935 lines
37 KiB
Python
935 lines
37 KiB
Python
# Dataset utils and dataloaders
|
|
|
|
import glob
|
|
import logging
|
|
import math
|
|
import os
|
|
import random
|
|
import shutil
|
|
import time
|
|
from itertools import repeat
|
|
from multiprocessing.pool import ThreadPool
|
|
from pathlib import Path
|
|
from threading import Thread
|
|
|
|
import cv2
|
|
import numpy as np
|
|
import torch
|
|
from PIL import Image, ExifTags
|
|
from torch.utils.data import Dataset
|
|
from tqdm import tqdm
|
|
|
|
from utils.general import xyxy2xywh, xywh2xyxy, clean_str
|
|
from utils.torch_utils import torch_distributed_zero_first
|
|
|
|
# Parameters
|
|
help_url = 'https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data'
|
|
img_formats = ['bmp', 'jpg', 'jpeg', 'png', 'tif', 'tiff', 'dng'] # acceptable image suffixes
|
|
vid_formats = ['mov', 'avi', 'mp4', 'mpg', 'mpeg', 'm4v', 'wmv', 'mkv'] # acceptable video suffixes
|
|
logger = logging.getLogger(__name__)
|
|
|
|
# Get orientation exif tag
|
|
for orientation in ExifTags.TAGS.keys():
|
|
if ExifTags.TAGS[orientation] == 'Orientation':
|
|
break
|
|
|
|
|
|
def get_hash(files):
|
|
# Returns a single hash value of a list of files
|
|
return sum(os.path.getsize(f) for f in files if os.path.isfile(f))
|
|
|
|
|
|
def exif_size(img):
|
|
# Returns exif-corrected PIL size
|
|
s = img.size # (width, height)
|
|
try:
|
|
rotation = dict(img._getexif().items())[orientation]
|
|
if rotation == 6: # rotation 270
|
|
s = (s[1], s[0])
|
|
elif rotation == 8: # rotation 90
|
|
s = (s[1], s[0])
|
|
except:
|
|
pass
|
|
|
|
return s
|
|
|
|
|
|
def create_dataloader(path, imgsz, batch_size, stride, opt, hyp=None, augment=False, cache=False, pad=0.0, rect=False,
|
|
rank=-1, world_size=1, workers=8, image_weights=False):
|
|
# Make sure only the first process in DDP process the dataset first, and the following others can use the cache
|
|
with torch_distributed_zero_first(rank):
|
|
dataset = LoadImagesAndLabels(path, imgsz, batch_size,
|
|
augment=augment, # augment images
|
|
hyp=hyp, # augmentation hyperparameters
|
|
rect=rect, # rectangular training
|
|
cache_images=cache,
|
|
single_cls=opt.single_cls,
|
|
stride=int(stride),
|
|
pad=pad,
|
|
rank=rank,
|
|
image_weights=image_weights)
|
|
|
|
batch_size = min(batch_size, len(dataset))
|
|
nw = min([os.cpu_count() // world_size, batch_size if batch_size > 1 else 0, workers]) # number of workers
|
|
sampler = torch.utils.data.distributed.DistributedSampler(dataset) if rank != -1 else None
|
|
loader = torch.utils.data.DataLoader if image_weights else InfiniteDataLoader
|
|
# Use torch.utils.data.DataLoader() if dataset.properties will update during training else InfiniteDataLoader()
|
|
dataloader = loader(dataset,
|
|
batch_size=batch_size,
|
|
num_workers=nw,
|
|
sampler=sampler,
|
|
pin_memory=True,
|
|
collate_fn=LoadImagesAndLabels.collate_fn)
|
|
return dataloader, dataset
|
|
|
|
|
|
class InfiniteDataLoader(torch.utils.data.dataloader.DataLoader):
|
|
""" Dataloader that reuses workers
|
|
|
|
Uses same syntax as vanilla DataLoader
