import argparse import time import os from pathlib import Path import cv2 import sklearn import torch import torch.backends.cudnn as cudnn import numpy as np from numpy import random from models.experimental import attempt_load from utils.datasets import LoadStreams, LoadImages from utils.general import check_img_size, non_max_suppression, apply_classifier, scale_coords, xyxy2xywh, \ strip_optimizer, set_logging, increment_path from utils.plots import plot_one_box from utils.torch_utils import select_device, load_classifier, time_synchronized from deep_sort_pytorch.utils.parser import get_config from deep_sort_pytorch.deep_sort import DeepSort palette = (2 ** 11 - 1, 2 ** 15 - 1, 2 ** 20 - 1) def bbox_rel(*xyxy): """" Calculates the relative bounding box from absolute pixel values. """ bbox_left = min([xyxy[0].item(), xyxy[2].item()]) bbox_top = min([xyxy[1].item(), xyxy[3].item()]) bbox_w = abs(xyxy[0].item() - xyxy[2].item()) bbox_h = abs(xyxy[1].item() - xyxy[3].item()) x_c = (bbox_left + bbox_w / 2) y_c = (bbox_top + bbox_h / 2) w = bbox_w h = bbox_h return x_c, y_c, w, h def compute_color_for_labels(label): """ Simple function that adds fixed color depending on the class """ color = [int((p * (label ** 2 - label + 1)) % 255) for p in palette] return tuple(color) def draw_boxes(img, bbox, identities=None, offset=(0, 0)): for i, box in enumerate(bbox): x1, y1, x2, y2 = [int(i) for i in box] x1 += offset[0] x2 += offset[0] y1 += offset[1] y2 += offset[1] # box text and bar id = int(identities[i]) if identities is not None else 0 color = compute_color_for_labels(id) label = '{}{:d}'.format("", id) t_size = cv2.getTextSize(label, cv2.FONT_HERSHEY_PLAIN, 2, 2)[0] cv2.rectangle(img, (x1, y1), (x2, y2), color, 3) cv2.rectangle( img, (x1, y1), (x1 + t_size[0] + 3, y1 + t_size[1] + 4), color, -1) cv2.putText(img, label, (x1, y1 + t_size[1] + 4), cv2.FONT_HERSHEY_PLAIN, 2, [255, 255, 255], 2) return img def detect(save_img=False): source, weights, view_img, save_txt, imgsz = opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size webcam = source.isnumeric() or source.endswith('.txt') or source.lower().startswith( ('rtsp://', 'rtmp://', 'http://')) # Directories save_dir = Path(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok)) # increment run (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir # DeepSort Initialize cfg = get_config() cfg.merge_from_file(opt.config_deepsort) deepsort = DeepSort(cfg.DEEPSORT.REID_CKPT, max_dist=cfg.DEEPSORT.MAX_DIST, min_confidence=cfg.DEEPSORT.MIN_CONFIDENCE, nms_max_overlap=cfg.DEEPSORT.NMS_MAX_OVERLAP, max_iou_distance=cfg.DEEPSORT.MAX_IOU_DISTANCE, max_age=cfg.DEEPSORT.MAX_AGE, n_init=cfg.DEEPSORT.N_INIT, nn_budget=cfg.DEEPSORT.NN_BUDGET, use_cuda=True) # Initialize set_logging() device = select_device(opt.device) half = device.type != 'cpu' # half precision only supported on CUDA # Load model model = attempt_load(weights, map_location=device) # load FP32 model imgsz = check_img_size(imgsz, s=model.stride.max()) # check img_size if half: model.half() # to FP16 # Second-stage classifier classify = False if classify: modelc = load_classifier(name='resnet101', n=2) # initialize modelc.load_state_dict(torch.load('weights/resnet101.pt', map_location=device)['model']).to(device).eval() # Set Dataloader vid_path, vid_writer = None, None if webcam: view_img = True cudnn.benchmark = True # set True to speed up constant image size inference dataset = LoadStreams(source, img_size=imgsz) else: save_img = True dataset = LoadImages(source, img_size=imgsz) # Get names names = model.module.names if hasattr(model, 'module') else model.names # Run inference t0 = time.time() img = torch.zeros((1, 3, imgsz, imgsz), device=device) # init img _ = model(img.half() if half else img) if device.type != 'cpu' else None # run once for path, img, im0s, vid_cap in dataset: img = torch.from_numpy(img).to(device) img = img.half() if half else img.float() # uint8 to fp16/32 img /= 255.0 # 0 - 255 to 0.0 - 1.0 if img.ndimension() == 3: img = img.unsqueeze(0) # Inference t1 = time_synchronized() pred = model(img, augment=opt.augment)[0] # Apply NMS pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, classes=opt.classes, agnostic=opt.agnostic_nms) t2 = time_synchronized() # Apply Classifier if classify: pred = apply_classifier(pred, modelc, img, im0s) # Process detections for i, det in enumerate(pred): # detections per image if webcam: # batch_size >= 1 p, s, im0, frame = Path(path[i]), '%g: ' % i, im0s[i].copy(), dataset.count