276 lines
12 KiB
Python
276 lines
12 KiB
Python
import argparse
|
|
import time
|
|
import os
|
|
from pathlib import Path
|
|
|
|
import cv2
|
|
import sklearn
|
|
import torch
|
|
import torch.backends.cudnn as cudnn
|
|
import numpy as np
|
|
from numpy import random
|
|
|
|
from models.experimental import attempt_load
|
|
from utils.datasets import LoadStreams, LoadImages
|
|
from utils.general import check_img_size, non_max_suppression, apply_classifier, scale_coords, xyxy2xywh, \
|
|
strip_optimizer, set_logging, increment_path
|
|
from utils.plots import plot_one_box
|
|
from utils.torch_utils import select_device, load_classifier, time_synchronized
|
|
from deep_sort_pytorch.utils.parser import get_config
|
|
from deep_sort_pytorch.deep_sort import DeepSort
|
|
|
|
import player
|
|
|
|
def bbox_rel(*xyxy):
|
|
"""" Calculates the relative bounding box from absolute pixel values. """
|
|
bbox_left = min([xyxy[0].item(), xyxy[2].item()])
|
|
bbox_top = min([xyxy[1].item(), xyxy[3].item()])
|
|
bbox_w = abs(xyxy[0].item() - xyxy[2].item())
|
|
bbox_h = abs(xyxy[1].item() - xyxy[3].item())
|
|
x_c = (bbox_left + bbox_w / 2)
|
|
y_c = (bbox_top + bbox_h / 2)
|
|
w = bbox_w
|
|
h = bbox_h
|
|
return x_c, y_c, w, h
|
|
|
|
|
|
players = {}
|
|
|
|
|
|
def draw_boxes(img, bbox, identities=None, offset=(0, 0)):
|
|
for i, box in enumerate(bbox):
|
|
x1, y1, x2, y2 = [int(i) for i in box]
|
|
x1 += offset[0]
|
|
x2 += offset[0]
|
|
y1 += offset[1]
|
|
y2 += offset[1]
|
|
# box text and bar
|
|
id = int(identities[i]) if identities is not None else 0
|
|
if id in players.keys():
|
|
current_player = players.get(id)
|
|
# only if checking colors automatically:
|
|
current_player.assignTeam(players)
|
|
label = current_player.team
|
|
else:
|
|
# check color manually
|
|
# team, color = player.check_color_manual2(left_clicks,img,x1,x2,y1,y2)
|
|
|
|
# check color automatically
|
|
color = player.detectPlayerColor(img,x1,x2,y1,y2)
|
|
|
|
current_player = player.Player(id,color=color,x=x2-(x2-x1),y=y2)
|
|
label = "?"
|
|
players[id] = current_player
|
|
|
|
# label = current_player.team
|
|
plot_one_box(box, img, label=label, color=(int(current_player.color[0]), int(current_player.color[1]), int(current_player.color[2])), line_thickness=1)
|
|
#plot_one_box(box, img, label=label, color=current_player.color, line_thickness=1)
|
|
|
|
return img
|
|
|
|
|
|
def detect(save_img=False):
|
|
source, weights, view_img, save_txt, imgsz = opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size
|
|
webcam = source.isnumeric() or source.endswith('.txt') or source.lower().startswith(
|
|
('rtsp://', 'rtmp://', 'http://'))
|
|
|
|
# Directories
|
|
save_dir = Path(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok)) # increment run
|
|
(save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
|
|
|
|
# DeepSort Initialize
|
|
cfg = get_config()
|
|
cfg.merge_from_file(opt.config_deepsort)
|
|
deepsort = DeepSort(cfg.DEEPSORT.REID_CKPT,
|
|
max_dist=cfg.DEEPSORT.MAX_DIST, min_confidence=cfg.DEEPSORT.MIN_CONFIDENCE,
|
|
nms_max_overlap=cfg.DEEPSORT.NMS_MAX_OVERLAP, max_iou_distance=cfg.DEEPSORT.MAX_IOU_DISTANCE,
|
|
max_age=cfg.DEEPSORT.MAX_AGE, n_init=cfg.DEEPSORT.N_INIT, nn_budget=cfg.DEEPSORT.NN_BUDGET,
|
|
use_cuda=True)
|
|
|
|
# Initialize
|
|
set_logging()
|
|
device = select_device(opt.device)
|
|
half = device.type != 'cpu' # half precision only supported on CUDA
|
|
|
|