|
|
"""
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
super().__init__(*args, **kwargs)
|
|
object.__setattr__(self, 'batch_sampler', _RepeatSampler(self.batch_sampler))
|
|
self.iterator = super().__iter__()
|
|
|
|
def __len__(self):
|
|
return len(self.batch_sampler.sampler)
|
|
|
|
def __iter__(self):
|
|
for i in range(len(self)):
|
|
yield next(self.iterator)
|
|
|
|
|
|
class _RepeatSampler(object):
|
|
""" Sampler that repeats forever
|
|
|
|
Args:
|
|
sampler (Sampler)
|
|
"""
|
|
|
|
def __init__(self, sampler):
|
|
self.sampler = sampler
|
|
|
|
def __iter__(self):
|
|
while True:
|
|
yield from iter(self.sampler)
|
|
|
|
|
|
class LoadImages: # for inference
|
|
def __init__(self, path, img_size=640):
|
|
p = str(Path(path)) # os-agnostic
|
|
p = os.path.abspath(p) # absolute path
|
|
if '*' in p:
|
|
files = sorted(glob.glob(p, recursive=True)) # glob
|
|
elif os.path.isdir(p):
|
|
files = sorted(glob.glob(os.path.join(p, '*.*'))) # dir
|
|
elif os.path.isfile(p):
|
|
files = [p] # files
|
|
else:
|
|
raise Exception('ERROR: %s does not exist' % p)
|
|
|
|
images = [x for x in files if x.split('.')[-1].lower() in img_formats]
|
|
videos = [x for x in files if x.split('.')[-1].lower() in vid_formats]
|
|
ni, nv = len(images), len(videos)
|
|
|
|
self.img_size = img_size
|
|
self.files = images + videos
|
|
self.nf = ni + nv # number of files
|
|
self.video_flag = [False] * ni + [True] * nv
|
|
self.mode = 'image'
|
|
if any(videos):
|
|
self.new_video(videos[0]) # new video
|
|
else:
|
|
self.cap = None
|
|
assert self.nf > 0, 'No images or videos found in %s. Supported formats are:\nimages: %s\nvideos: %s' % \
|
|
(p, img_formats, vid_formats)
|
|
|
|
def __iter__(self):
|
|
self.count = 0
|
|
return self
|
|
|
|
def __next__(self):
|
|
if self.count == self.nf:
|
|
raise StopIteration
|
|
path = self.files[self.count]
|
|
|
|
if self.video_flag[self.count]:
|
|
# Read video
|
|
self.mode = 'video'
|
|
ret_val, img0 = self.cap.read()
|
|
if not ret_val:
|
|
self.count += 1
|
|
self.cap.release()
|
|
if self.count == self.nf: # last video
|
|
raise StopIteration
|
|
else:
|
|
path = self.files[self.count]
|
|
self.new_video(path)
|
|
ret_val, img0 = self.cap.read()
|
|
|
|
self.frame += 1
|
|
# print('video %g/%g (%g/%g) %s: ' % (self.count + 1, self.nf, self.frame, self.nframes, path), end='')
|
|
print('video %g/%g (%g/%g) : ' % (self.count + 1, self.nf, self.frame, self.nframes), end='')
|
|
|
|
else:
|
|
# Read image
|
|
self.count += 1
|
|
img0 = cv2.imread(path) # BGR
|
|
assert img0 is not None, 'Image Not Found ' + path
|
|
print('image %g/%g %s: ' % (self.count, self.nf, path), end='')
|
|
|
|
# Padded resize
|
|
img = letterbox(img0, new_shape=self.img_size)[0]
|
|
|
|
# Convert
|
|
img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
|
|
img = np.ascontiguousarray(img)
|
|
|
|
return path, img, img0, self.cap
|
|
|
|
def new_video(self, path):
|
|
self.frame = 0
|
|
self.cap = cv2.VideoCapture(path)
|
|
self.nframes = int(self.cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
