype=np.int16)
|
||||||
|
lut_hue = ((x * r[0]) % 180).astype(dtype)
|
||||||
|
lut_sat = np.clip(x * r[1], 0, 255).astype(dtype)
|
||||||
|
lut_val = np.clip(x * r[2], 0, 255).astype(dtype)
|
||||||
|
|
||||||
|
img_hsv = cv2.merge((cv2.LUT(hue, lut_hue), cv2.LUT(sat, lut_sat), cv2.LUT(val, lut_val))).astype(dtype)
|
||||||
|
cv2.cvtColor(img_hsv, cv2.COLOR_HSV2BGR, dst=img) # no return needed
|
||||||
|
|
||||||
|
# Histogram equalization
|
||||||
|
# if random.random() < 0.2:
|
||||||
|
# for i in range(3):
|
||||||
|
# img[:, :, i] = cv2.equalizeHist(img[:, :, i])
|
||||||
|
|
||||||
|
|
||||||
|
def load_mosaic(self, index):
|
||||||
|
# loads images in a mosaic
|
||||||
|
|
||||||
|
labels4 = []
|
||||||
|
s = self.img_size
|
||||||
|
yc, xc = [int(random.uniform(-x, 2 * s + x)) for x in self.mosaic_border] # mosaic center x, y
|
||||||
|
indices = [index] + [self.indices[random.randint(0, self.n - 1)] for _ in range(3)] # 3 additional image indices
|
||||||
|
for i, index in enumerate(indices):
|
||||||
|
# Load image
|
||||||
|
img, _, (h, w) = load_image(self, index)
|
||||||
|
|
||||||
|
# place img in img4
|
||||||
|
if i == 0: # top left
|
||||||
|
img4 = np.full((s * 2, s * 2, img.shape[2]), 114, dtype=np.uint8) # base image with 4 tiles
|
||||||
|
x1a, y1a, x2a, y2a = max(xc - w, 0), max(yc - h, 0), xc, yc # xmin, ymin, xmax, ymax (large image)
|
||||||
|
x1b, y1b, x2b, y2b = w - (x2a - x1a), h - (y2a - y1a), w, h # xmin, ymin, xmax, ymax (small image)
|
||||||
|
elif i == 1: # top right
|
||||||
|
x1a, y1a, x2a, y2a = xc, max(yc - h, 0), min(xc + w, s * 2), yc
|
||||||
|
x1b, y1b, x2b, y2b = 0, h - (y2a - y1a), min(w, x2a - x1a), h
|
||||||
|
elif i == 2: # bottom left
|
||||||
|
x1a, y1a, x2a, y2a = max(xc - w, 0), yc, xc, min(s * 2, yc + h)
|
||||||
|
x1b, y1b, x2b, y2b = w - (x2a - x1a), 0, w, min(y2a - y1a, h)
|
||||||
|
elif i == 3: # bottom right
|
||||||
|
x1a, y1a, x2a, y2a = xc, yc, min(xc + w, s * 2), min(s * 2, yc + h)
|
||||||
|
x1b, y1b, x2b, y2b = 0, 0, min(w, x2a - x1a), min(y2a - y1a, h)
|
||||||
|
|
||||||
|
img4[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b] # img4[ymin:ymax, xmin:xmax]
|
||||||
|
padw = x1a - x1b
|
||||||
|
padh = y1a - y1b
|
||||||
|
|
||||||
|
# Labels
|
||||||
|
x = self.labels[index]
|
||||||
|
labels = x.copy()
|
||||||
|
if x.size > 0: # Normalized xywh to pixel xyxy format
|
||||||
|
labels[:, 1] = w * (x[:, 1] - x[:, 3] / 2) + padw
|
||||||
|
labels[:, 2] = h * (x[:, 2] - x[:, 4] / 2) + padh
|
||||||
|
labels[:, 3] = w * (x[:, 1] + x[:, 3] / 2) + padw
|
||||||
|
labels[:, 4] = h * (x[:, 2] + x[:, 4] / 2) + padh
|
||||||
|
labels4.append(labels)
|
||||||
|
|
||||||
|
# Concat/clip labels
|
||||||
|
if len(labels4):
|
||||||
|
labels4 = np.concatenate(labels4, 0)
|
||||||
|
np.clip(labels4[:, 1:], 0, 2 * s, out=labels4[:, 1:]) # use with random_perspective
|
||||||
|
# img4, labels4 = replicate(img4, labels4) # replicate
|
||||||
|
|
||||||
|
# Augment
|
||||||
|
img4, labels4 = random_perspective(img4, labels4,
|
||||||
|
degrees=self.hyp['degrees'],
|
||||||
|
translate=self.hyp['translate'],
|
||||||
|
scale=self.hyp['scale'],
|
||||||
|
shear=self.hyp['shear'],
|
||||||
|
perspective=self.hyp['perspective'],
|
||||||
|
border=self.mosaic_border) # border to remove
|
||||||
|
|
||||||
|
return img4, labels4
|
||||||
|
|
||||||
|
|
||||||
|
def replicate(img, labels):
|
||||||
|
# Replicate labels
|
||||||
|
h, w = img.shape[:2]
|
||||||
|
boxes = labels[:, 1:].astype(int)
|
||||||
|
x1, y1, x2, y2 = boxes.T
|
||||||
|
s = ((x2 - x1) + (y2 - y1)) / 2 # side length (pixels)
|
||||||
|
for i in s.argsort()[:round(s.size * 0.5)]: # smallest indices
|
||||||
|
x1b, y1b, x2b, y2b = boxes[i]
|
||||||
|
bh, bw = y2b - y1b, x2b - x1b
|
||||||
|
yc, xc = int(random.uniform(0, h - bh)), int(random.uniform(0, w - bw)) # offset x, y
|
||||||
|
x1a, y1a, x2a, y2a = [xc, yc, xc + bw, yc + bh]
|
||||||
|
img[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b] # img4[ymin:ymax, xmin:xmax]
|
||||||
|
labels = np.append(labels, [[labels[i, 0], x1a, y1a, x2a, y2a]], axis=0)
|
||||||
|
|
||||||
|
return img, labels
|
||||||
|
|
||||||
|
|
||||||
|
def letterbox(img, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True):
|
||||||
|
# Resize image to a 32-pixel-multiple rectangle https://github.com/ultralytics/yolov3/issues/232
|
||||||
|
shape = img.shape[:2] # current shape [height, width]
|
||||||
|
if isinstance(new_shape, int):
|
||||||
|
new_shape = (new_shape, new_shape)
|
||||||
|
|
||||||
|
# Scale ratio (new / old)
|
||||||
|
r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
|
||||||
|
if not scaleup: # only scale down, do not scale up (for better test mAP)
|
||||||
|
r = min(r, 1.0)
|
||||||
|
|
||||||
|
# Compute padding
|
||||||
|
ratio = r, r # width, height ratios
|
||||||
|
new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
|
||||||
|
dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding
|
||||||
|
if auto: # minimum rectangle
|
||||||
|
dw, dh = np.mod(dw, 32), np.mod(dh, 32) # wh padding
|
||||||
|
elif scaleFill: # stretch
|
||||||
|
dw, dh = 0.0, 0.0
|
||||||
|
new_unpad = (new_shape[1], new_shape[0])
|
||||||
|
ratio = new_shape[1] / shape[1], new_shape[0] / shape[0] # width, height ratios
|
||||||
|
|
||||||
|
dw /= 2 # divide padding into 2 sides
|
||||||
|
dh /= 2
|
||||||
|
|
||||||
|
if shape[::-1] != new_unpad: # resize
|
||||||
|
img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR)
|
||||||
|
top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
|
||||||
|
left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
|
||||||
|
img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # add border
|
||||||
|
return img, ratio, (dw, dh)
|
||||||
|
|
||||||
|
|
||||||
|
def random_perspective(img, targets=(), degrees=10, translate=.1, scale=.1, shear=10, perspective=0.0, border=(0, 0)):
|
||||||
|
# torchvision.transforms.RandomAffine(degrees=(-10, 10), translate=(.1, .1), scale=(.9, 1.1), shear=(-10, 10))
|
||||||
|
# targets = [cls, xyxy]
|
||||||
|
|
||||||
|
height = img.shape[0] + border[0] * 2 # shape(h,w,c)
|
||||||
|
width = img.shape[1] + border[1] * 2
|
||||||
|
|
||||||
|
# Center
|
||||||
|
C = np.eye(3)
|
||||||
|
C[0, 2] = -img.shape[1] / 2 # x translation (pixels)
|
||||||
|
C[1, 2] = -img.shape[0] / 2 # y translation (pixels)
|
||||||
|
|
||||||
|
# Perspective
|
||||||
|
P = np.eye(3)
|
||||||
|
P[2, 0] = random.uniform(-perspective, perspective) # x perspective (about y)
|
||||||
|
P[2, 1] = random.uniform(-perspective, perspective) # y perspective (about x)
|
||||||
|
|
||||||
|
# Rotation and Scale
|
||||||
|
R = np.eye(3)
|
||||||
|
a = random.uniform(-degrees, degrees)
|
||||||
|
# a += random.choice([-180, -90, 0, 90]) # add 90deg rotations to small rotations
|
||||||
|
s = random.uniform(1 - scale, 1 + scale)
|
||||||
|
# s = 2 ** random.uniform(-scale, scale)
|
||||||
|
R[:2] = cv2.getRotationMatrix2D(angle=a, center=(0, 0), scale=s)
|
||||||
|
|
||||||
|
# Shear
|
||||||
|
S = np.eye(3)
|
||||||
|
S[0, 1] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # x shear (deg)
|
||||||
|
S[1, 0] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # y shear (deg)
|
||||||
|
|
||||||
|
# Translation
|
||||||
|
T = np.eye(3)
|
||||||
|
T[0, 2] = random.uniform(0.5 - translate, 0.5 + translate) * width # x translation (pixels)
|
||||||
|
T[1, 2] = random.uniform(0.5 - translate, 0.5 + translate) * height # y translation (pixels)
|
||||||
|
|
||||||
|
# Combined rotation matrix
|
||||||
|
M = T @ S @ R @ P @ C # order of operations (right to left) is IMPORTANT
|
||||||
|
if (border[0] != 0) or (border[1] != 0) or (M != np.eye(3)).any(): # image changed
|
||||||
|
if perspective:
|
||||||
|
img = cv2.warpPerspective(img, M, dsize=(width, height), borderValue=(114, 114, 114))
|
||||||
|
else: # affine
|
||||||
|
img = cv2.warpAffine(img, M[:2], dsize=(width, height), borderValue=(114, 114, 114))
|
||||||
|
|
||||||
|
# Visualize
|
||||||
|
# import matplotlib.pyplot as plt
|
||||||
|
# ax = plt.subplots(1, 2, figsize=(12, 6))[1].ravel()
|
||||||
|
# ax[0].imshow(img[:, :, ::-1]) # base
|
||||||
|
# ax[1].imshow(img2[:, :, ::-1]) # warped
|
||||||
|
|
||||||
|
# Transform label coordinates
|
||||||
|
n = len(targets)
|
||||||
|
if n:
|
||||||
|
# warp points
|
||||||
|
xy = np.ones((n * 4, 3))
|
||||||
|
xy[:, :2] = targets[:, [1, 2, 3, 4, 1, 4, 3, 2]].reshape(n * 4, 2) # x1y1, x2y2, x1y2, x2y1
|
||||||
|
xy = xy @ M.T # transform
|
||||||
|
if perspective:
|
||||||
|
xy = (xy[:, :2] / xy[:, 2:3]).reshape(n, 8) # rescale
|
||||||
|
else: # affine
|
||||||
|
xy = xy[:, :2].reshape(n, 8)
|
||||||
|
|
||||||
|
# create new boxes
|
||||||
|
x = xy[:, [0, 2, 4, 6]]
|
||||||
|
y = xy[:, [1, 3, 5, 7]]
|
||||||
|
xy = np.concatenate((x.min(1), y.min(1), x.max(1), y.max(1))).reshape(4, n).T
|
||||||
|
|
||||||
|
# # apply angle-based reduction of bounding boxes
|
||||||
|
# radians = a * math.pi / 180
|
||||||
|
# reduction = max(abs(math.sin(radians)), abs(math.cos(radians))) ** 0.5
|
||||||
|
# x = (xy[:, 2] + xy[:, 0]) / 2
|
||||||
|
# y = (xy[:, 3] + xy[:, 1]) / 2
|
||||||
|
# w = (xy[:, 2] - xy[:, 0]) * reduction
|
||||||
|
# h = (xy[:, 3] - xy[:, 1]) * reduction
|
||||||
|
# xy = np.concatenate((x - w / 2, y - h / 2, x + w / 2, y + h / 2)).reshape(4, n).T
|
||||||
|
|
||||||
|
# clip boxes
|
||||||
|
xy[:, [0, 2]] = xy[:, [0, 2]].clip(0, width)
|
||||||
|
xy[:, [1, 3]] = xy[:, [1, 3]].clip(0, height)
|
||||||
|
|
||||||
|
# filter candidates
|
||||||
|
i = box_candidates(box1=targets[:, 1:5].T * s, box2=xy.T)
|
||||||
|
targets = targets[i]
|
||||||
|
targets[:, 1:5] = xy[i]
|
||||||
|
|
||||||
|
return img, targets
|
||||||
|
|
||||||
|
|
||||||
|
def box_candidates(box1, box2, wh_thr=2, ar_thr=20, area_thr=0.1): # box1(4,n), box2(4,n)
|
||||||
|
# Compute candidate boxes: box1 before augment, box2 after augment, wh_thr (pixels), aspect_ratio_thr, area_ratio
|
||||||
|
w1, h1 = box1[2] - box1[0], box1[3] - box1[1]
|
||||||
|
w2, h2 = box2[2] - box2[0], box2[3] - box2[1]
|
||||||
|
ar = np.maximum(w2 / (h2 + 1e-16), h2 / (w2 + 1e-16)) # aspect ratio
|
||||||
|
return (w2 > wh_thr) & (h2 > wh_thr) & (w2 * h2 / (w1 * h1 + 1e-16) > area_thr) & (ar < ar_thr) # candidates
|
||||||
|
|
||||||
|
|
||||||
|
def cutout(image, labels):
|
||||||
|
# Applies image cutout augmentation https://arxiv.org/abs/1708.04552
|
||||||
|
h, w = image.shape[:2]
|
||||||
|
|
||||||
|
def bbox_ioa(box1, box2):
|
||||||
|
# Returns the intersection over box2 area given box1, box2. box1 is 4, box2 is nx4. boxes are x1y1x2y2
|
||||||
|
box2 = box2.transpose()
|
||||||
|
|
||||||
|
# Get the coordinates of bounding boxes
|
||||||
|
b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3]
|
||||||
|
b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3]
|
||||||
|
|
||||||
|
# Intersection area
|
||||||
|
inter_area = (np.minimum(b1_x2, b2_x2) - np.maximum(b1_x1, b2_x1)).clip(0) * \
|
||||||
|
(np.minimum(b1_y2, b2_y2) - np.maximum(b1_y1, b2_y1)).clip(0)
|
||||||
|
|
||||||
|
# box2 area
|
||||||
|
box2_area = (b2_x2 - b2_x1) * (b2_y2 - b2_y1) + 1e-16
|
||||||
|
|
||||||
|
# Intersection over box2 area
|
||||||
|
return inter_area / box2_area
|
||||||
|
|
||||||
|
# create random masks
|
||||||
|
scales = [0.5] * 1 + [0.25] * 2 + [0.125] * 4 + [0.0625] * 8 + [0.03125] * 16 # image size fraction
|
||||||
|
for s in scales:
|
||||||
|
mask_h = random.randint(1, int(h * s))
|
||||||
|
mask_w = random.randint(1, int(w * s))
|
||||||
|
|
||||||
|
# box
|
||||||
|
xmin = max(0, random.randint(0, w) - mask_w // 2)
|
||||||
|
ymin = max(0, random.randint(0, h) - mask_h // 2)
|
||||||
|
xmax = min(w, xmin + mask_w)
|
||||||
|
ymax = min(h, ymin + mask_h)
|
||||||
|
|
||||||
|
# apply random color mask
|
||||||
|
image[ymin:ymax, xmin:xmax] = [random.randint(64, 191) for _ in range(3)]
|
||||||
|
|
||||||
|
# return unobscured labels
|
||||||
|
if len(labels) and s > 0.03:
|
||||||
|
box = np.array([xmin, ymin, xmax, ymax], dtype=np.float32)
|
||||||
|
ioa = bbox_ioa(box, labels[:, 1:5]) # intersection over area
|
||||||
|
labels = labels[ioa < 0.60] # remove >60% obscured labels
|
||||||
|
|
||||||
|
return labels
|
||||||
|
|
||||||
|
|
||||||
|
def create_folder(path='./new'):
|
||||||
|
# Create folder
|
||||||
|
if os.path.exists(path):
|
||||||
|
shutil.rmtree(path) # delete output folder
|
||||||
|
os.makedirs(path) # make new output folder
|
||||||
|
|
||||||
|
|
||||||
|
def flatten_recursive(path='../coco128'):
|
||||||
|
# Flatten a recursive directory by bringing all files to top level
|
||||||
|
new_path = Path(path + '_flat')
|
||||||
|
create_folder(new_path)
|
||||||
|
for file in tqdm(glob.glob(str(Path(path)) + '/**/*.*', recursive=True)):
|
||||||
|
shutil.copyfile(file, new_path / Path(file).name)
|
||||||
|
|
||||||
|
|
||||||
|
def extract_boxes(path='../coco128/'): # from utils.datasets import *; extract_boxes('../coco128')
|
||||||
|
# Convert detection dataset into classification dataset, with one directory per class
|
||||||
|
|
||||||
|
path = Path(path) # images dir
|
||||||
|
shutil.rmtree(path / 'classifier') if (path / 'classifier').is_dir() else None # remove existing
|
||||||
|
files = list(path.rglob('*.*'))
|
||||||
|
n = len(files) # number of files
|
||||||
|
for im_file in tqdm(files, total=n):
|
||||||
|