# Load model
|
|
model = attempt_load(weights, map_location=device) # load FP32 model
|
|
imgsz = check_img_size(imgsz, s=model.stride.max()) # check img_size
|
|
if half:
|
|
model.half() # to FP16
|
|
|
|
# Second-stage classifier
|
|
classify = False
|
|
if classify:
|
|
modelc = load_classifier(name='resnet101', n=2) # initialize
|
|
modelc.load_state_dict(torch.load('weights/resnet101.pt', map_location=device)['model']).to(device).eval()
|
|
|
|
# Set Dataloader
|
|
vid_path, vid_writer = None, None
|
|
if webcam:
|
|
view_img = True
|
|
cudnn.benchmark = True # set True to speed up constant image size inference
|
|
dataset = LoadStreams(source, img_size=imgsz)
|
|
else:
|
|
save_img = True
|
|
dataset = LoadImages(source, img_size=imgsz)
|
|
|
|
# Get names
|
|
names = model.module.names if hasattr(model, 'module') else model.names
|
|
# Run inference
|
|
t0 = time.time()
|
|
img = torch.zeros((1, 3, imgsz, imgsz), device=device) # init img
|
|
_ = model(img.half() if half else img) if device.type != 'cpu' else None # run once
|
|
|
|
|
|
for path, img, im0s, vid_cap in dataset:
|
|
img = torch.from_numpy(img).to(device)
|
|
img = img.half() if half else img.float() # uint8 to fp16/32
|
|
img /= 255.0 # 0 - 255 to 0.0 - 1.0
|
|
if img.ndimension() == 3:
|
|
img = img.unsqueeze(0)
|
|
|
|
# Inference
|
|
t1 = time_synchronized()
|
|
pred = model(img, augment=opt.augment)[0]
|
|
|
|
# Apply NMS
|
|
pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, classes=opt.classes, agnostic=opt.agnostic_nms)
|
|
t2 = time_synchronized()
|
|
|
|
# Apply Classifier
|
|
if classify:
|
|
pred = apply_classifier(pred, modelc, img, im0s)
|
|
# Process detections
|
|
for i, det in enumerate(pred): # detections per image
|
|
if webcam: # batch_size >= 1
|
|
p, s, im0, frame = Path(path[i]), '%g: ' % i, im0s[i].copy(), dataset.count
|
|
else:
|
|
p, s, im0, frame = Path(path), '', im0s, getattr(dataset, 'frame', 0)
|
|
|
|
save_path = str(save_dir / p.name)
|
|
txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}')
|
|
s += '%gx%g ' % img.shape[2:] # print string
|
|
gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
|
|
if len(det):
|
|
# Rescale boxes from img_size to im0 size
|
|
det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()
|
|
|
|
# Print results
|
|
for c in det[:, -1].unique():
|
|
n = (det[:, -1] == c).sum() # detections per class
|
|
s += f'{n} {names[int(c)]}s, ' # add to string
|
|
|
|
bbox_xywh = []
|
|
confs = []
|
|
|
|
# Adapt detections to deep sort input format
|
|
for *xyxy, conf, cls in det:
|
|
if cls == 0:
|
|
x_c, y_c, bbox_w, bbox_h = bbox_rel(*xyxy)
|
|
obj = [x_c, y_c, bbox_w, bbox_h]
|
|
bbox_xywh.append(obj)
|
|
confs.append([conf.item()])
|
|
|
|
xywhs = torch.Tensor(bbox_xywh)
|
|
confss = torch.Tensor(confs)
|
|
|
|
# Pass detections to deepsort
|
|
outputs = deepsort.update(xywhs, confss, im0)
|
|
|
|
# draw boxes for visualization
|
|
if len(outputs) > 0:
|
|
bbox_xyxy = outputs[:, :4]
|
|
identities = outputs[:, -1]
|
|
draw_boxes(im0, bbox_xyxy, identities)
|
|
|
|
|
|
for *xyxy, conf, cls in reversed(det):
|
|
if save_txt: # Write to file
|
|
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
|
|
line = (cls, *xywh, conf) if opt.save_conf else (cls, *xywh) # label format
|
|
with open(txt_path + '.txt', 'a') as f:
|
|
f.write(('%g ' * len(line)).rstrip() % line + '\n')
|
|
|
|
if cls == 32 and (save_img or view_img): # Add bbox to ball
|
|