|
|
|
def __len__(self):
|
|
return self.nf # number of files
|
|
|
|
|
|
class LoadWebcam: # for inference
|
|
def __init__(self, pipe='0', img_size=640):
|
|
self.img_size = img_size
|
|
|
|
if pipe.isnumeric():
|
|
pipe = eval(pipe) # local camera
|
|
# pipe = 'rtsp://192.168.1.64/1' # IP camera
|
|
# pipe = 'rtsp://username:password@192.168.1.64/1' # IP camera with login
|
|
# pipe = 'http://wmccpinetop.axiscam.net/mjpg/video.mjpg' # IP golf camera
|
|
|
|
self.pipe = pipe
|
|
self.cap = cv2.VideoCapture(pipe) # video capture object
|
|
self.cap.set(cv2.CAP_PROP_BUFFERSIZE, 3) # set buffer size
|
|
|
|
def __iter__(self):
|
|
self.count = -1
|
|
return self
|
|
|
|
def __next__(self):
|
|
self.count += 1
|
|
if cv2.waitKey(1) == ord('q'): # q to quit
|
|
self.cap.release()
|
|
cv2.destroyAllWindows()
|
|
raise StopIteration
|
|
|
|
# Read frame
|
|
if self.pipe == 0: # local camera
|
|
ret_val, img0 = self.cap.read()
|
|
img0 = cv2.flip(img0, 1) # flip left-right
|
|
else: # IP camera
|
|
n = 0
|
|
while True:
|
|
n += 1
|
|
self.cap.grab()
|
|
if n % 30 == 0: # skip frames
|
|
ret_val, img0 = self.cap.retrieve()
|
|
if ret_val:
|
|
break
|
|
|
|
# Print
|
|
assert ret_val, 'Camera Error %s' % self.pipe
|
|
img_path = 'webcam.jpg'
|
|
print('webcam %g: ' % self.count, end='')
|
|
|
|
# Padded resize
|
|
img = letterbox(img0, new_shape=self.img_size)[0]
|
|
|
|
# Convert
|
|
img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
|
|
img = np.ascontiguousarray(img)
|
|
|
|
return img_path, img, img0, None
|
|
|
|
def __len__(self):
|
|
return 0
|
|
|
|
|
|
class LoadStreams: # multiple IP or RTSP cameras
|
|
def __init__(self, sources='streams.txt', img_size=640):
|
|
self.mode = 'stream'
|
|
self.img_size = img_size
|
|
|
|
if os.path.isfile(sources):
|
|
with open(sources, 'r') as f:
|
|
sources = [x.strip() for x in f.read().strip().splitlines() if len(x.strip())]
|
|
else:
|
|
sources = [sources]
|
|
|
|
n = len(sources)
|
|
self.imgs = [None] * n
|
|
self.sources = [clean_str(x) for x in sources] # clean source names for later
|
|
for i, s in enumerate(sources):
|
|
# Start the thread to read frames from the video stream
|
|
print('%g/%g: %s... ' % (i + 1, n, s), end='')
|
|
cap = cv2.VideoCapture(eval(s) if s.isnumeric() else s)
|
|
assert cap.isOpened(), 'Failed to open %s' % s
|
|
w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
|
h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
|
fps = cap.get(cv2.CAP_PROP_FPS) % 100
|
|
_, self.imgs[i] = cap.read() # guarantee first frame
|
|
thread = Thread(target=self.update, args=([i, cap]), daemon=True)
|
|
print(' success (%gx%g at %.2f FPS).' % (w, h, fps))
|
|
thread.start()
|
|
print('') # newline
|
|
|
|
# check for common shapes
|
|
s = np.stack([letterbox(x, new_shape=self.img_size)[0].shape for x in self.imgs], 0) # inference shapes
|
|
self.rect = np.unique(s, axis=0).shape[0] == 1 # rect inference if all shapes equal
|
|
if not self.rect:
|
|
print('WARNING: Different stream shapes detected. For optimal performance supply similarly-shaped streams.')
