335 lines
16 KiB
Python
335 lines
16 KiB
Python
import argparse
|
|
import json
|
|
import os
|
|
from pathlib import Path
|
|
from threading import Thread
|
|
|
|
import numpy as np
|
|
import torch
|
|
import yaml
|
|
from tqdm import tqdm
|
|
|
|
from models.experimental import attempt_load
|
|
from utils.datasets import create_dataloader
|
|
from utils.general import coco80_to_coco91_class, check_dataset, check_file, check_img_size, box_iou, \
|
|
non_max_suppression, scale_coords, xyxy2xywh, xywh2xyxy, set_logging, increment_path
|
|
from utils.loss import compute_loss
|
|
from utils.metrics import ap_per_class, ConfusionMatrix
|
|
from utils.plots import plot_images, output_to_target, plot_study_txt
|
|
from utils.torch_utils import select_device, time_synchronized
|
|
|
|
|
|
def test(data,
|
|
weights=None,
|
|
batch_size=32,
|
|
imgsz=640,
|
|
conf_thres=0.001,
|
|
iou_thres=0.6, # for NMS
|
|
save_json=False,
|
|
single_cls=False,
|
|
augment=False,
|
|
verbose=False,
|
|
model=None,
|
|
dataloader=None,
|
|
save_dir=Path(''), # for saving images
|
|
save_txt=False, # for auto-labelling
|
|
save_hybrid=False, # for hybrid auto-labelling
|
|
save_conf=False, # save auto-label confidences
|
|
plots=True,
|
|
log_imgs=0): # number of logged images
|
|
|
|
# Initialize/load model and set device
|
|
training = model is not None
|
|
if training: # called by train.py
|
|
device = next(model.parameters()).device # get model device
|
|
|
|
else: # called directly
|
|
set_logging()
|
|
device = select_device(opt.device, batch_size=batch_size)
|
|
|
|
# Directories
|
|
save_dir = Path(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok)) # increment run
|
|
(save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
|
|
|
|
# Load model
|
|
model = attempt_load(weights, map_location=device) # load FP32 model
|
|
imgsz = check_img_size(imgsz, s=model.stride.max()) # check img_size
|
|
|
|
# Multi-GPU disabled, incompatible with .half() https://github.com/ultralytics/yolov5/issues/99
|
|
# if device.type != 'cpu' and torch.cuda.device_count() > 1:
|
|
# model = nn.DataParallel(model)
|
|
|
|
# Half
|
|
half = device.type != 'cpu' # half precision only supported on CUDA
|
|
if half:
|
|
model.half()
|
|
|
|
# Configure
|
|
model.eval()
|
|
is_coco = data.endswith('coco.yaml') # is COCO dataset
|
|
with open(data) as f:
|
|
data = yaml.load(f, Loader=yaml.FullLoader) # model dict
|
|
check_dataset(data) # check
|
|
nc = 1 if single_cls else int(data['nc']) # number of classes
|
|
iouv = torch.linspace(0.5, 0.95, 10).to(device) # iou vector for mAP@0.5:0.95
|
|
niou = iouv.numel()
|
|
|
|
# Logging
|
|
log_imgs, wandb = min(log_imgs, 100), None # ceil
|
|
try:
|
|
import wandb # Weights & Biases
|
|
except ImportError:
|
|
log_imgs = 0
|
|
|
|
# Dataloader
|
|
if not training:
|
|
img = torch.zeros((1, 3, imgsz, imgsz), device=device) # init img
|
|
_ = model(img.half() if half else img) if device.type != 'cpu' else None # run once
|
|
path = data['test'] if opt.task == 'test' else data['val'] # path to val/test images
|
|
dataloader = create_dataloader(path, imgsz, batch_size, model.stride.max(), opt, pad=0.5, rect=True)[0]
|
|
|
|
seen = 0
|
|
confusion_matrix = ConfusionMatrix(nc=nc)
|
|
names = {k: v for k, v in enumerate(model.names if hasattr(model, 'names') else model.module.names)}
|
|
coco91class = coco80_to_coco91_class()
|
|
s = ('%20s' + '%12s' * 6) % ('Class', 'Images', 'Targets', 'P', 'R', 'mAP@.5', 'mAP@.5:.95')
|
|
p, r, f1, mp, mr, map50, map, t0, t1 = 0., 0., 0., 0., 0., 0., 0., 0., 0.