if im_file.suffix[1:] in img_formats:
|
||||||
|
# image
|
||||||
|
im = cv2.imread(str(im_file))[..., ::-1] # BGR to RGB
|
||||||
|
h, w = im.shape[:2]
|
||||||
|
|
||||||
|
# labels
|
||||||
|
lb_file = Path(img2label_paths([str(im_file)])[0])
|
||||||
|
if Path(lb_file).exists():
|
||||||
|
with open(lb_file, 'r') as f:
|
||||||
|
lb = np.array([x.split() for x in f.read().strip().splitlines()], dtype=np.float32) # labels
|
||||||
|
|
||||||
|
for j, x in enumerate(lb):
|
||||||
|
c = int(x[0]) # class
|
||||||
|
f = (path / 'classifier') / f'{c}' / f'{path.stem}_{im_file.stem}_{j}.jpg' # new filename
|
||||||
|
if not f.parent.is_dir():
|
||||||
|
f.parent.mkdir(parents=True)
|
||||||
|
|
||||||
|
b = x[1:] * [w, h, w, h] # box
|
||||||
|
# b[2:] = b[2:].max() # rectangle to square
|
||||||
|
b[2:] = b[2:] * 1.2 + 3 # pad
|
||||||
|
b = xywh2xyxy(b.reshape(-1, 4)).ravel().astype(np.int)
|
||||||
|
|
||||||
|
b[[0, 2]] = np.clip(b[[0, 2]], 0, w) # clip boxes outside of image
|
||||||
|
b[[1, 3]] = np.clip(b[[1, 3]], 0, h)
|
||||||
|
assert cv2.imwrite(str(f), im[b[1]:b[3], b[0]:b[2]]), f'box failure in {f}'
|
||||||
|
|
||||||
|
|
||||||
|
def autosplit(path='../coco128', weights=(0.9, 0.1, 0.0)): # from utils.datasets import *; autosplit('../coco128')
|
||||||
|
""" Autosplit a dataset into train/val/test splits and save path/autosplit_*.txt files
|
||||||
|
# Arguments
|
||||||
|
path: Path to images directory
|
||||||
|
weights: Train, val, test weights (list)
|
||||||
|
"""
|
||||||
|
path = Path(path) # images dir
|
||||||
|
files = list(path.rglob('*.*'))
|
||||||
|
n = len(files) # number of files
|
||||||
|
indices = random.choices([0, 1, 2], weights=weights, k=n) # assign each image to a split
|
||||||
|
txt = ['autosplit_train.txt', 'autosplit_val.txt', 'autosplit_test.txt'] # 3 txt files
|
||||||
|
[(path / x).unlink() for x in txt if (path / x).exists()] # remove existing
|
||||||
|
for i, img in tqdm(zip(indices, files), total=n):
|
||||||
|
if img.suffix[1:] in img_formats:
|
||||||
|
with open(path / txt[i], 'a') as f:
|
||||||
|
f.write(str(img) + '\n') # add image to txt file
|
445
yolov5/utils/general.py
Normal file
445
yolov5/utils/general.py
Normal file
@ -0,0 +1,445 @@
|
|||||||
|
# General utils
|
||||||
|
|
||||||
|
import glob
|
||||||
|
import logging
|
||||||
|
import math
|
||||||
|
import os
|
||||||
|
import platform
|
||||||
|
import random
|
||||||
|
import re
|
||||||
|
import subprocess
|
||||||
|
import time
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
import cv2
|
||||||
|
import numpy as np
|
||||||
|
import torch
|
||||||
|
import torchvision
|
||||||
|
import yaml
|
||||||
|
|
||||||
|
from utils.google_utils import gsutil_getsize
|
||||||
|
from utils.metrics import fitness
|
||||||
|
from utils.torch_utils import init_torch_seeds
|
||||||
|
|
||||||
|
# Settings
|
||||||
|
torch.set_printoptions(linewidth=320, precision=5, profile='long')
|
||||||
|
np.set_printoptions(linewidth=320, formatter={'float_kind': '{:11.5g}'.format}) # format short g, %precision=5
|
||||||
|
cv2.setNumThreads(0) # prevent OpenCV from multithreading (incompatible with PyTorch DataLoader)
|
||||||
|
|
||||||
|
|
||||||
|
def set_logging(rank=-1):
|
||||||
|
logging.basicConfig(
|
||||||
|
format="%(message)s",
|
||||||
|
level=logging.INFO if rank in [-1, 0] else logging.WARN)
|
||||||
|
|
||||||
|
|
||||||
|
def init_seeds(seed=0):
|
||||||
|
random.seed(seed)
|
||||||
|
np.random.seed(seed)
|
||||||
|
init_torch_seeds(seed)
|
||||||
|
|
||||||
|
|
||||||
|
def get_latest_run(search_dir='.'):
|
||||||
|
# Return path to most recent 'last.pt' in /runs (i.e. to --resume from)
|
||||||
|
last_list = glob.glob(f'{search_dir}/**/last*.pt', recursive=True)
|
||||||
|
return max(last_list, key=os.path.getctime) if last_list else ''
|
||||||
|
|
||||||
|
|
||||||
|
def check_git_status():
|
||||||
|
# Suggest 'git pull' if repo is out of date
|
||||||
|
if platform.system() in ['Linux', 'Darwin'] and not os.path.isfile('/.dockerenv'):
|
||||||
|
s = subprocess.check_output('if [ -d .git ]; then git fetch && git status -uno; fi', shell=True).decode('utf-8')
|
||||||
|
if 'Your branch is behind' in s:
|
||||||
|
print(s[s.find('Your branch is behind'):s.find('\n\n')] + '\n')
|
||||||
|
|
||||||
|
|
||||||
|
def check_img_size(img_size, s=32):
|
||||||
|
# Verify img_size is a multiple of stride s
|
||||||
|
new_size = make_divisible(img_size, int(s)) # ceil gs-multiple
|
||||||
|
if new_size != img_size:
|
||||||
|
print('WARNING: --img-size %g must be multiple of max stride %g, updating to %g' % (img_size, s, new_size))
|
||||||
|
return new_size
|
||||||
|
|
||||||
|
|
||||||
|
def check_file(file):
|
||||||
|
# Search for file if not found
|
||||||
|
if os.path.isfile(file) or file == '':
|
||||||
|
return file
|
||||||
|
else:
|
||||||
|
files = glob.glob('./**/' + file, recursive=True) # find file
|
||||||
|
assert len(files), 'File Not Found: %s' % file # assert file was found
|
||||||
|
assert len(files) == 1, "Multiple files match '%s', specify exact path: %s" % (file, files) # assert unique
|
||||||
|
return files[0] # return file
|
||||||
|
|
||||||
|
|
||||||
|
def check_dataset(dict):
|
||||||
|
# Download dataset if not found locally
|
||||||
|
val, s = dict.get('val'), dict.get('download')
|
||||||
|
if val and len(val):
|
||||||
|
val = [Path(x).resolve() for x in (val if isinstance(val, list) else [val])] # val path
|
||||||
|
if not all(x.exists() for x in val):
|
||||||
|
print('\nWARNING: Dataset not found, nonexistent paths: %s' % [str(x) for x in val if not x.exists()])
|
||||||
|
if s and len(s): # download script
|
||||||
|
print('Downloading %s ...' % s)
|
||||||
|
if s.startswith('http') and s.endswith('.zip'): # URL
|
||||||
|
f = Path(s).name # filename
|
||||||
|
torch.hub.download_url_to_file(s, f)
|
||||||
|
r = os.system('unzip -q %s -d ../ && rm %s' % (f, f)) # unzip
|
||||||
|
else: # bash script
|
||||||
|
r = os.system(s)
|
||||||
|
print('Dataset autodownload %s\n' % ('success' if r == 0 else 'failure')) # analyze return value
|
||||||
|
else:
|
||||||
|
raise Exception('Dataset not found.')
|
||||||
|
|
||||||
|
|
||||||
|
def make_divisible(x, divisor):
|
||||||
|
# Returns x evenly divisible by divisor
|
||||||
|
return math.ceil(x / divisor) * divisor
|
||||||
|
|
||||||
|
|
||||||
|
def clean_str(s):
|
||||||
|
# Cleans a string by replacing special characters with underscore _
|
||||||
|
return re.sub(pattern="[|@#!¡·$€%&()=?¿^*;:,¨´><+]", repl="_", string=s)
|
||||||
|
|
||||||
|
|
||||||
|
def labels_to_class_weights(labels, nc=80):
|
||||||
|
# Get class weights (inverse frequency) from training labels
|
||||||
|
if labels[0] is None: # no labels loaded
|
||||||
|
return torch.Tensor()
|
||||||
|
|
||||||
|
labels = np.concatenate(labels, 0) # labels.shape = (866643, 5) for COCO
|
||||||
|
classes = labels[:, 0].astype(np.int) # labels = [class xywh]
|
||||||
|
weights = np.bincount(classes, minlength=nc) # occurrences per class
|
||||||
|
|
||||||
|
# Prepend gridpoint count (for uCE training)
|
||||||
|
# gpi = ((320 / 32 * np.array([1, 2, 4])) ** 2 * 3).sum() # gridpoints per image
|
||||||
|
# weights = np.hstack([gpi * len(labels) - weights.sum() * 9, weights * 9]) ** 0.5 # prepend gridpoints to start
|
||||||
|
|
||||||
|
weights[weights == 0] = 1 # replace empty bins with 1
|
||||||
|
weights = 1 / weights # number of targets per class
|
||||||
|
weights /= weights.sum() # normalize
|
||||||
|
return torch.from_numpy(weights)
|
||||||
|
|
||||||
|
|
||||||
|
def labels_to_image_weights(labels, nc=80, class_weights=np.ones(80)):
|
||||||
|
# Produces image weights based on class_weights and image contents
|
||||||
|
class_counts = np.array([np.bincount(x[:, 0].astype(np.int), minlength=nc) for x in labels])
|
||||||
|
image_weights = (class_weights.reshape(1, nc) * class_counts).sum(1)
|
||||||
|
# index = random.choices(range(n), weights=image_weights, k=1) # weight image sample
|
||||||
|
return image_weights
|
||||||
|
|
||||||
|
|
||||||
|
def coco80_to_coco91_class(): # converts 80-index (val2014) to 91-index (paper)
|
||||||
|
# https://tech.amikelive.com/node-718/what-object-categories-labels-are-in-coco-dataset/
|
||||||
|
# a = np.loadtxt('data/coco.names', dtype='str', delimiter='\n')
|
||||||
|
# b = np.loadtxt('data/coco_paper.names', dtype='str', delimiter='\n')
|
||||||
|
# x1 = [list(a[i] == b).index(True) + 1 for i in range(80)] # darknet to coco
|
||||||
|
# x2 = [list(b[i] == a).index(True) if any(b[i] == a) else None for i in range(91)] # coco to darknet
|
||||||
|
x = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 31, 32, 33, 34,
|
||||||
|
35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
|
||||||
|
64, 65, 67, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90]
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
def xyxy2xywh(x):
|
||||||
|
# Convert nx4 boxes from [x1, y1, x2, y2] to [x, y, w, h] where xy1=top-left, xy2=bottom-right
|
||||||
|
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
|
||||||
|
y[:, 0] = (x[:, 0] + x[:, 2]) / 2 # x center
|
||||||
|
y[:, 1] = (x[:, 1] + x[:, 3]) / 2 # y center
|
||||||
|
y[:, 2] = x[:, 2] - x[:, 0] # width
|
||||||
|
y[:, 3] = x[:, 3] - x[:, 1] # height
|
||||||
|
return y
|
||||||
|
|
||||||
|
|
||||||
|
def xywh2xyxy(x):
|
||||||
|
# Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
|
||||||
|
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
|
||||||
|
y[:, 0] = x[:, 0] - x[:, 2] / 2 # top left x
|
||||||
|
y[:, 1] = x[:, 1] - x[:, 3] / 2 # top left y
|
||||||
|
y[:, 2] = x[:, 0] + x[:, 2] / 2 # bottom right x
|
||||||
|
y[:, 3] = x[:, 1] + x[:, 3] / 2 # bottom right y
|
||||||
|
return y
|
||||||
|
|
||||||
|
|
||||||
|
def scale_coords(img1_shape, coords, img0_shape, ratio_pad=None):
|
||||||
|
# Rescale coords (xyxy) from img1_shape to img0_shape
|
||||||
|
if ratio_pad is None: # calculate from img0_shape
|
||||||
|
gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1]) # gain = old / new
|
||||||
|
pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2 # wh padding
|
||||||
|
else:
|
||||||
|
gain = ratio_pad[0][0]
|
||||||
|
pad = ratio_pad[1]
|
||||||
|
|
||||||
|
coords[:, [0, 2]] -= pad[0] # x padding
|
||||||
|
coords[:, [1, 3]] -= pad[1] # y padding
|
||||||
|
coords[:, :4] /= gain
|
||||||
|
clip_coords(coords, img0_shape)
|
||||||
|
return coords
|
||||||
|
|
||||||
|
|
||||||
|
def clip_coords(boxes, img_shape):
|
||||||
|
# Clip bounding xyxy bounding boxes to image shape (height, width)
|
||||||
|
boxes[:, 0].clamp_(0, img_shape[1]) # x1
|
||||||
|
boxes[:, 1].clamp_(0, img_shape[0]) # y1
|
||||||
|
boxes[:, 2].clamp_(0, img_shape[1]) # x2
|
||||||
|
boxes[:, 3].clamp_(0, img_shape[0]) # y2
|
||||||
|
|
||||||
|
|
||||||
|
def bbox_iou(box1, box2, x1y1x2y2=True, GIoU=False, DIoU=False, CIoU=False, eps=1e-9):
|
||||||
|
# Returns the IoU of box1 to box2. box1 is 4, box2 is nx4
|
||||||
|
box2 = box2.T
|
||||||
|
|
||||||
|
# Get the coordinates of bounding boxes
|
||||||
|
if x1y1x2y2: # x1, y1, x2, y2 = box1
|
||||||
|
b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3]
|
||||||
|
b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3]
|
||||||
|
else: # transform from xywh to xyxy
|
||||||
|
b1_x1, b1_x2 = box1[0] - box1[2] / 2, box1[0] + box1[2] / 2
|
||||||
|
b1_y1, b1_y2 = box1[1] - box1[3] / 2, box1[1] + box1[3] / 2
|
||||||
|
b2_x1, b2_x2 = box2[0] - box2[2] / 2, box2[0] + box2[2] / 2
|
||||||
|
b2_y1, b2_y2 = box2[1] - box2[3] / 2, box2[1] + box2[3] / 2
|
||||||
|
|
||||||
|
# Intersection area
|
||||||
|
inter = (torch.min(b1_x2, b2_x2) - torch.max(b1_x1, b2_x1)).clamp(0) * \
|
||||||
|
(torch.min(b1_y2, b2_y2) - torch.max(b1_y1, b2_y1)).clamp(0)
|
||||||
|
|
||||||
|
# Union Area
|
||||||
|
w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 + eps
|
||||||
|
w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 + eps
|
||||||
|
union = w1 * h1 + w2 * h2 - inter + eps
|
||||||
|
|
||||||
|
iou = inter / union
|
||||||
|
if GIoU or DIoU or CIoU:
|
||||||
|
cw = torch.max(b1_x2, b2_x2) - torch.min(b1_x1, b2_x1) # convex (smallest enclosing box) width
|
||||||
|
ch = torch.max(b1_y2, b2_y2) - torch.min(b1_y1, b2_y1) # convex height
|
||||||
|
if CIoU or DIoU: # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1
|
||||||
|
c2 = cw ** 2 + ch ** 2 + eps # convex diagonal squared
|
||||||
|
rho2 = ((b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2 +
|
||||||
|
(b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2) / 4 # center distance squared
|
||||||
|
if DIoU:
|
||||||
|
return iou - rho2 / c2 # DIoU
|
||||||
|
elif CIoU: # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47
|
||||||
|
v = (4 / math.pi ** 2) * torch.pow(torch.atan(w2 / h2) - torch.atan(w1 / h1), 2)
|
||||||
|
with torch.no_grad():
|
||||||
|
alpha = v / ((1 + eps) - iou + v)
|
||||||
|
return iou - (rho2 / c2 + v * alpha) # CIoU
|
||||||
|
else: # GIoU https://arxiv.org/pdf/1902.09630.pdf
|
||||||
|
c_area = cw * ch + eps # convex area
|
||||||
|
return iou - (c_area - union) / c_area # GIoU
|
||||||
|
else:
|
||||||
|
return iou # IoU
|
||||||
|
|
||||||
|
|
||||||
|
def box_iou(box1, box2):
|
||||||
|
# https://github.com/pytorch/vision/blob/master/torchvision/ops/boxes.py
|
||||||
|
"""
|
||||||
|
Return intersection-over-union (Jaccard index) of boxes.