|
|
|
|
def update(self, index, cap):
|
|
# Read next stream frame in a daemon thread
|
|
n = 0
|
|
while cap.isOpened():
|
|
n += 1
|
|
# _, self.imgs[index] = cap.read()
|
|
cap.grab()
|
|
if n == 4: # read every 4th frame
|
|
_, self.imgs[index] = cap.retrieve()
|
|
n = 0
|
|
time.sleep(0.01) # wait time
|
|
|
|
def __iter__(self):
|
|
self.count = -1
|
|
return self
|
|
|
|
def __next__(self):
|
|
self.count += 1
|
|
img0 = self.imgs.copy()
|
|
if cv2.waitKey(1) == ord('q'): # q to quit
|
|
cv2.destroyAllWindows()
|
|
raise StopIteration
|
|
|
|
# Letterbox
|
|
img = [letterbox(x, new_shape=self.img_size, auto=self.rect)[0] for x in img0]
|
|
|
|
# Stack
|
|
img = np.stack(img, 0)
|
|
|
|
# Convert
|
|
img = img[:, :, :, ::-1].transpose(0, 3, 1, 2) # BGR to RGB, to bsx3x416x416
|
|
img = np.ascontiguousarray(img)
|
|
|
|
return self.sources, img, img0, None
|
|
|
|
def __len__(self):
|
|
return 0 # 1E12 frames = 32 streams at 30 FPS for 30 years
|
|
|
|
|
|
def img2label_paths(img_paths):
|
|
# Define label paths as a function of image paths
|
|
sa, sb = os.sep + 'images' + os.sep, os.sep + 'labels' + os.sep # /images/, /labels/ substrings
|
|
return [x.replace(sa, sb, 1).replace('.' + x.split('.')[-1], '.txt') for x in img_paths]
|
|
|
|
|
|
class LoadImagesAndLabels(Dataset): # for training/testing
|
|
def __init__(self, path, img_size=640, batch_size=16, augment=False, hyp=None, rect=False, image_weights=False,
|
|
cache_images=False, single_cls=False, stride=32, pad=0.0, rank=-1):
|
|
self.img_size = img_size
|
|
self.augment = augment
|
|
self.hyp = hyp
|
|
self.image_weights = image_weights
|
|
self.rect = False if image_weights else rect
|
|
self.mosaic = self.augment and not self.rect # load 4 images at a time into a mosaic (only during training)
|
|
self.mosaic_border = [-img_size // 2, -img_size // 2]
|
|
self.stride = stride
|
|
|
|
try:
|
|
f = [] # image files
|
|
for p in path if isinstance(path, list) else [path]:
|
|
p = Path(p) # os-agnostic
|
|
if p.is_dir(): # dir
|
|
f += glob.glob(str(p / '**' / '*.*'), recursive=True)
|
|
elif p.is_file(): # file
|
|
with open(p, 'r') as t:
|
|
t = t.read().strip().splitlines()
|
|
parent = str(p.parent) + os.sep
|
|
f += [x.replace('./', parent) if x.startswith('./') else x for x in t] # local to global path
|
|
else:
|
|
raise Exception('%s does not exist' % p)
|
|
self.img_files = sorted([x.replace('/', os.sep) for x in f if x.split('.')[-1].lower() in img_formats])
|
|
assert self.img_files, 'No images found'
|
|
except Exception as e:
|
|
raise Exception('Error loading data from %s: %s\nSee %s' % (path, e, help_url))
|
|
|
|
# Check cache
|
|
self.label_files = img2label_paths(self.img_files) # labels
|
|
cache_path = Path(self.label_files[0]).parent.with_suffix('.cache') # cached labels
|
|
if cache_path.is_file():
|
|
cache = torch.load(cache_path) # load
|
|
if cache['hash'] != get_hash(self.label_files + self.img_files) or 'results' not in cache: # changed
|
|
cache = self.cache_labels(cache_path) # re-cache
|
|
else:
|
|