else: p, s, im0, frame = Path(path), '', im0s, getattr(dataset, 'frame', 0) save_path = str(save_dir / p.name) txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}') s += '%gx%g ' % img.shape[2:] # print string gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh if len(det): # Rescale boxes from img_size to im0 size det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round() # Print results for c in det[:, -1].unique(): n = (det[:, -1] == c).sum() # detections per class s += f'{n} {names[int(c)]}s, ' # add to string bbox_xywh = [] confs = [] # Adapt detections to deep sort input format for *xyxy, conf, cls in det: if cls == 0: x_c, y_c, bbox_w, bbox_h = bbox_rel(*xyxy) obj = [x_c, y_c, bbox_w, bbox_h] bbox_xywh.append(obj) confs.append([conf.item()]) xywhs = torch.Tensor(bbox_xywh) confss = torch.Tensor(confs) # Pass detections to deepsort outputs = deepsort.update(xywhs, confss, im0) # draw boxes for visualization if len(outputs) > 0: bbox_xyxy = outputs[:, :4] identities = outputs[:, -1] draw_boxes(im0, bbox_xyxy, identities) for *xyxy, conf, cls in reversed(det): if save_txt: # Write to file xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh line = (cls, *xywh, conf) if opt.save_conf else (cls, *xywh) # label format with open(txt_path + '.txt', 'a') as f: f.write(('%g ' * len(line)).rstrip() % line + '\n') if cls == 32 and (save_img or view_img): # Add bbox to ball #label = f'{names[int(cls)]}' label = 'ball' plot_one_box(xyxy, im0, label=label, color=[0,0,0], line_thickness=2) # Write MOT compliant results to file """ if save_txt and len(outputs) != 0: for j, output in enumerate(outputs): bbox_left = output[0] bbox_top = output[1] bbox_w = output[2] bbox_h = output[3] identity = output[-1] with open(txt_path + '.txt', 'a') as f: f.write(('%g ' * 10 + '\n') % (j, identity, bbox_left, bbox_top, bbox_w, bbox_h, -1, -1, -1, -1)) # label format """ else: deepsort.increment_ages() # Print time (inference + NMS) print(f'{s}Done. ({t2 - t1:.3f}s)') # Stream results if view_img: cv2.imshow(str(p), im0) if cv2.waitKey(1) == ord('q'): # q to quit raise StopIteration # Save results (image with detections) if save_img: if dataset.mode == 'image': cv2.imwrite(save_path, im0) else: # 'video' if vid_path != save_path: # new video vid_path = save_path if isinstance(vid_writer, cv2.VideoWriter): vid_writer.release() # release previous video writer fourcc = 'mp4v' # output video codec fps = vid_cap.get(cv2.CAP_PROP_FPS) w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH)) h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*fourcc), fps, (w, h)) vid_writer.write(im0) if save_txt or save_img: s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else '' print(f"Results saved to {save_dir}{s}") print(f'Done. ({time.time() - t0:.3f}s)') if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--weights', nargs='+', type=str, default='yolov5s.pt', help='model.pt path(s)') parser.add_argument('--source', type=str, default='data/images', help='source') # file/folder, 0 for webcam parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)') parser.add_argument('--conf-thres', type=float, default=0.25, help='object confidence threshold') parser.add_argument('--iou-thres', type=float, default=0.45, help='IOU threshold for NMS') parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') parser.add_argument('--view-img', action='store_true', help='display results') parser.add_argument('--save-txt', action='store_true', help='save results to *.txt') parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels') parser.add_argument('--classes', nargs='+', type=int, default=[0, 32], help='filter by class: --class 0, or --class 0 2 3') parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS') parser.add_argument('--augment', action='store_true', help='augmented inference') parser.add_argument('--update', action='store_true', help='update all models') parser.add_argument('--project', default='../files/output', help='save results to project/name') parser.add_argument('--name', default='exp', help='save results to project/name') parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment') parser.add_argument("--config_deepsort", type=str, default="deep_sort_pytorch/configs/deep_sort.yaml") opt = parser.parse_args() print(opt) with torch.no_grad(): if opt.update: # update all models (to fix SourceChangeWarning) for opt.weights in ['yolov5s.pt', 'yolov5m.pt', 'yolov5l.pt', 'yolov5x.pt']: detect() strip_optimizer(opt.weights) else: detect()