|
||||||
|
Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
|
||||||
|
Arguments:
|
||||||
|
box1 (Tensor[N, 4])
|
||||||
|
box2 (Tensor[M, 4])
|
||||||
|
Returns:
|
||||||
|
iou (Tensor[N, M]): the NxM matrix containing the pairwise
|
||||||
|
IoU values for every element in boxes1 and boxes2
|
||||||
|
"""
|
||||||
|
|
||||||
|
def box_area(box):
|
||||||
|
# box = 4xn
|
||||||
|
return (box[2] - box[0]) * (box[3] - box[1])
|
||||||
|
|
||||||
|
area1 = box_area(box1.T)
|
||||||
|
area2 = box_area(box2.T)
|
||||||
|
|
||||||
|
# inter(N,M) = (rb(N,M,2) - lt(N,M,2)).clamp(0).prod(2)
|
||||||
|
inter = (torch.min(box1[:, None, 2:], box2[:, 2:]) - torch.max(box1[:, None, :2], box2[:, :2])).clamp(0).prod(2)
|
||||||
|
return inter / (area1[:, None] + area2 - inter) # iou = inter / (area1 + area2 - inter)
|
||||||
|
|
||||||
|
|
||||||
|
def wh_iou(wh1, wh2):
|
||||||
|
# Returns the nxm IoU matrix. wh1 is nx2, wh2 is mx2
|
||||||
|
wh1 = wh1[:, None] # [N,1,2]
|
||||||
|
wh2 = wh2[None] # [1,M,2]
|
||||||
|
inter = torch.min(wh1, wh2).prod(2) # [N,M]
|
||||||
|
return inter / (wh1.prod(2) + wh2.prod(2) - inter) # iou = inter / (area1 + area2 - inter)
|
||||||
|
|
||||||
|
|
||||||
|
def non_max_suppression(prediction, conf_thres=0.25, iou_thres=0.45, classes=None, agnostic=False, labels=()):
|
||||||
|
"""Performs Non-Maximum Suppression (NMS) on inference results
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
detections with shape: nx6 (x1, y1, x2, y2, conf, cls)
|
||||||
|
"""
|
||||||
|
|
||||||
|
nc = prediction.shape[2] - 5 # number of classes
|
||||||
|
xc = prediction[..., 4] > conf_thres # candidates
|
||||||
|
|
||||||
|
# Settings
|
||||||
|
min_wh, max_wh = 2, 4096 # (pixels) minimum and maximum box width and height
|
||||||
|
max_det = 300 # maximum number of detections per image
|
||||||
|
time_limit = 10.0 # seconds to quit after
|
||||||
|
redundant = True # require redundant detections
|
||||||
|
multi_label = nc > 1 # multiple labels per box (adds 0.5ms/img)
|
||||||
|
merge = False # use merge-NMS
|
||||||
|
|
||||||
|
t = time.time()
|
||||||
|
output = [torch.zeros((0, 6), device=prediction.device)] * prediction.shape[0]
|
||||||
|
for xi, x in enumerate(prediction): # image index, image inference
|
||||||
|
# Apply constraints
|
||||||
|
# x[((x[..., 2:4] < min_wh) | (x[..., 2:4] > max_wh)).any(1), 4] = 0 # width-height
|
||||||
|
x = x[xc[xi]] # confidence
|
||||||
|
|
||||||
|
# Cat apriori labels if autolabelling
|
||||||
|
if labels and len(labels[xi]):
|
||||||
|
l = labels[xi]
|
||||||
|
v = torch.zeros((len(l), nc + 5), device=x.device)
|
||||||
|
v[:, :4] = l[:, 1:5] # box
|
||||||
|
v[:, 4] = 1.0 # conf
|
||||||
|
v[range(len(l)), l[:, 0].long() + 5] = 1.0 # cls
|
||||||
|
x = torch.cat((x, v), 0)
|
||||||
|
|
||||||
|
# If none remain process next image
|
||||||
|
if not x.shape[0]:
|
||||||
|
continue
|
||||||
|
|
||||||
|
# Compute conf
|
||||||
|
x[:, 5:] *= x[:, 4:5] # conf = obj_conf * cls_conf
|
||||||
|
|
||||||
|
# Box (center x, center y, width, height) to (x1, y1, x2, y2)
|
||||||
|
box = xywh2xyxy(x[:, :4])
|
||||||
|
|
||||||
|
# Detections matrix nx6 (xyxy, conf, cls)
|
||||||
|
if multi_label:
|
||||||
|
i, j = (x[:, 5:] > conf_thres).nonzero(as_tuple=False).T
|
||||||
|
x = torch.cat((box[i], x[i, j + 5, None], j[:, None].float()), 1)
|
||||||
|
else: # best class only
|
||||||
|
conf, j = x[:, 5:].max(1, keepdim=True)
|
||||||
|
x = torch.cat((box, conf, j.float()), 1)[conf.view(-1) > conf_thres]
|
||||||
|
|
||||||
|
# Filter by class
|
||||||
|
if classes is not None:
|
||||||
|
x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)]
|
||||||
|
|
||||||
|
# Apply finite constraint
|
||||||
|
# if not torch.isfinite(x).all():
|
||||||
|
# x = x[torch.isfinite(x).all(1)]
|
||||||
|
|
||||||
|
# If none remain process next image
|
||||||
|
n = x.shape[0] # number of boxes
|
||||||
|
if not n:
|
||||||
|
continue
|
||||||
|
|
||||||
|
# Sort by confidence
|
||||||
|
# x = x[x[:, 4].argsort(descending=True)]
|
||||||
|
|
||||||
|
# Batched NMS
|
||||||
|
c = x[:, 5:6] * (0 if agnostic else max_wh) # classes
|
||||||
|
boxes, scores = x[:, :4] + c, x[:, 4] # boxes (offset by class), scores
|
||||||
|
i = torchvision.ops.nms(boxes, scores, iou_thres) # NMS
|
||||||
|
if i.shape[0] > max_det: # limit detections
|
||||||
|
i = i[:max_det]
|
||||||
|
if merge and (1 < n < 3E3): # Merge NMS (boxes merged using weighted mean)
|
||||||
|
# update boxes as boxes(i,4) = weights(i,n) * boxes(n,4)
|
||||||
|
iou = box_iou(boxes[i], boxes) > iou_thres # iou matrix
|
||||||
|
weights = iou * scores[None] # box weights
|
||||||
|
x[i, :4] = torch.mm(weights, x[:, :4]).float() / weights.sum(1, keepdim=True) # merged boxes
|
||||||
|
if redundant:
|
||||||
|
i = i[iou.sum(1) > 1] # require redundancy
|
||||||
|
|
||||||
|
output[xi] = x[i]
|
||||||
|
if (time.time() - t) > time_limit:
|
||||||
|
break # time limit exceeded
|
||||||
|
|
||||||
|
return output
|
||||||
|
|
||||||
|
|
||||||
|
def strip_optimizer(f='weights/best.pt', s=''): # from utils.general import *; strip_optimizer()
|
||||||
|
# Strip optimizer from 'f' to finalize training, optionally save as 's'
|
||||||
|
x = torch.load(f, map_location=torch.device('cpu'))
|
||||||
|
x['optimizer'] = None
|
||||||
|
x['training_results'] = None
|
||||||
|
x['epoch'] = -1
|
||||||
|
x['model'].half() # to FP16
|
||||||
|
for p in x['model'].parameters():
|
||||||
|
p.requires_grad = False
|
||||||
|
torch.save(x, s or f)
|
||||||
|
mb = os.path.getsize(s or f) / 1E6 # filesize
|
||||||
|
print('Optimizer stripped from %s,%s %.1fMB' % (f, (' saved as %s,' % s) if s else '', mb))
|
||||||
|
|
||||||
|
|
||||||
|
def print_mutation(hyp, results, yaml_file='hyp_evolved.yaml', bucket=''):
|
||||||
|
# Print mutation results to evolve.txt (for use with train.py --evolve)
|
||||||
|
a = '%10s' * len(hyp) % tuple(hyp.keys()) # hyperparam keys
|
||||||
|
b = '%10.3g' * len(hyp) % tuple(hyp.values()) # hyperparam values
|
||||||
|
c = '%10.4g' * len(results) % results # results (P, R, mAP@0.5, mAP@0.5:0.95, val_losses x 3)
|
||||||
|
print('\n%s\n%s\nEvolved fitness: %s\n' % (a, b, c))
|
||||||
|
|
||||||
|
if bucket:
|
||||||
|
url = 'gs://%s/evolve.txt' % bucket
|
||||||
|
if gsutil_getsize(url) > (os.path.getsize('evolve.txt') if os.path.exists('evolve.txt') else 0):
|
||||||
|
os.system('gsutil cp %s .' % url) # download evolve.txt if larger than local
|
||||||
|
|
||||||
|
with open('evolve.txt', 'a') as f: # append result
|
||||||
|
f.write(c + b + '\n')
|
||||||
|
x = np.unique(np.loadtxt('evolve.txt', ndmin=2), axis=0) # load unique rows
|
||||||
|
x = x[np.argsort(-fitness(x))] # sort
|
||||||
|
np.savetxt('evolve.txt', x, '%10.3g') # save sort by fitness
|
||||||
|
|
||||||
|
# Save yaml
|
||||||
|
for i, k in enumerate(hyp.keys()):
|
||||||
|
hyp[k] = float(x[0, i + 7])
|
||||||
|
with open(yaml_file, 'w') as f:
|
||||||
|
results = tuple(x[0, :7])
|
||||||
|
c = '%10.4g' * len(results) % results # results (P, R, mAP@0.5, mAP@0.5:0.95, val_losses x 3)
|
||||||
|
f.write('# Hyperparameter Evolution Results\n# Generations: %g\n# Metrics: ' % len(x) + c + '\n\n')
|
||||||
|
yaml.dump(hyp, f, sort_keys=False)
|
||||||
|
|
||||||
|
if bucket:
|
||||||
|
os.system('gsutil cp evolve.txt %s gs://%s' % (yaml_file, bucket)) # upload
|
||||||
|
|
||||||
|
|
||||||
|
def apply_classifier(x, model, img, im0):
|
||||||
|
# applies a second stage classifier to yolo outputs
|
||||||
|
im0 = [im0] if isinstance(im0, np.ndarray) else im0
|
||||||
|
for i, d in enumerate(x): # per image
|
||||||
|
if d is not None and len(d):
|
||||||
|
d = d.clone()
|
||||||
|
|
||||||
|
# Reshape and pad cutouts
|
||||||
|
b = xyxy2xywh(d[:, :4]) # boxes
|
||||||
|
b[:, 2:] = b[:, 2:].max(1)[0].unsqueeze(1) # rectangle to square
|
||||||
|
b[:, 2:] = b[:, 2:] * 1.3 + 30 # pad
|
||||||
|
d[:, :4] = xywh2xyxy(b).long()
|
||||||
|
|
||||||
|
# Rescale boxes from img_size to im0 size
|
||||||
|
scale_coords(img.shape[2:], d[:, :4], im0[i].shape)
|
||||||
|
|
||||||
|
# Classes
|
||||||
|
pred_cls1 = d[:, 5].long()
|
||||||
|
ims = []
|
||||||
|
for j, a in enumerate(d): # per item
|
||||||
|
cutout = im0[i][int(a[1]):int(a[3]), int(a[0]):int(a[2])]
|
||||||
|
im = cv2.resize(cutout, (224, 224)) # BGR
|
||||||
|
# cv2.imwrite('test%i.jpg' % j, cutout)
|
||||||
|
|
||||||
|
im = im[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
|
||||||
|
im = np.ascontiguousarray(im, dtype=np.float32) # uint8 to float32
|
||||||
|
im /= 255.0 # 0 - 255 to 0.0 - 1.0
|
||||||
|
ims.append(im)
|
||||||
|
|
||||||
|
pred_cls2 = model(torch.Tensor(ims).to(d.device)).argmax(1) # classifier prediction
|
||||||
|
x[i] = x[i][pred_cls1 == pred_cls2] # retain matching class detections
|
||||||
|
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
def increment_path(path, exist_ok=True, sep=''):