#label = f'{names[int(cls)]}'
|
|
label = 'ball'
|
|
plot_one_box(xyxy, im0, label=label, color=[0,0,0], line_thickness=2)
|
|
|
|
|
|
# Write MOT compliant results to file
|
|
""" if save_txt and len(outputs) != 0:
|
|
for j, output in enumerate(outputs):
|
|
bbox_left = output[0]
|
|
bbox_top = output[1]
|
|
bbox_w = output[2]
|
|
bbox_h = output[3]
|
|
identity = output[-1]
|
|
with open(txt_path + '.txt', 'a') as f:
|
|
f.write(('%g ' * 10 + '\n') % (j, identity, bbox_left,
|
|
bbox_top, bbox_w, bbox_h, -1, -1, -1, -1)) # label format """
|
|
|
|
else:
|
|
deepsort.increment_ages()
|
|
|
|
# Print time (inference + NMS)
|
|
print(f'{s}Done. ({t2 - t1:.3f}s)')
|
|
|
|
# Stream results
|
|
if view_img:
|
|
cv2.imshow(str(p), im0)
|
|
if cv2.waitKey(1) == ord('q'): # q to quit
|
|
raise StopIteration
|
|
|
|
# Save results (image with detections)
|
|
if save_img:
|
|
if dataset.mode == 'image':
|
|
cv2.imwrite(save_path, im0)
|
|
else: # 'video'
|
|
if vid_path != save_path: # new video
|
|
vid_path = save_path
|
|
if isinstance(vid_writer, cv2.VideoWriter):
|
|
vid_writer.release() # release previous video writer
|
|
|
|
fourcc = 'mp4v' # output video codec
|
|
fps = vid_cap.get(cv2.CAP_PROP_FPS)
|
|
w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
|
h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
|
vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*fourcc), fps, (w, h))
|
|
vid_writer.write(im0)
|
|
|
|
if save_txt or save_img:
|
|
s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
|
|
print(f"Results saved to {save_dir}{s}")
|
|
|
|
print(f'Done. ({time.time() - t0:.3f}s)')
|
|
|
|
|
|
if __name__ == '__main__':
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument('--weights', nargs='+', type=str, default='yolov5l.pt', help='model.pt path(s)')
|
|
parser.add_argument('--source', type=str, default='data/images', help='source') # file/folder, 0 for webcam
|
|
parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')
|
|
parser.add_argument('--conf-thres', type=float, default=0.25, help='object confidence threshold')
|
|
parser.add_argument('--iou-thres', type=float, default=0.45, help='IOU threshold for NMS')
|
|
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
|
|
parser.add_argument('--view-img', action='store_true', help='display results')
|
|
parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
|
|
parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
|
|
parser.add_argument('--classes', nargs='+', type=int, default=[0, 32], help='filter by class: --class 0, or --class 0 2 3')
|
|
parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
|
|
parser.add_argument('--augment', action='store_true', help='augmented inference')
|
|
parser.add_argument('--update', action='store_true', help='update all models')
|
|
parser.add_argument('--project', default='../files/output', help='save results to project/name')
|
|
parser.add_argument('--name', default='exp', help='save results to project/name')
|
|
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
|
|
parser.add_argument("--config_deepsort", type=str, default="deep_sort_pytorch/configs/deep_sort.yaml")
|
|
opt = parser.parse_args()
|
|
print(opt)
|
|
|
|
with torch.no_grad():
|
|
if opt.update: # update all models (to fix SourceChangeWarning)
|
|
for opt.weights in ['yolov5s.pt', 'yolov5m.pt', 'yolov5l.pt', 'yolov5x.pt']:
|
|
detect()
|
|
strip_optimizer(opt.weights)
|
|
else:
|
|
detect() |