cache = self.cache_labels(cache_path) # cache
|
|
|
|
# Display cache
|
|
[nf, nm, ne, nc, n] = cache.pop('results') # found, missing, empty, corrupted, total
|
|
desc = f"Scanning '{cache_path}' for images and labels... {nf} found, {nm} missing, {ne} empty, {nc} corrupted"
|
|
tqdm(None, desc=desc, total=n, initial=n)
|
|
assert nf > 0 or not augment, f'No labels found in {cache_path}. Can not train without labels. See {help_url}'
|
|
|
|
# Read cache
|
|
cache.pop('hash') # remove hash
|
|
labels, shapes = zip(*cache.values())
|
|
self.labels = list(labels)
|
|
self.shapes = np.array(shapes, dtype=np.float64)
|
|
self.img_files = list(cache.keys()) # update
|
|
self.label_files = img2label_paths(cache.keys()) # update
|
|
if single_cls:
|
|
for x in self.labels:
|
|
x[:, 0] = 0
|
|
|
|
n = len(shapes) # number of images
|
|
bi = np.floor(np.arange(n) / batch_size).astype(np.int) # batch index
|
|
nb = bi[-1] + 1 # number of batches
|
|
self.batch = bi # batch index of image
|
|
self.n = n
|
|
self.indices = range(n)
|
|
|
|
# Rectangular Training
|
|
if self.rect:
|
|
# Sort by aspect ratio
|
|
s = self.shapes # wh
|
|
ar = s[:, 1] / s[:, 0] # aspect ratio
|
|
irect = ar.argsort()
|
|
self.img_files = [self.img_files[i] for i in irect]
|
|
self.label_files = [self.label_files[i] for i in irect]
|
|
self.labels = [self.labels[i] for i in irect]
|
|
self.shapes = s[irect] # wh
|
|
ar = ar[irect]
|
|
|
|
# Set training image shapes
|
|
shapes = [[1, 1]] * nb
|
|
for i in range(nb):
|
|
ari = ar[bi == i]
|
|
mini, maxi = ari.min(), ari.max()
|
|
if maxi < 1:
|
|
shapes[i] = [maxi, 1]
|
|
elif mini > 1:
|
|
shapes[i] = [1, 1 / mini]
|
|
|
|
self.batch_shapes = np.ceil(np.array(shapes) * img_size / stride + pad).astype(np.int) * stride
|
|
|
|
# Cache images into memory for faster training (WARNING: large datasets may exceed system RAM)
|
|
self.imgs = [None] * n
|
|
if cache_images:
|
|
gb = 0 # Gigabytes of cached images
|
|
self.img_hw0, self.img_hw = [None] * n, [None] * n
|
|
results = ThreadPool(8).imap(lambda x: load_image(*x), zip(repeat(self), range(n))) # 8 threads
|
|
pbar = tqdm(enumerate(results), total=n)
|
|
for i, x in pbar:
|
|
self.imgs[i], self.img_hw0[i], self.img_hw[i] = x # img, hw_original, hw_resized = load_image(self, i)
|
|
gb += self.imgs[i].nbytes
|
|
pbar.desc = 'Caching images (%.1fGB)' % (gb / 1E9)
|
|
|
|
def cache_labels(self, path=Path('./labels.cache')):
|
|
# Cache dataset labels, check images and read shapes
|
|
x = {} # dict
|
|
nm, nf, ne, nc = 0, 0, 0, 0 # number missing, found, empty, duplicate
|
|
pbar = tqdm(zip(self.img_files, self.label_files), desc='Scanning images', total=len(self.img_files))
|
|
for i, (im_file, lb_file) in enumerate(pbar):
|
|
try:
|
|
# verify images
|
|
im = Image.open(im_file)
|
|
im.verify() # PIL verify
|
|
shape = exif_size(im) # image size
|
|
assert (shape[0] > 9) & (shape[1] > 9), 'image size <10 pixels'
|
|
|
|
# verify labels
|
|
if os.path.isfile(lb_file):
|
|
nf += 1 # label found
|
|
with open(lb_file, 'r') as f:
|
|