|
||||||
|
# Increment path, i.e. runs/exp --> runs/exp{sep}0, runs/exp{sep}1 etc.
|
||||||
|
path = Path(path) # os-agnostic
|
||||||
|
if (path.exists() and exist_ok) or (not path.exists()):
|
||||||
|
return str(path)
|
||||||
|
else:
|
||||||
|
dirs = glob.glob(f"{path}{sep}*") # similar paths
|
||||||
|
matches = [re.search(rf"%s{sep}(\d+)" % path.stem, d) for d in dirs]
|
||||||
|
i = [int(m.groups()[0]) for m in matches if m] # indices
|
||||||
|
n = max(i) + 1 if i else 2 # increment number
|
||||||
|
return f"{path}{sep}{n}" # update path
|
25
yolov5/utils/google_app_engine/Dockerfile
Normal file
25
yolov5/utils/google_app_engine/Dockerfile
Normal file
@ -0,0 +1,25 @@
|
|||||||
|
FROM gcr.io/google-appengine/python
|
||||||
|
|
||||||
|
# Create a virtualenv for dependencies. This isolates these packages from
|
||||||
|
# system-level packages.
|
||||||
|
# Use -p python3 or -p python3.7 to select python version. Default is version 2.
|
||||||
|
RUN virtualenv /env -p python3
|
||||||
|
|
||||||
|
# Setting these environment variables are the same as running
|
||||||
|
# source /env/bin/activate.
|
||||||
|
ENV VIRTUAL_ENV /env
|
||||||
|
ENV PATH /env/bin:$PATH
|
||||||
|
|
||||||
|
RUN apt-get update && apt-get install -y python-opencv
|
||||||
|
|
||||||
|
# Copy the application's requirements.txt and run pip to install all
|
||||||
|
# dependencies into the virtualenv.
|
||||||
|
ADD requirements.txt /app/requirements.txt
|
||||||
|
RUN pip install -r /app/requirements.txt
|
||||||
|
|
||||||
|
# Add the application source code.
|
||||||
|
ADD . /app
|
||||||
|
|
||||||
|
# Run a WSGI server to serve the application. gunicorn must be declared as
|
||||||
|
# a dependency in requirements.txt.
|
||||||
|
CMD gunicorn -b :$PORT main:app
|
@ -0,0 +1,4 @@
|
|||||||
|
# add these requirements in your app on top of the existing ones
|
||||||
|
pip==18.1
|
||||||
|
Flask==1.0.2
|
||||||
|
gunicorn==19.9.0
|
14
yolov5/utils/google_app_engine/app.yaml
Normal file
14
yolov5/utils/google_app_engine/app.yaml
Normal file
@ -0,0 +1,14 @@
|
|||||||
|
runtime: custom
|
||||||
|
env: flex
|
||||||
|
|
||||||
|
service: yolov5app
|
||||||
|
|
||||||
|
liveness_check:
|
||||||
|
initial_delay_sec: 600
|
||||||
|
|
||||||
|
manual_scaling:
|
||||||
|
instances: 1
|
||||||
|
resources:
|
||||||
|
cpu: 1
|
||||||
|
memory_gb: 4
|
||||||
|
disk_size_gb: 20
|
122
yolov5/utils/google_utils.py
Normal file
122
yolov5/utils/google_utils.py
Normal file
@ -0,0 +1,122 @@
|
|||||||
|
# Google utils: https://cloud.google.com/storage/docs/reference/libraries
|
||||||
|
|
||||||
|
import os
|
||||||
|
import platform
|
||||||
|
import subprocess
|
||||||
|
import time
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
import torch
|
||||||
|
|
||||||
|
|
||||||
|
def gsutil_getsize(url=''):
|
||||||
|
# gs://bucket/file size https://cloud.google.com/storage/docs/gsutil/commands/du
|
||||||
|
s = subprocess.check_output('gsutil du %s' % url, shell=True).decode('utf-8')
|
||||||
|
return eval(s.split(' ')[0]) if len(s) else 0 # bytes
|
||||||
|
|
||||||
|
|
||||||
|
def attempt_download(weights):
|
||||||
|
# Attempt to download pretrained weights if not found locally
|
||||||
|
weights = str(weights).strip().replace("'", '')
|
||||||
|
file = Path(weights).name.lower()
|
||||||
|
|
||||||
|
msg = weights + ' missing, try downloading from https://github.com/ultralytics/yolov5/releases/'
|
||||||
|
models = ['yolov5s.pt', 'yolov5m.pt', 'yolov5l.pt', 'yolov5x.pt'] # available models
|
||||||
|
redundant = False # offer second download option
|
||||||
|
|
||||||
|
if file in models and not os.path.isfile(weights):
|
||||||
|
# Google Drive
|
||||||
|
# d = {'yolov5s.pt': '1R5T6rIyy3lLwgFXNms8whc-387H0tMQO',
|
||||||
|
# 'yolov5m.pt': '1vobuEExpWQVpXExsJ2w-Mbf3HJjWkQJr',
|
||||||
|
# 'yolov5l.pt': '1hrlqD1Wdei7UT4OgT785BEk1JwnSvNEV',
|
||||||
|
# 'yolov5x.pt': '1mM8aZJlWTxOg7BZJvNUMrTnA2AbeCVzS'}
|
||||||
|
# r = gdrive_download(id=d[file], name=weights) if file in d else 1
|
||||||
|
# if r == 0 and os.path.exists(weights) and os.path.getsize(weights) > 1E6: # check
|
||||||
|
# return
|
||||||
|
|
||||||
|
try: # GitHub
|
||||||
|
url = 'https://github.com/ultralytics/yolov5/releases/download/v3.1/' + file
|
||||||
|
print('Downloading %s to %s...' % (url, weights))
|
||||||
|
torch.hub.download_url_to_file(url, weights)
|
||||||
|
assert os.path.exists(weights) and os.path.getsize(weights) > 1E6 # check
|
||||||
|
except Exception as e: # GCP
|
||||||
|
print('Download error: %s' % e)
|
||||||
|
assert redundant, 'No secondary mirror'
|
||||||
|
url = 'https://storage.googleapis.com/ultralytics/yolov5/ckpt/' + file
|
||||||
|
print('Downloading %s to %s...' % (url, weights))
|
||||||
|
r = os.system('curl -L %s -o %s' % (url, weights)) # torch.hub.download_url_to_file(url, weights)
|
||||||
|
finally:
|
||||||
|
if not (os.path.exists(weights) and os.path.getsize(weights) > 1E6): # check
|
||||||
|
os.remove(weights) if os.path.exists(weights) else None # remove partial downloads
|
||||||
|
print('ERROR: Download failure: %s' % msg)
|
||||||
|
print('')
|
||||||
|
return
|
||||||
|
|
||||||
|
|
||||||
|
def gdrive_download(id='1uH2BylpFxHKEGXKL6wJJlsgMU2YEjxuc', name='tmp.zip'):
|
||||||
|
# Downloads a file from Google Drive. from utils.google_utils import *; gdrive_download()
|
||||||
|
t = time.time()
|
||||||
|
|
||||||
|
print('Downloading https://drive.google.com/uc?export=download&id=%s as %s... ' % (id, name), end='')
|
||||||
|
os.remove(name) if os.path.exists(name) else None # remove existing
|
||||||
|
os.remove('cookie') if os.path.exists('cookie') else None
|
||||||
|
|
||||||
|
# Attempt file download
|
||||||
|
out = "NUL" if platform.system() == "Windows" else "/dev/null"
|
||||||
|
os.system('curl -c ./cookie -s -L "drive.google.com/uc?export=download&id=%s" > %s ' % (id, out))
|
||||||
|
if os.path.exists('cookie'): # large file
|
||||||
|
s = 'curl -Lb ./cookie "drive.google.com/uc?export=download&confirm=%s&id=%s" -o %s' % (get_token(), id, name)
|
||||||
|
else: # small file
|
||||||
|
s = 'curl -s -L -o %s "drive.google.com/uc?export=download&id=%s"' % (name, id)
|
||||||
|
r = os.system(s) # execute, capture return
|
||||||
|
os.remove('cookie') if os.path.exists('cookie') else None
|
||||||
|
|
||||||
|
# Error check
|
||||||
|
if r != 0:
|
||||||
|
os.remove(name) if os.path.exists(name) else None # remove partial
|
||||||
|
print('Download error ') # raise Exception('Download error')
|
||||||
|
return r
|
||||||
|
|
||||||
|
# Unzip if archive
|
||||||
|
if name.endswith('.zip'):
|
||||||
|
print('unzipping... ', end='')
|
||||||
|
os.system('unzip -q %s' % name) # unzip
|
||||||
|
os.remove(name) # remove zip to free space
|
||||||
|
|
||||||
|
print('Done (%.1fs)' % (time.time() - t))
|
||||||
|
return r
|
||||||
|
|
||||||
|
|
||||||
|
def get_token(cookie="./cookie"):
|
||||||
|
with open(cookie) as f:
|
||||||
|
for line in f:
|
||||||
|
if "download" in line:
|
||||||
|
return line.split()[-1]
|
||||||
|
return ""
|
||||||
|
|
||||||
|
# def upload_blob(bucket_name, source_file_name, destination_blob_name):
|
||||||
|
# # Uploads a file to a bucket
|
||||||
|
# # https://cloud.google.com/storage/docs/uploading-objects#storage-upload-object-python
|
||||||
|
#
|
||||||
|
# storage_client = storage.Client()
|
||||||
|
# bucket = storage_client.get_bucket(bucket_name)
|
||||||
|
# blob = bucket.blob(destination_blob_name)
|
||||||
|
#
|
||||||
|
# blob.upload_from_filename(source_file_name)
|
||||||
|
#
|
||||||
|
# print('File {} uploaded to {}.'.format(
|
||||||
|
# source_file_name,
|
||||||
|
# destination_blob_name))
|
||||||
|
#
|
||||||
|
#
|
||||||
|
# def download_blob(bucket_name, source_blob_name, destination_file_name):
|
||||||
|
# # Uploads a blob from a bucket
|
||||||
|
# storage_client = storage.Client()
|
||||||
|
# bucket = storage_client.get_bucket(bucket_name)
|
||||||
|
# blob = bucket.blob(source_blob_name)
|
||||||
|
#
|
||||||
|
# blob.download_to_filename(destination_file_name)
|
||||||
|
#
|
||||||
|
# print('Blob {} downloaded to {}.'.format(
|
||||||
|
# source_blob_name,
|
||||||
|
# destination_file_name))
|
205
yolov5/utils/loss.py
Normal file
205
yolov5/utils/loss.py
Normal file
@ -0,0 +1,205 @@
|
|||||||
|
# Loss functions
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
|
||||||
|
from utils.general import bbox_iou
|
||||||
|
from utils.torch_utils import is_parallel
|
||||||
|
|
||||||
|
|
||||||
|
def smooth_BCE(eps=0.1): # https://github.com/ultralytics/yolov3/issues/238#issuecomment-598028441
|
||||||
|
# return positive, negative label smoothing BCE targets
|
||||||
|
return 1.0 - 0.5 * eps, 0.5 * eps
|
||||||
|
|
||||||
|
|
||||||
|
class BCEBlurWithLogitsLoss(nn.Module):
|
||||||
|
# BCEwithLogitLoss() with reduced missing label effects.
|
||||||
|
def __init__(self, alpha=0.05):
|
||||||
|
super(BCEBlurWithLogitsLoss, self).__init__()
|
||||||
|
self.loss_fcn = nn.BCEWithLogitsLoss(reduction='none') # must be nn.BCEWithLogitsLoss()
|
||||||
|
self.alpha = alpha
|
||||||
|
|
||||||
|
def forward(self, pred, true):
|
||||||
|
loss = self.loss_fcn(pred, true)
|
||||||
|
pred = torch.sigmoid(pred) # prob from logits
|
||||||
|
dx = pred - true # reduce only missing label effects
|
||||||
|
# dx = (pred - true).abs() # reduce missing label and false label effects
|
||||||
|
alpha_factor = 1 - torch.exp((dx - 1) / (self.alpha + 1e-4))
|
||||||
|
loss *= alpha_factor
|
||||||
|
return loss.mean()
|
||||||
|
|
||||||
|
|
||||||
|
class FocalLoss(nn.Module):
|
||||||
|
# Wraps focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5)
|
||||||
|
def __init__(self, loss_fcn, gamma=1.5, alpha=0.25):
|
||||||
|
super(FocalLoss, self).__init__()
|
||||||
|
self.loss_fcn = loss_fcn # must be nn.BCEWithLogitsLoss()
|
||||||
|
self.gamma = gamma
|
||||||
|
self.alpha = alpha
|
||||||
|
self.reduction = loss_fcn.reduction
|
||||||
|
self.loss_fcn.reduction = 'none' # required to apply FL to each element
|
||||||
|
|
||||||
|
def forward(self, pred, true):
|
||||||
|
loss = self.loss_fcn(pred, true)
|
||||||
|
# p_t = torch.exp(-loss)
|
||||||
|
# loss *= self.alpha * (1.000001 - p_t) ** self.gamma # non-zero power for gradient stability
|
||||||
|
|
||||||
|
# TF implementation https://github.com/tensorflow/addons/blob/v0.7.1/tensorflow_addons/losses/focal_loss.py
|
||||||
|
pred_prob = torch.sigmoid(pred) # prob from logits
|
||||||
|
p_t = true * pred_prob + (1 - true) * (1 - pred_prob)
|
||||||
|
alpha_factor = true * self.alpha + (1 - true) * (1 - self.alpha)
|
||||||
|
modulating_factor = (1.0 - p_t) ** self.gamma
|
||||||
|
loss *= alpha_factor * modulating_factor
|
||||||
|
|
||||||
|
if self.reduction == 'mean':
|
||||||
|
return loss.mean()
|
||||||
|
elif self.reduction == 'sum':
|
||||||
|
return loss.sum()
|
||||||
|
else: # 'none'
|
||||||
|
return loss
|
||||||
|
|
||||||
|
|
||||||
|
class QFocalLoss(nn.Module):
|
||||||
|
# Wraps Quality focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5)
|
||||||
|
def __init__(self, loss_fcn, gamma=1.5, alpha=0.25):
|
||||||
|
super(QFocalLoss, self).__init__()
|
||||||
|
self.loss_fcn = loss_fcn # must be nn.BCEWithLogitsLoss()
|
||||||
|
self.gamma = gamma
|
||||||
|
self.alpha = alpha
|
||||||
|
self.reduction = loss_fcn.reduction
|
||||||
|
self.loss_fcn.reduction = 'none' # required to apply FL to each element
|
||||||
|
|
||||||
|
def forward(self, pred, true):
|
||||||
|
loss = self.loss_fcn(pred, true)
|
||||||
|
|
||||||
|
pred_prob = torch.sigmoid(pred) # prob from logits
|
||||||
|
alpha_factor = true * self.alpha + (1 - true) * (1 - self.alpha)
|
||||||
|
modulating_factor = torch.abs(true - pred_prob) ** self.gamma
|
||||||
|
loss *= alpha_factor * modulating_factor
|
||||||
|
|
||||||
|
if self.reduction == 'mean':
|
||||||
|
return loss.mean()
|
||||||
|
elif self.reduction == 'sum':
|
||||||
|
return loss.sum()
|
||||||
|
else: # 'none'
|
||||||
|
return loss
|
||||||
|
|
||||||
|
|
||||||
|
def compute_loss(p, targets, model): # predictions, targets, model
|
||||||
|
device = targets.device
|
||||||
|
lcls, lbox, lobj = torch.zeros(1, device=device), torch.zeros(1, device=device), torch.zeros(1, device=device)
|
||||||
|
tcls, tbox, indices, anchors = build_targets(p, targets, model) # targets
|
||||||
|
h = model.hyp # hyperparameters
|
||||||
|
|
||||||
|
# Define criteria
|
||||||
|
BCEcls = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['cls_pw']], device=device)) # weight=model.class_weights)
|
||||||
|
BCEobj = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['obj_pw']], device=device))
|
||||||
|
|
||||||
|
# Class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3
|
||||||
|
cp, cn = smooth_BCE(eps=0.0)
|
||||||
|
|
||||||
|
# Focal loss
|
||||||
|
g = h['fl_gamma'] # focal loss gamma
|
||||||
|
if g > 0:
|
||||||
|
BCEcls, BCEobj = FocalLoss(BCEcls, g), FocalLoss(BCEobj, g)
|
||||||
|
|
||||||
|
# Losses
|
||||||
|
nt = 0 # number of targets
|
||||||
|
no = len(p) # number of outputs
|
||||||
|
balance = [4.0, 1.0, 0.4] if no == 3 else [4.0, 1.0, 0.4, 0.1] # P3-5 or P3-6
|
||||||
|
for i, pi in enumerate(p): # layer index, layer predictions
|
||||||
|
b, a, gj, gi = indices[i] # image, anchor, gridy, gridx
|
||||||
|
tobj = torch.zeros_like(pi[..., 0], device=device) # target obj
|
||||||
|
|
||||||
|
n = b.shape[0] # number of targets
|
||||||
|
if n:
|
||||||
|
nt += n # cumulative targets
|
||||||
|
ps = pi[b, a, gj, gi] # prediction subset corresponding to targets
|
||||||
|
|
||||||
|
# Regression
|
||||||
|
pxy = ps[:, :2].sigmoid() * 2. - 0.5
|
||||||
|
pwh = (ps[:, 2:4].sigmoid() * 2) ** 2 * anchors[i]
|
||||||
|
pbox = torch.cat((pxy, pwh), 1) # predicted box
|
||||||
|
iou = bbox_iou(pbox.T, tbox[i], x1y1x2y2=False, CIoU=True) # iou(prediction, target)
|
||||||
|
lbox += (1.0 - iou).mean() # iou loss
|
||||||
|
|
||||||
|
# Objectness
|
||||||
|
tobj[b, a, gj, gi] = (1.0 - model.gr) + model.gr * iou.detach().clamp(0).type(tobj.dtype) # iou ratio
|
||||||
|
|
||||||
|
# Classification
|
||||||
|
if model.nc > 1: # cls loss (only if multiple classes)
|
||||||
|
t = torch.full_like(ps[:, 5:], cn, device=device) # targets
|
||||||
|
t[range(n), tcls[i]] = cp
|
||||||
|
lcls += BCEcls(ps[:, 5:], t) # BCE
|
||||||
|
|
||||||
|
# Append targets to text file
|
||||||
|
# with open('targets.txt', 'a') as file:
|
||||||
|
# [file.write('%11.5g ' * 4 % tuple(x) + '\n') for x in torch.cat((txy[i], twh[i]), 1)]
|
||||||
|
|
||||||
|
lobj += BCEobj(pi[..., 4], tobj) * balance[i] # obj loss
|
||||||
|
|
||||||
|
s = 3 / no # output count scaling
|
||||||
|
lbox *= h['box'] * s
|
||||||
|
lobj *= h['obj'] * s * (1.4 if no == 4 else 1.)