|
|
loss = torch.zeros(3, device=device)
|
|
jdict, stats, ap, ap_class, wandb_images = [], [], [], [], []
|
|
for batch_i, (img, targets, paths, shapes) in enumerate(tqdm(dataloader, desc=s)):
|
|
img = img.to(device, non_blocking=True)
|
|
img = img.half() if half else img.float() # uint8 to fp16/32
|
|
img /= 255.0 # 0 - 255 to 0.0 - 1.0
|
|
targets = targets.to(device)
|
|
nb, _, height, width = img.shape # batch size, channels, height, width
|
|
|
|
with torch.no_grad():
|
|
# Run model
|
|
t = time_synchronized()
|
|
inf_out, train_out = model(img, augment=augment) # inference and training outputs
|
|
t0 += time_synchronized() - t
|
|
|
|
# Compute loss
|
|
if training:
|
|
loss += compute_loss([x.float() for x in train_out], targets, model)[1][:3] # box, obj, cls
|
|
|
|
# Run NMS
|
|
targets[:, 2:] *= torch.Tensor([width, height, width, height]).to(device) # to pixels
|
|
lb = [targets[targets[:, 0] == i, 1:] for i in range(nb)] if save_hybrid else [] # for autolabelling
|
|
t = time_synchronized()
|
|
output = non_max_suppression(inf_out, conf_thres=conf_thres, iou_thres=iou_thres, labels=lb)
|
|
t1 += time_synchronized() - t
|
|
|
|
# Statistics per image
|
|
for si, pred in enumerate(output):
|
|
labels = targets[targets[:, 0] == si, 1:]
|
|
nl = len(labels)
|
|
tcls = labels[:, 0].tolist() if nl else [] # target class
|
|
path = Path(paths[si])
|
|
seen += 1
|
|
|
|
if len(pred) == 0:
|
|
if nl:
|
|
stats.append((torch.zeros(0, niou, dtype=torch.bool), torch.Tensor(), torch.Tensor(), tcls))
|
|
continue
|
|
|
|
# Predictions
|
|
predn = pred.clone()
|
|
scale_coords(img[si].shape[1:], predn[:, :4], shapes[si][0], shapes[si][1]) # native-space pred
|
|
|
|
# Append to text file
|
|
if save_txt:
|
|
gn = torch.tensor(shapes[si][0])[[1, 0, 1, 0]] # normalization gain whwh
|
|
for *xyxy, conf, cls in predn.tolist():
|
|
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
|
|
line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format
|
|
with open(save_dir / 'labels' / (path.stem + '.txt'), 'a') as f:
|
|
f.write(('%g ' * len(line)).rstrip() % line + '\n')
|
|
|
|
# W&B logging
|
|
if plots and len(wandb_images) < log_imgs:
|
|
box_data = [{"position": {"minX": xyxy[0], "minY": xyxy[1], "maxX": xyxy[2], "maxY": xyxy[3]},
|
|
"class_id": int(cls),
|
|
"box_caption": "%s %.3f" % (names[cls], conf),
|
|
"scores": {"class_score": conf},
|
|
"domain": "pixel"} for *xyxy, conf, cls in pred.tolist()]
|
|
boxes = {"predictions": {"box_data": box_data, "class_labels": names}} # inference-space
|
|
wandb_images.append(wandb.Image(img[si], boxes=boxes, caption=path.name))
|
|
|
|
# Append to pycocotools JSON dictionary
|
|
if save_json:
|
|
# [{"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}, ...
|
|
image_id = int(path.stem) if path.stem.isnumeric() else path.stem
|
|
box = xyxy2xywh(predn[:, :4]) # xywh
|
|
box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner
|
|
for p, b in zip(pred.tolist(), box.tolist()):
|
|
jdict.append({'image_id': image_id,
|
|
'category_id': coco91class[int(p[5])] if is_coco else int(p[5]),
|
|
'bbox': [round(x, 3) for x in b],
|
|
'score': round(p[4], 5)})
|
|
|
|
# Assign all predictions as incorrect
|
|
correct = torch.zeros(pred.shape[0], niou, dtype=torch.bool, device=device)
|
|
if nl:
|
|
detected = [] # target indices
|
|
tcls_tensor = labels[:, 0]
|
|
|
|
# target boxes
|
|
tbox = xywh2xyxy(labels[:, 1:5])
|
|
scale_coords(img[si].shape[1:], tbox, shapes[si][0], shapes[si][1]) # native-space labels
|
|
if plots:
|
|
confusion_matrix.process_batch(pred, torch.cat((labels[:, 0:1], tbox), 1))
|
|
|
|
# Per target class
|
|
for cls in torch.unique(tcls_tensor):
|
|
ti = (cls == tcls_tensor).nonzero(as_tuple=False).view(-1) # prediction indices
|
|
pi = (cls == pred[:, 5]).nonzero(as_tuple=False).view(-1) # target indices
|
|
|
|
# Search for detections
|
|
if pi.shape[0]:
|
|
# Prediction to target ious
|
|
ious, i = box_iou(predn[pi, :4], tbox[ti]).max(1) # best ious, indices
|
|
|
|
# Append detections
|
|
detected_set = set()
|
|
for j in (ious > iouv[0]).nonzero(as_tuple=False):
|
|
d = ti[i[j]] # detected target
|
|
if d.item() not in detected_set:
|
|
detected_set.add(d.item())
|
|
detected.append(d)
|
|
correct[pi[j]] = ious[j] > iouv # iou_thres is 1xn
|
|
if len(detected) == nl: # all targets already located in image
|
|
break
|
|
|
|
# Append statistics (correct, conf, pcls, tcls)
|
|
stats.append((correct.cpu(), pred[:, 4].cpu(), pred[:, 5].cpu(), tcls))
|
|
|
|
# Plot images
|
|
if plots and batch_i < 3:
|
|
f = save_dir / f'test_batch{batch_i}_labels.jpg' # labels
|
|
Thread(target=plot_images, args=(img, targets, paths, f, names), daemon=True).start()
|
|
f = save_dir / f'test_batch{batch_i}_pred.jpg' # predictions
|
|
Thread(target=plot_images, args=(img, output_to_target(output), paths, f, names), daemon=True).start()
|
|
|
|
# Compute statistics
|
|
stats = [np.concatenate(x, 0) for x in zip(*stats)] # to numpy
|
|
if len(stats) and stats[0].any():
|
|
p, r, ap, f1, ap_class = ap_per_class(*stats, plot=plots, save_dir=save_dir, names=names)
|
|
p, r, ap50, ap = p[:, 0], r[:, 0], ap[:, 0], ap.mean(1) # [P, R, AP@0.5, AP@0.5:0.95]
|
|
mp, mr, map50, map = p.mean(), r.mean(), ap50.mean(), ap.mean()
|
|
nt = np.bincount(stats[3].astype(np.int64), minlength=nc) # number of targets per class
|
|
else:
|
|
nt = torch.zeros(1)
|
|
|
|
# Print results
|
|
pf = '%20s' + '%12.3g' * 6 # print format
|
|
print(pf % ('all', seen, nt.sum(), mp, mr, map50, map))
|
|
|
|
# Print results per class
|
|
if verbose and nc > 1 and len(stats):
|
|
for i, c in enumerate(ap_class):
|
|
print(pf % (names[c], seen, nt[c], p[i], r[i], ap50[i], ap[i]))
|
|
|
|
# Print speeds
|
|
t = tuple(x / seen * 1E3 for x in (t0, t1, t0 + t1)) + (imgsz, imgsz, batch_size) # tuple
|
|
if not training:
|
|
print('Speed: %.1f/%.1f/%.1f ms inference/NMS/total per %gx%g image at batch-size %g' % t)
|
|
|
|
# Plots
|
|
if plots:
|
|
confusion_matrix.plot(save_dir=save_dir, names=list(names.values()))
|
|
if wandb and wandb.run:
|
|
wandb.log({"Images": wandb_images})
|
|
wandb.log({"Validation": [wandb.Image(str(f), caption=f.name) for f in sorted(save_dir.glob('test*.jpg'))]})
|
|
|
|
# Save JSON
|
|
if save_json and len(jdict):
|
|
w = Path(weights[0] if isinstance(weights, list) else weights).stem if weights is not None else '' # weights
|
|
anno_json = '../coco/annotations/instances_val2017.json' # annotations json
|
|
pred_json = str(save_dir / f"{w}_predictions.json") # predictions json
|
|