l = np.array([x.split() for x in f.read().strip().splitlines()], dtype=np.float32) # labels
|
|
if len(l):
|
|
assert l.shape[1] == 5, 'labels require 5 columns each'
|
|
assert (l >= 0).all(), 'negative labels'
|
|
assert (l[:, 1:] <= 1).all(), 'non-normalized or out of bounds coordinate labels'
|
|
assert np.unique(l, axis=0).shape[0] == l.shape[0], 'duplicate labels'
|
|
else:
|
|
ne += 1 # label empty
|
|
l = np.zeros((0, 5), dtype=np.float32)
|
|
else:
|
|
nm += 1 # label missing
|
|
l = np.zeros((0, 5), dtype=np.float32)
|
|
x[im_file] = [l, shape]
|
|
except Exception as e:
|
|
nc += 1
|
|
print('WARNING: Ignoring corrupted image and/or label %s: %s' % (im_file, e))
|
|
|
|
pbar.desc = f"Scanning '{path.parent / path.stem}' for images and labels... " \
|
|
f"{nf} found, {nm} missing, {ne} empty, {nc} corrupted"
|
|
|
|
if nf == 0:
|
|
print(f'WARNING: No labels found in {path}. See {help_url}')
|
|
|
|
x['hash'] = get_hash(self.label_files + self.img_files)
|
|
x['results'] = [nf, nm, ne, nc, i + 1]
|
|
torch.save(x, path) # save for next time
|
|
logging.info(f"New cache created: {path}")
|
|
return x
|
|
|
|
def __len__(self):
|
|
return len(self.img_files)
|
|
|
|
# def __iter__(self):
|
|
# self.count = -1
|
|
# print('ran dataset iter')
|
|
# #self.shuffled_vector = np.random.permutation(self.nF) if self.augment else np.arange(self.nF)
|
|
# return self
|
|
|
|
def __getitem__(self, index):
|
|
index = self.indices[index] # linear, shuffled, or image_weights
|
|
|
|
hyp = self.hyp
|
|
mosaic = self.mosaic and random.random() < hyp['mosaic']
|
|
if mosaic:
|
|
# Load mosaic
|
|
img, labels = load_mosaic(self, index)
|
|
shapes = None
|
|
|
|
# MixUp https://arxiv.org/pdf/1710.09412.pdf
|
|
if random.random() < hyp['mixup']:
|
|
img2, labels2 = load_mosaic(self, random.randint(0, self.n - 1))
|
|
r = np.random.beta(8.0, 8.0) # mixup ratio, alpha=beta=8.0
|
|
img = (img * r + img2 * (1 - r)).astype(np.uint8)
|
|
labels = np.concatenate((labels, labels2), 0)
|
|
|
|
else:
|
|
# Load image
|
|
img, (h0, w0), (h, w) = load_image(self, index)
|
|
|
|
# Letterbox
|
|
shape = self.batch_shapes[self.batch[index]] if self.rect else self.img_size # final letterboxed shape
|
|
img, ratio, pad = letterbox(img, shape, auto=False, scaleup=self.augment)
|
|
shapes = (h0, w0), ((h / h0, w / w0), pad) # for COCO mAP rescaling
|
|
|
|
# Load labels
|
|
labels = []
|
|
x = self.labels[index]
|
|
if x.size > 0:
|
|
# Normalized xywh to pixel xyxy format
|
|
labels = x.copy()
|
|
labels[:, 1] = ratio[0] * w * (x[:, 1] - x[:, 3] / 2) + pad[0] # pad width
|
|
labels[:, 2] = ratio[1] * h * (x[:, 2] - x[:, 4] / 2) + pad[1] # pad height
|
|
labels[:, 3] = ratio[0] * w * (x[:, 1] + x[:, 3] / 2) + pad[0]
|
|
labels[:, 4] = ratio[1] * h * (x[:, 2] + x[:, 4] / 2) + pad[1]
|
|
|
|
if self.augment:
|
|
# Augment imagespace
|
|
if not mosaic:
|
|
img, labels = random_perspective(img, labels,
|
|
degrees=hyp['degrees'],
|
|
translate=hyp['translate'],
|
|
scale=hyp['scale'],
|
|
shear=hyp['shear'],
|
|
perspective=hyp['perspective'])