|
||||||
|
lcls *= h['cls'] * s
|
||||||
|
bs = tobj.shape[0] # batch size
|
||||||
|
|
||||||
|
loss = lbox + lobj + lcls
|
||||||
|
return loss * bs, torch.cat((lbox, lobj, lcls, loss)).detach()
|
||||||
|
|
||||||
|
|
||||||
|
def build_targets(p, targets, model):
|
||||||
|
# Build targets for compute_loss(), input targets(image,class,x,y,w,h)
|
||||||
|
det = model.module.model[-1] if is_parallel(model) else model.model[-1] # Detect() module
|
||||||
|
na, nt = det.na, targets.shape[0] # number of anchors, targets
|
||||||
|
tcls, tbox, indices, anch = [], [], [], []
|
||||||
|
gain = torch.ones(7, device=targets.device) # normalized to gridspace gain
|
||||||
|
ai = torch.arange(na, device=targets.device).float().view(na, 1).repeat(1, nt) # same as .repeat_interleave(nt)
|
||||||
|
targets = torch.cat((targets.repeat(na, 1, 1), ai[:, :, None]), 2) # append anchor indices
|
||||||
|
|
||||||
|
g = 0.5 # bias
|
||||||
|
off = torch.tensor([[0, 0],
|
||||||
|
[1, 0], [0, 1], [-1, 0], [0, -1], # j,k,l,m
|
||||||
|
# [1, 1], [1, -1], [-1, 1], [-1, -1], # jk,jm,lk,lm
|
||||||
|
], device=targets.device).float() * g # offsets
|
||||||
|
|
||||||
|
for i in range(det.nl):
|
||||||
|
anchors = det.anchors[i]
|
||||||
|
gain[2:6] = torch.tensor(p[i].shape)[[3, 2, 3, 2]] # xyxy gain
|
||||||
|
|
||||||
|
# Match targets to anchors
|
||||||
|
t = targets * gain
|
||||||
|
if nt:
|
||||||
|
# Matches
|
||||||
|
r = t[:, :, 4:6] / anchors[:, None] # wh ratio
|
||||||
|
j = torch.max(r, 1. / r).max(2)[0] < model.hyp['anchor_t'] # compare
|
||||||
|
# j = wh_iou(anchors, t[:, 4:6]) > model.hyp['iou_t'] # iou(3,n)=wh_iou(anchors(3,2), gwh(n,2))
|
||||||
|
t = t[j] # filter
|
||||||
|
|
||||||
|
# Offsets
|
||||||
|
gxy = t[:, 2:4] # grid xy
|
||||||
|
gxi = gain[[2, 3]] - gxy # inverse
|
||||||
|
j, k = ((gxy % 1. < g) & (gxy > 1.)).T
|
||||||
|
l, m = ((gxi % 1. < g) & (gxi > 1.)).T
|
||||||
|
j = torch.stack((torch.ones_like(j), j, k, l, m))
|
||||||
|
t = t.repeat((5, 1, 1))[j]
|
||||||
|
offsets = (torch.zeros_like(gxy)[None] + off[:, None])[j]
|
||||||
|
else:
|
||||||
|
t = targets[0]
|
||||||
|
offsets = 0
|
||||||
|
|
||||||
|
# Define
|
||||||
|
b, c = t[:, :2].long().T # image, class
|
||||||
|
gxy = t[:, 2:4] # grid xy
|
||||||
|
gwh = t[:, 4:6] # grid wh
|
||||||
|
gij = (gxy - offsets).long()
|
||||||
|
gi, gj = gij.T # grid xy indices
|
||||||
|
|
||||||
|
# Append
|
||||||
|
a = t[:, 6].long() # anchor indices
|
||||||
|
indices.append((b, a, gj.clamp_(0, gain[3] - 1), gi.clamp_(0, gain[2] - 1))) # image, anchor, grid indices
|
||||||
|
tbox.append(torch.cat((gxy - gij, gwh), 1)) # box
|
||||||
|
anch.append(anchors[a]) # anchors
|
||||||
|
tcls.append(c) # class
|
||||||
|
|
||||||
|
return tcls, tbox, indices, anch
|
200
yolov5/utils/metrics.py
Normal file
200
yolov5/utils/metrics.py
Normal file
@ -0,0 +1,200 @@
|
|||||||
|
# Model validation metrics
|
||||||
|
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
import numpy as np
|
||||||
|
import torch
|
||||||
|
|
||||||
|
from . import general
|
||||||
|
|
||||||
|
|
||||||
|
def fitness(x):
|
||||||
|
# Model fitness as a weighted combination of metrics
|
||||||
|
w = [0.0, 0.0, 0.1, 0.9] # weights for [P, R, mAP@0.5, mAP@0.5:0.95]
|
||||||
|
return (x[:, :4] * w).sum(1)
|
||||||
|
|
||||||
|
|
||||||
|
def ap_per_class(tp, conf, pred_cls, target_cls, plot=False, save_dir='precision-recall_curve.png', names=[]):
|
||||||
|
""" Compute the average precision, given the recall and precision curves.
|
||||||
|
Source: https://github.com/rafaelpadilla/Object-Detection-Metrics.
|
||||||
|
# Arguments
|
||||||
|
tp: True positives (nparray, nx1 or nx10).
|
||||||
|
conf: Objectness value from 0-1 (nparray).
|
||||||
|
pred_cls: Predicted object classes (nparray).
|
||||||
|
target_cls: True object classes (nparray).
|
||||||
|
plot: Plot precision-recall curve at mAP@0.5
|
||||||
|
save_dir: Plot save directory
|
||||||
|
# Returns
|
||||||
|
The average precision as computed in py-faster-rcnn.
|
||||||
|
"""
|
||||||
|
|
||||||
|
# Sort by objectness
|
||||||
|
i = np.argsort(-conf)
|
||||||
|
tp, conf, pred_cls = tp[i], conf[i], pred_cls[i]
|
||||||
|
|
||||||
|
# Find unique classes
|
||||||
|
unique_classes = np.unique(target_cls)
|
||||||
|
|
||||||
|
# Create Precision-Recall curve and compute AP for each class
|
||||||
|
px, py = np.linspace(0, 1, 1000), [] # for plotting
|
||||||
|
pr_score = 0.1 # score to evaluate P and R https://github.com/ultralytics/yolov3/issues/898
|
||||||
|
s = [unique_classes.shape[0], tp.shape[1]] # number class, number iou thresholds (i.e. 10 for mAP0.5...0.95)
|
||||||
|
ap, p, r = np.zeros(s), np.zeros(s), np.zeros(s)
|
||||||
|
for ci, c in enumerate(unique_classes):
|
||||||
|
i = pred_cls == c
|
||||||
|
n_l = (target_cls == c).sum() # number of labels
|
||||||
|
n_p = i.sum() # number of predictions
|
||||||
|
|
||||||
|
if n_p == 0 or n_l == 0:
|
||||||
|
continue
|
||||||
|
else:
|
||||||
|
# Accumulate FPs and TPs
|
||||||
|
fpc = (1 - tp[i]).cumsum(0)
|
||||||
|
tpc = tp[i].cumsum(0)
|
||||||
|
|
||||||
|
# Recall
|
||||||
|
recall = tpc / (n_l + 1e-16) # recall curve
|
||||||
|
r[ci] = np.interp(-pr_score, -conf[i], recall[:, 0]) # r at pr_score, negative x, xp because xp decreases
|
||||||
|
|
||||||
|
# Precision
|
||||||
|
precision = tpc / (tpc + fpc) # precision curve
|
||||||
|
p[ci] = np.interp(-pr_score, -conf[i], precision[:, 0]) # p at pr_score
|
||||||
|
|
||||||
|
# AP from recall-precision curve
|
||||||
|
for j in range(tp.shape[1]):
|
||||||
|
ap[ci, j], mpre, mrec = compute_ap(recall[:, j], precision[:, j])
|
||||||
|
if plot and (j == 0):
|
||||||
|
py.append(np.interp(px, mrec, mpre)) # precision at mAP@0.5
|
||||||
|
|
||||||
|
# Compute F1 score (harmonic mean of precision and recall)
|
||||||
|
f1 = 2 * p * r / (p + r + 1e-16)
|
||||||
|
|
||||||
|
if plot:
|
||||||
|
plot_pr_curve(px, py, ap, save_dir, names)
|
||||||
|
|
||||||
|
return p, r, ap, f1, unique_classes.astype('int32')
|
||||||
|
|
||||||
|
|
||||||
|
def compute_ap(recall, precision):
|
||||||
|
""" Compute the average precision, given the recall and precision curves
|
||||||
|
# Arguments
|
||||||
|
recall: The recall curve (list)
|
||||||
|
precision: The precision curve (list)
|
||||||
|
# Returns
|
||||||
|
Average precision, precision curve, recall curve
|
||||||
|
"""
|
||||||
|
|
||||||
|
# Append sentinel values to beginning and end
|
||||||
|
mrec = np.concatenate(([0.], recall, [recall[-1] + 0.01]))
|
||||||
|
mpre = np.concatenate(([1.], precision, [0.]))
|
||||||
|
|
||||||
|
# Compute the precision envelope
|
||||||
|
mpre = np.flip(np.maximum.accumulate(np.flip(mpre)))
|
||||||
|
|
||||||
|
# Integrate area under curve
|
||||||
|
method = 'interp' # methods: 'continuous', 'interp'
|
||||||
|
if method == 'interp':
|
||||||
|
x = np.linspace(0, 1, 101) # 101-point interp (COCO)
|
||||||
|
ap = np.trapz(np.interp(x, mrec, mpre), x) # integrate
|
||||||
|
else: # 'continuous'
|
||||||
|
i = np.where(mrec[1:] != mrec[:-1])[0] # points where x axis (recall) changes
|
||||||
|
ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1]) # area under curve
|
||||||
|
|
||||||
|
return ap, mpre, mrec
|
||||||
|
|
||||||
|
|
||||||
|
class ConfusionMatrix:
|
||||||
|
# Updated version of https://github.com/kaanakan/object_detection_confusion_matrix
|
||||||
|
def __init__(self, nc, conf=0.25, iou_thres=0.45):
|
||||||
|
self.matrix = np.zeros((nc + 1, nc + 1))
|
||||||
|
self.nc = nc # number of classes
|
||||||
|
self.conf = conf
|
||||||
|
self.iou_thres = iou_thres
|
||||||
|
|
||||||
|
def process_batch(self, detections, labels):
|
||||||
|
"""
|
||||||
|
Return intersection-over-union (Jaccard index) of boxes.