print('\nEvaluating pycocotools mAP... saving %s...' % pred_json)
|
|
with open(pred_json, 'w') as f:
|
|
json.dump(jdict, f)
|
|
|
|
try: # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
|
|
from pycocotools.coco import COCO
|
|
from pycocotools.cocoeval import COCOeval
|
|
|
|
anno = COCO(anno_json) # init annotations api
|
|
pred = anno.loadRes(pred_json) # init predictions api
|
|
eval = COCOeval(anno, pred, 'bbox')
|
|
if is_coco:
|
|
eval.params.imgIds = [int(Path(x).stem) for x in dataloader.dataset.img_files] # image IDs to evaluate
|
|
eval.evaluate()
|
|
eval.accumulate()
|
|
eval.summarize()
|
|
map, map50 = eval.stats[:2] # update results (mAP@0.5:0.95, mAP@0.5)
|
|
except Exception as e:
|
|
print(f'pycocotools unable to run: {e}')
|
|
|
|
# Return results
|
|
if not training:
|
|
s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
|
|
print(f"Results saved to {save_dir}{s}")
|
|
model.float() # for training
|
|
maps = np.zeros(nc) + map
|
|
for i, c in enumerate(ap_class):
|
|
maps[c] = ap[i]
|
|
return (mp, mr, map50, map, *(loss.cpu() / len(dataloader)).tolist()), maps, t
|
|
|
|
|
|
if __name__ == '__main__':
|
|
parser = argparse.ArgumentParser(prog='test.py')
|
|
parser.add_argument('--weights', nargs='+', type=str, default='yolov5s.pt', help='model.pt path(s)')
|
|
parser.add_argument('--data', type=str, default='data/coco128.yaml', help='*.data path')
|
|
parser.add_argument('--batch-size', type=int, default=32, help='size of each image batch')
|
|
parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')
|
|
parser.add_argument('--conf-thres', type=float, default=0.001, help='object confidence threshold')
|
|
parser.add_argument('--iou-thres', type=float, default=0.6, help='IOU threshold for NMS')
|
|
parser.add_argument('--task', default='val', help="'val', 'test', 'study'")
|
|
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
|
|
parser.add_argument('--single-cls', action='store_true', help='treat as single-class dataset')
|
|
parser.add_argument('--augment', action='store_true', help='augmented inference')
|
|
parser.add_argument('--verbose', action='store_true', help='report mAP by class')
|
|
parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
|
|
parser.add_argument('--save-hybrid', action='store_true', help='save label+prediction hybrid results to *.txt')
|
|
parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
|
|
parser.add_argument('--save-json', action='store_true', help='save a cocoapi-compatible JSON results file')
|
|
parser.add_argument('--project', default='runs/test', help='save to project/name')
|
|
parser.add_argument('--name', default='exp', help='save to project/name')
|
|
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
|
|
opt = parser.parse_args()
|
|
opt.save_json |= opt.data.endswith('coco.yaml')
|
|
opt.data = check_file(opt.data) # check file
|
|
print(opt)
|
|
|
|
if opt.task in ['val', 'test']: # run normally
|
|
test(opt.data,
|
|
opt.weights,
|
|
opt.batch_size,
|
|
opt.img_size,
|
|
opt.conf_thres,
|
|
opt.iou_thres,
|
|
opt.save_json,
|
|
opt.single_cls,
|
|
opt.augment,
|
|
opt.verbose,
|
|
save_txt=opt.save_txt | opt.save_hybrid,
|
|
save_hybrid=opt.save_hybrid,
|
|
save_conf=opt.save_conf,
|
|
)
|
|
|
|
elif opt.task == 'study': # run over a range of settings and save/plot
|
|
for weights in ['yolov5s.pt', 'yolov5m.pt', 'yolov5l.pt', 'yolov5x.pt']:
|
|
f = 'study_%s_%s.txt' % (Path(opt.data).stem, Path(weights).stem) # filename to save to
|
|
x = list(range(320, 800, 64)) # x axis
|
|
y = [] # y axis
|
|
for i in x: # img-size
|
|
print('\nRunning %s point %s...' % (f, i))
|
|
r, _, t = test(opt.data, weights, opt.batch_size, i, opt.conf_thres, opt.iou_thres, opt.save_json,
|
|
plots=False)
|
|
y.append(r + t) # results and times
|
|
np.savetxt(f, y, fmt='%10.4g') # save
|
|
os.system('zip -r study.zip study_*.txt')
|
|
plot_study_txt(f, x) # plot
|