|
||||||
|
Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
|
||||||
|
Arguments:
|
||||||
|
detections (Array[N, 6]), x1, y1, x2, y2, conf, class
|
||||||
|
labels (Array[M, 5]), class, x1, y1, x2, y2
|
||||||
|
Returns:
|
||||||
|
None, updates confusion matrix accordingly
|
||||||
|
"""
|
||||||
|
detections = detections[detections[:, 4] > self.conf]
|
||||||
|
gt_classes = labels[:, 0].int()
|
||||||
|
detection_classes = detections[:, 5].int()
|
||||||
|
iou = general.box_iou(labels[:, 1:], detections[:, :4])
|
||||||
|
|
||||||
|
x = torch.where(iou > self.iou_thres)
|
||||||
|
if x[0].shape[0]:
|
||||||
|
matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy()
|
||||||
|
if x[0].shape[0] > 1:
|
||||||
|
matches = matches[matches[:, 2].argsort()[::-1]]
|
||||||
|
matches = matches[np.unique(matches[:, 1], return_index=True)[1]]
|
||||||
|
matches = matches[matches[:, 2].argsort()[::-1]]
|
||||||
|
matches = matches[np.unique(matches[:, 0], return_index=True)[1]]
|
||||||
|
else:
|
||||||
|
matches = np.zeros((0, 3))
|
||||||
|
|
||||||
|
n = matches.shape[0] > 0
|
||||||
|
m0, m1, _ = matches.transpose().astype(np.int16)
|
||||||
|
for i, gc in enumerate(gt_classes):
|
||||||
|
j = m0 == i
|
||||||
|
if n and sum(j) == 1:
|
||||||
|
self.matrix[gc, detection_classes[m1[j]]] += 1 # correct
|
||||||
|
else:
|
||||||
|
self.matrix[gc, self.nc] += 1 # background FP
|
||||||
|
|
||||||
|
if n:
|
||||||
|
for i, dc in enumerate(detection_classes):
|
||||||
|
if not any(m1 == i):
|
||||||
|
self.matrix[self.nc, dc] += 1 # background FN
|
||||||
|
|
||||||
|
def matrix(self):
|
||||||
|
return self.matrix
|
||||||
|
|
||||||
|
def plot(self, save_dir='', names=()):
|
||||||
|
try:
|
||||||
|
import seaborn as sn
|
||||||
|
|
||||||
|
array = self.matrix / (self.matrix.sum(0).reshape(1, self.nc + 1) + 1E-6) # normalize
|
||||||
|
array[array < 0.005] = np.nan # don't annotate (would appear as 0.00)
|
||||||
|
|
||||||
|
fig = plt.figure(figsize=(12, 9), tight_layout=True)
|
||||||
|
sn.set(font_scale=1.0 if self.nc < 50 else 0.8) # for label size
|
||||||
|
labels = (0 < len(names) < 99) and len(names) == self.nc # apply names to ticklabels
|
||||||
|
sn.heatmap(array, annot=self.nc < 30, annot_kws={"size": 8}, cmap='Blues', fmt='.2f', square=True,
|
||||||
|
xticklabels=names + ['background FN'] if labels else "auto",
|
||||||
|
yticklabels=names + ['background FP'] if labels else "auto").set_facecolor((1, 1, 1))
|
||||||
|
fig.axes[0].set_xlabel('True')
|
||||||
|
fig.axes[0].set_ylabel('Predicted')
|
||||||
|
fig.savefig(Path(save_dir) / 'confusion_matrix.png', dpi=250)
|
||||||
|
except Exception as e:
|
||||||
|
pass
|
||||||
|
|
||||||
|
def print(self):
|
||||||
|
for i in range(self.nc + 1):
|
||||||
|
print(' '.join(map(str, self.matrix[i])))
|
||||||
|
|
||||||
|
|
||||||
|
# Plots ----------------------------------------------------------------------------------------------------------------
|
||||||
|
|
||||||
|
def plot_pr_curve(px, py, ap, save_dir='.', names=()):
|
||||||
|
fig, ax = plt.subplots(1, 1, figsize=(9, 6), tight_layout=True)
|
||||||
|
py = np.stack(py, axis=1)
|
||||||
|
|
||||||
|
if 0 < len(names) < 21: # show mAP in legend if < 10 classes
|
||||||
|
for i, y in enumerate(py.T):
|
||||||
|
ax.plot(px, y, linewidth=1, label=f'{names[i]} %.3f' % ap[i, 0]) # plot(recall, precision)
|
||||||
|
else:
|
||||||
|
ax.plot(px, py, linewidth=1, color='grey') # plot(recall, precision)
|
||||||
|
|
||||||
|
ax.plot(px, py.mean(1), linewidth=3, color='blue', label='all classes %.3f mAP@0.5' % ap[:, 0].mean())
|
||||||
|
ax.set_xlabel('Recall')
|
||||||
|
ax.set_ylabel('Precision')
|
||||||
|
ax.set_xlim(0, 1)
|
||||||
|
ax.set_ylim(0, 1)
|
||||||
|
plt.legend(bbox_to_anchor=(1.04, 1), loc="upper left")
|
||||||
|
fig.savefig(Path(save_dir) / 'precision_recall_curve.png', dpi=250)
|
412
yolov5/utils/plots.py
Normal file
412
yolov5/utils/plots.py
Normal file
@ -0,0 +1,412 @@
|
|||||||
|
# Plotting utils
|
||||||
|
|
||||||
|
import glob
|
||||||
|
import math
|
||||||
|
import os
|
||||||
|
import random
|
||||||
|
from copy import copy
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
import cv2
|
||||||
|
import matplotlib
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
import numpy as np
|
||||||
|
import pandas as pd
|
||||||
|
import seaborn as sns
|
||||||
|
import torch
|
||||||
|
import yaml
|
||||||
|
from PIL import Image, ImageDraw
|
||||||
|
from scipy.signal import butter, filtfilt
|
||||||
|
|
||||||
|
from utils.general import xywh2xyxy, xyxy2xywh
|
||||||
|
from utils.metrics import fitness
|
||||||
|
|
||||||
|
# Settings
|
||||||
|
matplotlib.rc('font', **{'size': 11})
|
||||||
|
matplotlib.use('Agg') # for writing to files only
|
||||||
|
|
||||||
|
|
||||||
|
def color_list():
|
||||||
|
# Return first 10 plt colors as (r,g,b) https://stackoverflow.com/questions/51350872/python-from-color-name-to-rgb
|
||||||
|
def hex2rgb(h):
|
||||||
|
return tuple(int(h[1 + i:1 + i + 2], 16) for i in (0, 2, 4))
|
||||||
|
|
||||||
|
return [hex2rgb(h) for h in plt.rcParams['axes.prop_cycle'].by_key()['color']]
|
||||||
|
|
||||||
|
|
||||||
|
def hist2d(x, y, n=100):
|
||||||
|
# 2d histogram used in labels.png and evolve.png
|
||||||
|
xedges, yedges = np.linspace(x.min(), x.max(), n), np.linspace(y.min(), y.max(), n)
|
||||||
|
hist, xedges, yedges = np.histogram2d(x, y, (xedges, yedges))
|
||||||
|
xidx = np.clip(np.digitize(x, xedges) - 1, 0, hist.shape[0] - 1)
|
||||||
|
yidx = np.clip(np.digitize(y, yedges) - 1, 0, hist.shape[1] - 1)
|
||||||
|
return np.log(hist[xidx, yidx])
|
||||||
|
|
||||||
|
|
||||||
|
def butter_lowpass_filtfilt(data, cutoff=1500, fs=50000, order=5):
|
||||||
|
# https://stackoverflow.com/questions/28536191/how-to-filter-smooth-with-scipy-numpy
|
||||||
|
def butter_lowpass(cutoff, fs, order):
|
||||||
|
nyq = 0.5 * fs
|
||||||
|
normal_cutoff = cutoff / nyq
|
||||||
|
return butter(order, normal_cutoff, btype='low', analog=False)
|
||||||
|
|
||||||
|
b, a = butter_lowpass(cutoff, fs, order=order)
|
||||||
|
return filtfilt(b, a, data) # forward-backward filter
|
||||||
|
|
||||||
|
|
||||||
|
def plot_one_box(x, img, color=None, label=None, line_thickness=None):
|
||||||
|
# Plots one bounding box on image img
|
||||||
|
tl = line_thickness or round(0.002 * (img.shape[0] + img.shape[1]) / 2) + 1 # line/font thickness
|
||||||
|
color = color or [random.randint(0, 255) for _ in range(3)]
|
||||||
|
c1, c2 = (int(x[0]), int(x[1])), (int(x[2]), int(x[3]))
|
||||||
|
cv2.rectangle(img, c1, c2, color, thickness=tl, lineType=cv2.LINE_AA)
|
||||||
|
if label:
|
||||||
|
tf = max(tl - 1, 1) # font thickness
|
||||||
|
t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0]
|
||||||
|
c2 = c1[0] + t_size[0], c1[1] - t_size[1] - 3
|
||||||
|
cv2.rectangle(img, c1, c2, color, -1, cv2.LINE_AA) # filled
|
||||||
|
cv2.putText(img, label, (c1[0], c1[1] - 2), 0, tl / 3, [225, 255, 255], thickness=tf, lineType=cv2.LINE_AA)
|
||||||
|
|
||||||
|
|
||||||
|
def plot_wh_methods(): # from utils.plots import *; plot_wh_methods()
|
||||||
|
# Compares the two methods for width-height anchor multiplication
|
||||||
|
# https://github.com/ultralytics/yolov3/issues/168
|
||||||
|
x = np.arange(-4.0, 4.0, .1)
|
||||||
|
ya = np.exp(x)
|
||||||
|
yb = torch.sigmoid(torch.from_numpy(x)).numpy() * 2
|
||||||
|
|
||||||
|
fig = plt.figure(figsize=(6, 3), tight_layout=True)
|
||||||
|
plt.plot(x, ya, '.-', label='YOLOv3')
|
||||||
|
plt.plot(x, yb ** 2, '.-', label='YOLOv5 ^2')
|
||||||
|
plt.plot(x, yb ** 1.6, '.-', label='YOLOv5 ^1.6')
|
||||||
|
plt.xlim(left=-4, right=4)
|
||||||
|
plt.ylim(bottom=0, top=6)
|
||||||
|
plt.xlabel('input')
|
||||||
|
plt.ylabel('output')
|
||||||
|
plt.grid()
|
||||||
|
plt.legend()
|
||||||
|
fig.savefig('comparison.png', dpi=200)
|
||||||
|
|
||||||
|
|
||||||
|
def output_to_target(output):
|
||||||
|
# Convert model output to target format [batch_id, class_id, x, y, w, h, conf]
|
||||||
|
targets = []
|
||||||
|
for i, o in enumerate(output):
|
||||||
|
for *box, conf, cls in o.cpu().numpy():
|
||||||
|
targets.append([i, cls, *list(*xyxy2xywh(np.array(box)[None])), conf])
|
||||||
|
return np.array(targets)
|
||||||
|
|
||||||
|
|
||||||
|
def plot_images(images, targets, paths=None, fname='images.jpg', names=None, max_size=640, max_subplots=16):
|
||||||
|
# Plot image grid with labels
|
||||||
|
|
||||||
|
if isinstance(images, torch.Tensor):
|
||||||
|
images = images.cpu().float().numpy()
|
||||||
|
if isinstance(targets, torch.Tensor):
|
||||||
|
targets = targets.cpu().numpy()
|
||||||
|
|
||||||
|
# un-normalise
|
||||||
|
if np.max(images[0]) <= 1:
|
||||||
|
images *= 255
|
||||||
|
|
||||||
|
tl = 3 # line thickness
|
||||||
|
tf = max(tl - 1, 1) # font thickness
|
||||||
|
bs, _, h, w = images.shape # batch size, _, height, width
|
||||||
|
bs = min(bs, max_subplots) # limit plot images
|
||||||
|
ns = np.ceil(bs ** 0.5) # number of subplots (square)
|
||||||
|
|
||||||
|
# Check if we should resize
|
||||||
|
scale_factor = max_size / max(h, w)
|
||||||
|
if scale_factor < 1:
|
||||||
|
h = math.ceil(scale_factor * h)
|
||||||
|
w = math.ceil(scale_factor * w)
|
||||||
|
|
||||||
|
colors = color_list() # list of colors
|
||||||
|
mosaic = np.full((int(ns * h), int(ns * w), 3), 255, dtype=np.uint8) # init
|
||||||
|
for i, img in enumerate(images):
|
||||||
|
if i == max_subplots: # if last batch has fewer images than we expect
|
||||||
|
break
|
||||||
|
|
||||||
|
block_x = int(w * (i // ns))
|
||||||
|
block_y = int(h * (i % ns))
|
||||||
|
|
||||||
|
img = img.transpose(1, 2, 0)
|
||||||
|
if scale_factor < 1:
|
||||||
|
img = cv2.resize(img, (w, h))
|
||||||
|
|
||||||
|
mosaic[block_y:block_y + h, block_x:block_x + w, :] = img
|
||||||
|
if len(targets) > 0:
|
||||||
|
image_targets = targets[targets[:, 0] == i]
|
||||||
|
boxes = xywh2xyxy(image_targets[:, 2:6]).T
|
||||||
|
classes = image_targets[:, 1].astype('int')
|
||||||
|
labels = image_targets.shape[1] == 6 # labels if no conf column
|
||||||
|
conf = None if labels else image_targets[:, 6] # check for confidence presence (label vs pred)
|
||||||
|
|
||||||
|
if boxes.shape[1]:
|
||||||
|
if boxes.max() <= 1.01: # if normalized with tolerance 0.01
|
||||||
|
boxes[[0, 2]] *= w # scale to pixels
|
||||||
|
boxes[[1, 3]] *= h
|
||||||
|
elif scale_factor < 1: # absolute coords need scale if image scales
|
||||||
|
boxes *= scale_factor
|
||||||
|
boxes[[0, 2]] += block_x
|
||||||
|
boxes[[1, 3]] += block_y
|
||||||
|
for j, box in enumerate(boxes.T):
|
||||||
|
cls = int(classes[j])
|
||||||
|
color = colors[cls % len(colors)]
|
||||||
|
cls = names[cls] if names else cls
|
||||||
|
if labels or conf[j] > 0.25: # 0.25 conf thresh
|
||||||
|
label = '%s' % cls if labels else '%s %.1f' % (cls, conf[j])
|
||||||
|
plot_one_box(box, mosaic, label=label, color=color, line_thickness=tl)
|
||||||
|
|
||||||
|
# Draw image filename labels
|
||||||
|
if paths:
|
||||||
|
label = Path(paths[i]).name[:40] # trim to 40 char
|
||||||
|
t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0]
|
||||||
|
cv2.putText(mosaic, label, (block_x + 5, block_y + t_size[1] + 5), 0, tl / 3, [220, 220, 220], thickness=tf,
|
||||||
|
lineType=cv2.LINE_AA)
|
||||||
|
|
||||||
|
# Image border
|
||||||
|
cv2.rectangle(mosaic, (block_x, block_y), (block_x + w, block_y + h), (255, 255, 255), thickness=3)
|
||||||
|
|
||||||
|
if fname:
|
||||||
|
r = min(1280. / max(h, w) / ns, 1.0) # ratio to limit image size
|
||||||
|
mosaic = cv2.resize(mosaic, (int(ns * w * r), int(ns * h * r)), interpolation=cv2.INTER_AREA)
|
||||||
|
# cv2.imwrite(fname, cv2.cvtColor(mosaic, cv2.COLOR_BGR2RGB)) # cv2 save
|
||||||
|
Image.fromarray(mosaic).save(fname) # PIL save
|
||||||
|
return mosaic
|
||||||
|
|
||||||
|
|
||||||
|
def plot_lr_scheduler(optimizer, scheduler, epochs=300, save_dir=''):
|
||||||
|
# Plot LR simulating training for full epochs
|
||||||
|
optimizer, scheduler = copy(optimizer), copy(scheduler) # do not modify originals
|
||||||
|
y = []
|
||||||
|
for _ in range(epochs):
|
||||||
|
scheduler.step()
|
||||||
|
y.append(optimizer.param_groups[0]['lr'])
|
||||||
|
plt.plot(y, '.-', label='LR')
|
||||||
|
plt.xlabel('epoch')
|
||||||
|
plt.ylabel('LR')
|
||||||
|
plt.grid()
|
||||||
|
plt.xlim(0, epochs)
|
||||||
|
plt.ylim(0)
|
||||||
|
plt.savefig(Path(save_dir) / 'LR.png', dpi=200)
|
||||||
|
|
||||||
|
|
||||||
|
def plot_test_txt(): # from utils.plots import *; plot_test()
|
||||||
|
# Plot test.txt histograms
|
||||||
|
x = np.loadtxt('test.txt', dtype=np.float32)
|
||||||
|
box = xyxy2xywh(x[:, :4])
|
||||||
|
cx, cy = box[:, 0], box[:, 1]
|
||||||
|
|
||||||
|
fig, ax = plt.subplots(1, 1, figsize=(6, 6), tight_layout=True)
|
||||||
|
ax.hist2d(cx, cy, bins=600, cmax=10, cmin=0)
|
||||||
|
ax.set_aspect('equal')
|
||||||
|
plt.savefig('hist2d.png', dpi=300)
|
||||||
|
|
||||||
|
fig, ax = plt.subplots(1, 2, figsize=(12, 6), tight_layout=True)
|
||||||
|
ax[0].hist(cx, bins=600)
|
||||||
|
ax[1].hist(cy, bins=600)
|
||||||
|
plt.savefig('hist1d.png', dpi=200)
|
||||||
|
|
||||||
|
|
||||||
|
def plot_targets_txt(): # from utils.plots import *; plot_targets_txt()
|
||||||
|
# Plot targets.txt histograms
|
||||||
|
x = np.loadtxt('targets.txt', dtype=np.float32).T
|
||||||
|
s = ['x targets', 'y targets', 'width targets', 'height targets']
|
||||||
|
fig, ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True)
|
||||||
|
ax = ax.ravel()
|
||||||
|
for i in range(4):
|
||||||
|
ax[i].hist(x[i], bins=100, label='%.3g +/- %.3g' % (x[i].mean(), x[i].std()))
|
||||||
|
ax[i].legend()
|
||||||
|
ax[i].set_title(s[i])
|
||||||
|
plt.savefig('targets.jpg', dpi=200)
|
||||||
|
|
||||||
|
|
||||||
|
def plot_study_txt(path='', x=None): # from utils.plots import *; plot_study_txt()
|
||||||
|
# Plot study.txt generated by test.py
|
||||||
|
fig, ax = plt.subplots(2, 4, figsize=(10, 6), tight_layout=True)
|
||||||
|
ax = ax.ravel()
|
||||||
|
|
||||||
|
fig2, ax2 = plt.subplots(1, 1, figsize=(8, 4), tight_layout=True)
|
||||||
|
for f in [Path(path) / f'study_coco_{x}.txt' for x in ['yolov5s', 'yolov5m', 'yolov5l', 'yolov5x']]:
|
||||||
|
y = np.loadtxt(f, dtype=np.float32, usecols=[0, 1, 2, 3, 7, 8, 9], ndmin=2).T
|
||||||
|
x = np.arange(y.shape[1]) if x is None else np.array(x)
|
||||||
|
s = ['P', 'R', 'mAP@.5', 'mAP@.5:.95', 't_inference (ms/img)', 't_NMS (ms/img)', 't_total (ms/img)']
|
||||||
|
for i in range(7):
|
||||||
|
ax[i].plot(x, y[i], '.-', linewidth=2, markersize=8)
|
||||||
|
ax[i].set_title(s[i])
|
||||||
|
|
||||||
|
j = y[3].argmax() + 1
|
||||||
|
ax2.plot(y[6, :j], y[3, :j] * 1E2, '.-', linewidth=2, markersize=8,
|
||||||
|
label=f.stem.replace('study_coco_', '').replace('yolo', 'YOLO'))
|
||||||
|
|
||||||
|
ax2.plot(1E3 / np.array([209, 140, 97, 58, 35, 18]), [34.6, 40.5, 43.0, 47.5, 49.7, 51.5],
|
||||||
|
'k.-', linewidth=2, markersize=8, alpha=.25, label='EfficientDet')
|
||||||
|
|
||||||
|
ax2.grid()
|
||||||
|
ax2.set_xlim(0, 30)
|
||||||
|
ax2.set_ylim(28, 50)
|
||||||
|
ax2.set_yticks(np.arange(30, 55, 5))
|
||||||
|
ax2.set_xlabel('GPU Speed (ms/img)')
|
||||||
|
ax2.set_ylabel('COCO AP val')
|
||||||
|
ax2.legend(loc='lower right')
|
||||||
|
plt.savefig('test_study.png', dpi=300)
|
||||||
|
|
||||||
|
|
||||||
|
def plot_labels(labels, save_dir=Path(''), loggers=None):
|
||||||
|
# plot dataset labels
|
||||||
|
print('Plotting labels... ')
|
||||||
|
c, b = labels[:, 0], labels[:, 1:].transpose() # classes, boxes
|
||||||
|
nc = int(c.max() + 1) # number of classes
|
||||||
|
colors = color_list()
|
||||||
|
x = pd.DataFrame(b.transpose(), columns=['x', 'y', 'width', 'height'])
|
||||||
|
|
||||||
|
# seaborn correlogram
|
||||||
|
sns.pairplot(x, corner=True, diag_kind='auto', kind='hist', diag_kws=dict(bins=50), plot_kws=dict(pmax=0.9))
|
||||||
|
plt.savefig(save_dir / 'labels_correlogram.jpg', dpi=200)
|
||||||
|
plt.close()
|
||||||
|
|
||||||
|
# matplotlib labels
|
||||||
|
matplotlib.use('svg') # faster
|
||||||
|
ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True)[1].ravel()
|
||||||
|
ax[0].hist(c, bins=np.linspace(0, nc, nc + 1) - 0.5, rwidth=0.8)
|
||||||
|
ax[0].set_xlabel('classes')
|
||||||
|
sns.histplot(x, x='x', y='y', ax=ax[2], bins=50, pmax=0.9)
|
||||||
|
sns.histplot(x, x='width', y='height', ax=ax[3], bins=50, pmax=0.9)
|
||||||
|
|
||||||
|
# rectangles
|
||||||
|
labels[:, 1:3] = 0.5 # center
|
||||||
|
labels[:, 1:] = xywh2xyxy(labels[:, 1:]) * 2000
|
||||||
|
img = Image.fromarray(np.ones((2000, 2000, 3), dtype=np.uint8) * 255)
|
||||||
|
for cls, *box in labels[:1000]:
|
||||||
|
ImageDraw.Draw(img).rectangle(box, width=1, outline=colors[int(cls) % 10]) # plot
|
||||||
|
ax[1].imshow(img)
|
||||||
|
ax[1].axis('off')
|
||||||
|
|
||||||
|
for a in [0, 1, 2, 3]:
|
||||||
|
for s in ['top', 'right', 'left', 'bottom']:
|
||||||
|
ax[a].spines[s].set_visible(False)
|
||||||
|
|
||||||
|
plt.savefig(save_dir / 'labels.jpg', dpi=200)
|
||||||
|
matplotlib.use('Agg')
|
||||||
|
plt.close()
|
||||||
|
|
||||||
|
# loggers
|
||||||
|
for k, v in loggers.items() or {}:
|
||||||
|
if k == 'wandb' and v:
|
||||||
|
v.log({"Labels": [v.Image(str(x), caption=x.name) for x in save_dir.glob('*labels*.jpg')]})
|
||||||
|
|
||||||
|
|
||||||
|
def plot_evolution(yaml_file='data/hyp.finetune.yaml'): # from utils.plots import *; plot_evolution()
|
||||||
|
# Plot hyperparameter evolution results in evolve.txt
|
||||||
|
with open(yaml_file) as f:
|
||||||
|
hyp = yaml.load(f, Loader=yaml.FullLoader)
|
||||||
|
x = np.loadtxt('evolve.txt', ndmin=2)
|
||||||
|
f = fitness(x)
|
||||||
|
# weights = (f - f.min()) ** 2 # for weighted results
|
||||||
|
plt.figure(figsize=(10, 12), tight_layout=True)
|
||||||
|
matplotlib.rc('font', **{'size': 8})
|
||||||
|
for i, (k, v) in enumerate(hyp.items()):
|
||||||
|
y = x[:, i + 7]
|
||||||
|
# mu = (y * weights).sum() / weights.sum() # best weighted result
|
||||||
|
mu = y[f.argmax()] # best single result
|
||||||
|
plt.subplot(6, 5, i + 1)
|
||||||
|
plt.scatter(y, f, c=hist2d(y, f, 20), cmap='viridis', alpha=.8, edgecolors='none')
|
||||||
|
plt.plot(mu, f.max(), 'k+', markersize=15)
|
||||||
|
plt.title('%s = %.3g' % (k, mu), fontdict={'size': 9}) # limit to 40 characters
|
||||||
|
if i % 5 != 0:
|
||||||
|
plt.yticks([])
|
||||||
|
print('%15s: %.3g' % (k, mu))
|
||||||
|
plt.savefig('evolve.png', dpi=200)
|
||||||
|
print('\nPlot saved as evolve.png')
|
||||||
|
|
||||||
|
|
||||||
|
def profile_idetection(start=0, stop=0, labels=(), save_dir=''):
|
||||||
|
# Plot iDetection '*.txt' per-image logs. from utils.plots import *; profile_idetection()
|
||||||
|
ax = plt.subplots(2, 4, figsize=(12, 6), tight_layout=True)[1].ravel()
|
||||||
|
s = ['Images', 'Free Storage (GB)', 'RAM Usage (GB)', 'Battery', 'dt_raw (ms)', 'dt_smooth (ms)', 'real-world FPS']
|
||||||
|
files = list(Path(save_dir).glob('frames*.txt'))
|
||||||
|
for fi, f in enumerate(files):
|
||||||
|
try:
|
||||||
|
results = np.loadtxt(f, ndmin=2).T[:, 90:-30] # clip first and last rows
|
||||||
|
n = results.shape[1] # number of rows
|
||||||
|
x = np.arange(start, min(stop, n) if stop else n)
|
||||||
|
results = results[:, x]
|
||||||
|
t = (results[0] - results[0].min()) # set t0=0s
|
||||||
|
results[0] = x
|
||||||
|
for i, a in enumerate(ax):
|
||||||
|
if i < len(results):
|
||||||
|
label = labels[fi] if len(labels) else f.stem.replace('frames_', '')
|
||||||
|
a.plot(t, results[i], marker='.', label=label, linewidth=1, markersize=5)
|
||||||
|
a.set_title(s[i])
|
||||||
|
a.set_xlabel('time (s)')
|
||||||
|
# if fi == len(files) - 1:
|
||||||
|
# a.set_ylim(bottom=0)
|
||||||
|
for side in ['top', 'right']:
|
||||||
|
a.spines[side].set_visible(False)
|
||||||
|
else:
|
||||||
|
a.remove()
|
||||||
|
except Exception as e:
|
||||||
|
print('Warning: Plotting error for %s; %s' % (f, e))
|
||||||
|
|
||||||
|
ax[1].legend()
|
||||||
|
plt.savefig(Path(save_dir) / 'idetection_profile.png', dpi=200)
|
||||||
|
|
||||||
|
|
||||||
|
def plot_results_overlay(start=0, stop=0): # from utils.plots import *; plot_results_overlay()
|
||||||
|
# Plot training 'results*.txt', overlaying train and val losses
|
||||||
|
s = ['train', 'train', 'train', 'Precision', 'mAP@0.5', 'val', 'val', 'val', 'Recall', 'mAP@0.5:0.95'] # legends
|
||||||
|
t = ['Box', 'Objectness', 'Classification', 'P-R', 'mAP-F1'] # titles
|
||||||
|
for f in sorted(glob.glob('results*.txt') + glob.glob('../../Downloads/results*.txt')):
|
||||||
|
results = np.loadtxt(f, usecols=[2, 3, 4, 8, 9, 12, 13, 14, 10, 11], ndmin=2).T
|
||||||
|
n = results.shape[1] # number of rows
|
||||||
|
x = range(start, min(stop, n) if stop else n)
|
||||||
|
fig, ax = plt.subplots(1, 5, figsize=(14, 3.5), tight_layout=True)
|
||||||
|
ax = ax.ravel()
|
||||||
|
for i in range(5):
|
||||||
|
for j in [i, i + 5]:
|
||||||
|
y = results[j, x]
|
||||||
|
ax[i].plot(x, y, marker='.', label=s[j])
|
||||||
|
# y_smooth = butter_lowpass_filtfilt(y)
|
||||||
|
# ax[i].plot(x, np.gradient(y_smooth), marker='.', label=s[j])
|
||||||
|
|
||||||
|
ax[i].set_title(t[i])
|
||||||
|
ax[i].legend()
|
||||||
|
ax[i].set_ylabel(f) if i == 0 else None # add filename
|
||||||
|
fig.savefig(f.replace('.txt', '.png'), dpi=200)
|
||||||
|
|
||||||
|
|
||||||
|
def plot_results(start=0, stop=0, bucket='', id=(), labels=(), save_dir=''):
|
||||||
|
# Plot training 'results*.txt'. from utils.plots import *; plot_results(save_dir='runs/train/exp')
|
||||||
|
fig, ax = plt.subplots(2, 5, figsize=(12, 6), tight_layout=True)
|
||||||
|
ax = ax.ravel()
|
||||||
|
s = ['Box', 'Objectness', 'Classification', 'Precision', 'Recall',
|
||||||
|
'val Box', 'val Objectness', 'val Classification', 'mAP@0.5', 'mAP@0.5:0.95']
|
||||||
|
if bucket:
|
||||||
|
# files = ['https://storage.googleapis.com/%s/results%g.txt' % (bucket, x) for x in id]
|
||||||
|
files = ['results%g.txt' % x for x in id]
|
||||||
|
c = ('gsutil cp ' + '%s ' * len(files) + '.') % tuple('gs://%s/results%g.txt' % (bucket, x) for x in id)
|
||||||
|
os.system(c)
|
||||||
|
else:
|
||||||
|
files = list(Path(save_dir).glob('results*.txt'))
|
||||||
|
assert len(files), 'No results.txt files found in %s, nothing to plot.' % os.path.abspath(save_dir)
|
||||||
|
for fi, f in enumerate(files):
|
||||||
|
try:
|
||||||
|
results = np.loadtxt(f, usecols=[2, 3, 4, 8, 9, 12, 13, 14, 10, 11], ndmin=2).T
|
||||||
|
n = results.shape[1] # number of rows
|
||||||
|
x = range(start, min(stop, n) if stop else n)
|
||||||
|
for i in range(10):
|
||||||
|
y = results[i, x]
|
||||||
|
if i in [0, 1, 2, 5, 6, 7]:
|
||||||
|
y[y == 0] = np.nan # don't show zero loss values
|
||||||
|
# y /= y[0] # normalize
|
||||||
|
label = labels[fi] if len(labels) else f.stem
|
||||||
|
ax[i].plot(x, y, marker='.', label=label, linewidth=2, markersize=8)
|
||||||
|
ax[i].set_title(s[i])
|
||||||
|
# if i in [5, 6, 7]: # share train and val loss y axes
|
||||||
|
# ax[i].get_shared_y_axes().join(ax[i], ax[i - 5])
|
||||||
|
except Exception as e:
|
||||||
|
print('Warning: Plotting error for %s; %s' % (f, e))
|
||||||
|
|
||||||
|
ax[1].legend()
|
||||||
|
fig.savefig(Path(save_dir) / 'results.png', dpi=200)
|
285
yolov5/utils/torch_utils.py
Normal file
285
yolov5/utils/torch_utils.py
Normal file
@ -0,0 +1,285 @@
|
|||||||
|
# PyTorch utils
|
||||||
|
|
||||||
|
import logging
|
||||||
|
import math
|
||||||
|
import os
|
||||||
|
import time
|
||||||
|
from contextlib import contextmanager
|
||||||
|
from copy import deepcopy
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import torch.backends.cudnn as cudnn
|
||||||
|
import torch.nn as nn
|
||||||
|
import torch.nn.functional as F
|
||||||
|
import torchvision
|
||||||
|
|
||||||
|
try:
|
||||||
|
import thop # for FLOPS computation
|
||||||
|
except ImportError:
|
||||||
|
thop = None
|
||||||
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
|
||||||
|
@contextmanager
|
||||||
|
def torch_distributed_zero_first(local_rank: int):
|
||||||
|
"""
|
||||||
|
Decorator to make all processes in distributed training wait for each local_master to do something.
|
||||||
|
"""
|
||||||
|
if local_rank not in [-1, 0]:
|
||||||
|
torch.distributed.barrier()
|
||||||
|
yield
|
||||||
|
if local_rank == 0:
|
||||||
|
torch.distributed.barrier()
|
||||||
|
|
||||||
|
|
||||||
|
def init_torch_seeds(seed=0):
|
||||||
|
# Speed-reproducibility tradeoff https://pytorch.org/docs/stable/notes/randomness.html
|
||||||
|
torch.manual_seed(seed)
|
||||||
|
if seed == 0: # slower, more reproducible
|
||||||
|
cudnn.benchmark, cudnn.deterministic = False, True
|
||||||
|
else: # faster, less reproducible
|
||||||
|
cudnn.benchmark, cudnn.deterministic = True, False
|
||||||
|
|
||||||
|
|
||||||
|
def select_device(device='', batch_size=None):
|
||||||
|
# device = 'cpu' or '0' or '0,1,2,3'
|
||||||
|
s = f'Using torch {torch.__version__} ' # string
|
||||||
|
cpu = device.lower() == 'cpu'
|
||||||
|
if cpu:
|
||||||
|
os.environ['CUDA_VISIBLE_DEVICES'] = '-1' # force torch.cuda.is_available() = False
|
||||||
|
elif device: # non-cpu device requested
|
||||||
|
os.environ['CUDA_VISIBLE_DEVICES'] = device # set environment variable
|
||||||
|
assert torch.cuda.is_available(), f'CUDA unavailable, invalid device {device} requested' # check availability
|
||||||
|
|
||||||
|
cuda = torch.cuda.is_available() and not cpu
|
||||||
|
if cuda:
|
||||||
|
n = torch.cuda.device_count()
|
||||||
|
if n > 1 and batch_size: # check that batch_size is compatible with device_count
|
||||||
|
assert batch_size % n == 0, f'batch-size {batch_size} not multiple of GPU count {n}'
|
||||||
|
space = ' ' * len(s)
|
||||||
|
for i, d in enumerate(device.split(',') if device else range(n)):
|
||||||
|
p = torch.cuda.get_device_properties(i)
|
||||||
|
s += f"{'' if i == 0 else space}CUDA:{d} ({p.name}, {p.total_memory / 1024 ** 2}MB)\n" # bytes to MB
|
||||||
|
else:
|
||||||
|
s += 'CPU'
|
||||||
|
|
||||||
|
logger.info(f'{s}\n') # skip a line
|
||||||
|
return torch.device('cuda:0' if cuda else 'cpu')
|
||||||
|
|
||||||
|
|
||||||
|
def time_synchronized():
|
||||||
|
# pytorch-accurate time
|
||||||
|
if torch.cuda.is_available():
|
||||||
|
torch.cuda.synchronize()
|
||||||
|
return time.time()
|
||||||
|
|
||||||
|
|
||||||
|
def profile(x, ops, n=100, device=None):
|
||||||
|
# profile a pytorch module or list of modules. Example usage:
|
||||||
|
# x = torch.randn(16, 3, 640, 640) # input
|
||||||
|
# m1 = lambda x: x * torch.sigmoid(x)
|
||||||
|
# m2 = nn.SiLU()
|
||||||
|
# profile(x, [m1, m2], n=100) # profile speed over 100 iterations
|
||||||
|
|
||||||
|
device = device or torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
|
||||||
|
x = x.to(device)
|
||||||
|
x.requires_grad = True
|
||||||
|
print(torch.__version__, device.type, torch.cuda.get_device_properties(0) if device.type == 'cuda' else '')
|
||||||
|
print(f"\n{'Params':>12s}{'GFLOPS':>12s}{'forward (ms)':>16s}{'backward (ms)':>16s}{'input':>24s}{'output':>24s}")
|
||||||
|
for m in ops if isinstance(ops, list) else [ops]:
|
||||||
|
m = m.to(device) if hasattr(m, 'to') else m # device
|
||||||
|
m = m.half() if hasattr(m, 'half') and isinstance(x, torch.Tensor) and x.dtype is torch.float16 else m # type
|
||||||
|
dtf, dtb, t = 0., 0., [0., 0., 0.] # dt forward, backward
|
||||||
|
try:
|
||||||
|
flops = thop.profile(m, inputs=(x,), verbose=False)[0] / 1E9 * 2 # GFLOPS
|
||||||
|
except:
|
||||||
|
flops = 0
|
||||||
|
|
||||||
|
for _ in range(n):
|
||||||
|
t[0] = time_synchronized()
|
||||||
|
y = m(x)
|
||||||
|
t[1] = time_synchronized()
|
||||||
|
try:
|
||||||
|
_ = y.sum().backward()
|
||||||
|
t[2] = time_synchronized()
|
||||||
|
except: # no backward method
|
||||||
|
t[2] = float('nan')
|
||||||
|
dtf += (t[1] - t[0]) * 1000 / n # ms per op forward
|
||||||
|
dtb += (t[2] - t[1]) * 1000 / n # ms per op backward
|
||||||
|
|
||||||
|
s_in = tuple(x.shape) if isinstance(x, torch.Tensor) else 'list'
|
||||||
|
s_out = tuple(y.shape) if isinstance(y, torch.Tensor) else 'list'
|
||||||
|
p = sum(list(x.numel() for x in m.parameters())) if isinstance(m, nn.Module) else 0 # parameters
|
||||||
|
print(f'{p:12.4g}{flops:12.4g}{dtf:16.4g}{dtb:16.4g}{str(s_in):>24s}{str(s_out):>24s}')
|
||||||
|
|
||||||
|
|
||||||
|
def is_parallel(model):
|
||||||
|
return type(model) in (nn.parallel.DataParallel, nn.parallel.DistributedDataParallel)
|
||||||
|
|
||||||
|
|
||||||
|
def intersect_dicts(da, db, exclude=()):
|
||||||
|
# Dictionary intersection of matching keys and shapes, omitting 'exclude' keys, using da values
|
||||||
|
return {k: v for k, v in da.items() if k in db and not any(x in k for x in exclude) and v.shape == db[k].shape}
|
||||||
|
|
||||||
|
|
||||||
|
def initialize_weights(model):
|
||||||
|
for m in model.modules():
|
||||||
|
t = type(m)
|
||||||
|
if t is nn.Conv2d:
|
||||||
|
pass # nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
|
||||||
|
elif t is nn.BatchNorm2d:
|
||||||
|
m.eps = 1e-3
|
||||||
|
m.momentum = 0.03
|
||||||
|
elif t in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6]:
|
||||||
|
m.inplace = True
|
||||||
|
|
||||||
|
|
||||||
|
def find_modules(model, mclass=nn.Conv2d):
|
||||||
|
# Finds layer indices matching module class 'mclass'
|
||||||
|
return [i for i, m in enumerate(model.module_list) if isinstance(m, mclass)]
|
||||||
|
|
||||||
|
|
||||||
|
def sparsity(model):
|
||||||
|
# Return global model sparsity
|
||||||
|
a, b = 0., 0.
|
||||||
|
for p in model.parameters():
|
||||||
|
a += p.numel()
|
||||||
|
b += (p == 0).sum()
|
||||||
|
return b / a
|
||||||
|
|
||||||
|
|
||||||
|
def prune(model, amount=0.3):
|
||||||
|
# Prune model to requested global sparsity
|
||||||
|
import torch.nn.utils.prune as prune
|
||||||
|
print('Pruning model... ', end='')
|
||||||
|
for name, m in model.named_modules():
|
||||||
|
if isinstance(m, nn.Conv2d):
|
||||||
|
prune.l1_unstructured(m, name='weight', amount=amount) # prune
|
||||||
|
prune.remove(m, 'weight') # make permanent
|
||||||
|
print(' %.3g global sparsity' % sparsity(model))
|
||||||
|
|
||||||
|
|
||||||
|
def fuse_conv_and_bn(conv, bn):
|
||||||
|
# Fuse convolution and batchnorm layers https://tehnokv.com/posts/fusing-batchnorm-and-conv/
|
||||||
|
fusedconv = nn.Conv2d(conv.in_channels,
|
||||||
|
conv.out_channels,
|
||||||
|
kernel_size=conv.kernel_size,
|
||||||
|
stride=conv.stride,
|
||||||
|
padding=conv.padding,
|
||||||
|
groups=conv.groups,
|
||||||
|
bias=True).requires_grad_(False).to(conv.weight.device)
|
||||||
|
|
||||||
|
# prepare filters
|
||||||
|
w_conv = conv.weight.clone().view(conv.out_channels, -1)
|
||||||
|
w_bn = torch.diag(bn.weight.div(torch.sqrt(bn.eps + bn.running_var)))
|
||||||
|
fusedconv.weight.copy_(torch.mm(w_bn, w_conv).view(fusedconv.weight.size()))
|
||||||
|
|
||||||
|
# prepare spatial bias
|
||||||
|
b_conv = torch.zeros(conv.weight.size(0), device=conv.weight.device) if conv.bias is None else conv.bias
|
||||||
|
b_bn = bn.bias - bn.weight.mul(bn.running_mean).div(torch.sqrt(bn.running_var + bn.eps))
|
||||||
|
fusedconv.bias.copy_(torch.mm(w_bn, b_conv.reshape(-1, 1)).reshape(-1) + b_bn)
|
||||||
|
|
||||||
|
return fusedconv
|
||||||
|
|
||||||
|
|
||||||
|
def model_info(model, verbose=False, img_size=640):
|
||||||
|
# Model information. img_size may be int or list, i.e. img_size=640 or img_size=[640, 320]
|
||||||
|
n_p = sum(x.numel() for x in model.parameters()) # number parameters
|
||||||
|
n_g = sum(x.numel() for x in model.parameters() if x.requires_grad) # number gradients
|
||||||
|
if verbose:
|
||||||
|
print('%5s %40s %9s %12s %20s %10s %10s' % ('layer', 'name', 'gradient', 'parameters', 'shape', 'mu', 'sigma'))
|
||||||
|
for i, (name, p) in enumerate(model.named_parameters()):
|
||||||
|
name = name.replace('module_list.', '')
|
||||||
|
print('%5g %40s %9s %12g %20s %10.3g %10.3g' %
|
||||||
|
(i, name, p.requires_grad, p.numel(), list(p.shape), p.mean(), p.std()))
|
||||||
|
|
||||||
|
try: # FLOPS
|
||||||
|
from thop import profile
|
||||||
|
stride = int(model.stride.max()) if hasattr(model, 'stride') else 32
|
||||||
|
img = torch.zeros((1, model.yaml.get('ch', 3), stride, stride), device=next(model.parameters()).device) # input
|
||||||
|
flops = profile(deepcopy(model), inputs=(img,), verbose=False)[0] / 1E9 * 2 # stride GFLOPS
|
||||||
|
img_size = img_size if isinstance(img_size, list) else [img_size, img_size] # expand if int/float
|
||||||
|
fs = ', %.1f GFLOPS' % (flops * img_size[0] / stride * img_size[1] / stride) # 640x640 GFLOPS
|
||||||
|
except (ImportError, Exception):
|
||||||
|
fs = ''
|
||||||
|
|
||||||
|
logger.info(f"Model Summary: {len(list(model.modules()))} layers, {n_p} parameters, {n_g} gradients{fs}")
|
||||||
|
|
||||||
|
|
||||||
|
def load_classifier(name='resnet101', n=2):
|
||||||
|
# Loads a pretrained model reshaped to n-class output
|
||||||
|
model = torchvision.models.__dict__[name](pretrained=True)
|
||||||
|
|
||||||
|
# ResNet model properties
|
||||||
|
# input_size = [3, 224, 224]
|
||||||
|
# input_space = 'RGB'
|
||||||
|
# input_range = [0, 1]
|
||||||
|
# mean = [0.485, 0.456, 0.406]
|
||||||
|
# std = [0.229, 0.224, 0.225]
|
||||||
|
|
||||||
|
# Reshape output to n classes
|
||||||
|
filters = model.fc.weight.shape[1]
|
||||||
|
model.fc.bias = nn.Parameter(torch.zeros(n), requires_grad=True)
|
||||||
|
model.fc.weight = nn.Parameter(torch.zeros(n, filters), requires_grad=True)
|
||||||
|
model.fc.out_features = n
|
||||||
|
return model
|
||||||
|
|
||||||
|
|
||||||
|
def scale_img(img, ratio=1.0, same_shape=False): # img(16,3,256,416), r=ratio
|
||||||
|
# scales img(bs,3,y,x) by ratio
|
||||||
|
if ratio == 1.0:
|
||||||
|
return img
|
||||||
|
else:
|
||||||
|
h, w = img.shape[2:]
|
||||||
|
s = (int(h * ratio), int(w * ratio)) # new size
|
||||||
|
img = F.interpolate(img, size=s, mode='bilinear', align_corners=False) # resize
|
||||||
|
if not same_shape: # pad/crop img
|
||||||
|
gs = 32 # (pixels) grid size
|
||||||
|
h, w = [math.ceil(x * ratio / gs) * gs for x in (h, w)]
|
||||||
|
return F.pad(img, [0, w - s[1], 0, h - s[0]], value=0.447) # value = imagenet mean
|
||||||
|
|
||||||
|
|
||||||
|
def copy_attr(a, b, include=(), exclude=()):
|
||||||
|
# Copy attributes from b to a, options to only include [...] and to exclude [...]
|
||||||
|
for k, v in b.__dict__.items():
|
||||||
|
if (len(include) and k not in include) or k.startswith('_') or k in exclude:
|
||||||
|
continue
|
||||||
|
else:
|
||||||
|
setattr(a, k, v)
|
||||||
|
|
||||||
|
|
||||||
|
class ModelEMA:
|
||||||
|
""" Model Exponential Moving Average from https://github.com/rwightman/pytorch-image-models
|
||||||
|
Keep a moving average of everything in the model state_dict (parameters and buffers).
|
||||||
|
This is intended to allow functionality like
|
||||||
|
https://www.tensorflow.org/api_docs/python/tf/train/ExponentialMovingAverage
|
||||||
|
A smoothed version of the weights is necessary for some training schemes to perform well.
|
||||||
|
This class is sensitive where it is initialized in the sequence of model init,
|
||||||
|
GPU assignment and distributed training wrappers.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, model, decay=0.9999, updates=0):
|
||||||
|
# Create EMA
|
||||||
|
self.ema = deepcopy(model.module if is_parallel(model) else model).eval() # FP32 EMA
|
||||||
|
# if next(model.parameters()).device.type != 'cpu':
|
||||||
|
# self.ema.half() # FP16 EMA
|
||||||
|
self.updates = updates # number of EMA updates
|
||||||
|
self.decay = lambda x: decay * (1 - math.exp(-x / 2000)) # decay exponential ramp (to help early epochs)
|
||||||
|
for p in self.ema.parameters():
|
||||||
|
p.requires_grad_(False)
|
||||||
|
|
||||||
|
def update(self, model):
|
||||||
|
# Update EMA parameters
|
||||||
|
with torch.no_grad():
|
||||||
|
self.updates += 1
|
||||||
|
d = self.decay(self.updates)
|
||||||
|
|
||||||
|
msd = model.module.state_dict() if is_parallel(model) else model.state_dict() # model state_dict
|
||||||
|
for k, v in self.ema.state_dict().items():
|
||||||
|
if v.dtype.is_floating_point:
|
||||||
|
v *= d
|
||||||
|
v += (1. - d) * msd[k].detach()
|
||||||
|
|
||||||
|
def update_attr(self, model, include=(), exclude=('process_group', 'reducer')):
|
||||||
|
# Update EMA attributes
|
||||||
|
copy_attr(self.ema, model, include, exclude)
|
12
yolov5/weights/download_weights.sh
Normal file
12
yolov5/weights/download_weights.sh
Normal file
@ -0,0 +1,12 @@
|
|||||||
|
#!/bin/bash
|
||||||
|
# Download latest models from https://github.com/ultralytics/yolov5/releases
|
||||||
|
# Usage:
|
||||||
|
# $ bash weights/download_weights.sh
|
||||||
|
|
||||||
|
python - <<EOF
|
||||||
|
from utils.google_utils import attempt_download
|
||||||
|
|
||||||
|
for x in ['s', 'm', 'l', 'x']:
|
||||||
|
attempt_download(f'yolov5{x}.pt')
|
||||||
|
|
||||||
|
EOF
|
Loading…
Reference in New Issue
Block a user