|
|
|
|
# Augment colorspace
|
|
augment_hsv(img, hgain=hyp['hsv_h'], sgain=hyp['hsv_s'], vgain=hyp['hsv_v'])
|
|
|
|
# Apply cutouts
|
|
# if random.random() < 0.9:
|
|
# labels = cutout(img, labels)
|
|
|
|
nL = len(labels) # number of labels
|
|
if nL:
|
|
labels[:, 1:5] = xyxy2xywh(labels[:, 1:5]) # convert xyxy to xywh
|
|
labels[:, [2, 4]] /= img.shape[0] # normalized height 0-1
|
|
labels[:, [1, 3]] /= img.shape[1] # normalized width 0-1
|
|
|
|
if self.augment:
|
|
# flip up-down
|
|
if random.random() < hyp['flipud']:
|
|
img = np.flipud(img)
|
|
if nL:
|
|
labels[:, 2] = 1 - labels[:, 2]
|
|
|
|
# flip left-right
|
|
if random.random() < hyp['fliplr']:
|
|
img = np.fliplr(img)
|
|
if nL:
|
|
labels[:, 1] = 1 - labels[:, 1]
|
|
|
|
labels_out = torch.zeros((nL, 6))
|
|
if nL:
|
|
labels_out[:, 1:] = torch.from_numpy(labels)
|
|
|
|
# Convert
|
|
img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
|
|
img = np.ascontiguousarray(img)
|
|
|
|
return torch.from_numpy(img), labels_out, self.img_files[index], shapes
|
|
|
|
@staticmethod
|
|
def collate_fn(batch):
|
|
img, label, path, shapes = zip(*batch) # transposed
|
|
for i, l in enumerate(label):
|
|
l[:, 0] = i # add target image index for build_targets()
|
|
return torch.stack(img, 0), torch.cat(label, 0), path, shapes
|
|
|
|
|
|
# Ancillary functions --------------------------------------------------------------------------------------------------
|
|
def load_image(self, index):
|
|
# loads 1 image from dataset, returns img, original hw, resized hw
|
|
img = self.imgs[index]
|
|
if img is None: # not cached
|
|
path = self.img_files[index]
|
|
img = cv2.imread(path) # BGR
|
|
assert img is not None, 'Image Not Found ' + path
|
|
h0, w0 = img.shape[:2] # orig hw
|
|
r = self.img_size / max(h0, w0) # resize image to img_size
|
|
if r != 1: # always resize down, only resize up if training with augmentation
|
|
interp = cv2.INTER_AREA if r < 1 and not self.augment else cv2.INTER_LINEAR
|
|
img = cv2.resize(img, (int(w0 * r), int(h0 * r)), interpolation=interp)
|
|
return img, (h0, w0), img.shape[:2] # img, hw_original, hw_resized
|
|
else:
|
|
return self.imgs[index], self.img_hw0[index], self.img_hw[index] # img, hw_original, hw_resized
|
|
|
|
|
|
def augment_hsv(img, hgain=0.5, sgain=0.5, vgain=0.5):
|
|
r = np.random.uniform(-1, 1, 3) * [hgain, sgain, vgain] + 1 # random gains
|
|
hue, sat, val = cv2.split(cv2.cvtColor(img, cv2.COLOR_BGR2HSV))
|
|
dtype = img.dtype # uint8
|
|
|
|
x = np.arange(0, 256, dtype=np.int16)
|
|
lut_hue = ((x * r[0]) % 180).astype(dtype)
|
|
lut_sat = np.clip(x * r[1], 0, 255).astype(dtype)
|
|
lut_val = np.clip(x * r[2], 0, 255).astype(dtype)
|
|
|
|
img_hsv = cv2.merge((cv2.LUT(hue, lut_hue), cv2.LUT(sat, lut_sat), cv2.LUT(val, lut_val))).astype(dtype)
|
|
cv2.cvtColor(img_hsv, cv2.COLOR_HSV2BGR, dst=img) # no return needed
|
|
|
|
# Histogram equalization
|
|
# if random.random() < 0.2:
|
|
# for i in range(3):
|
|
# img[:, :, i] = cv2.equalizeHist(img[:, :, i])
|
|
|
|
|
|
def load_mosaic(self, index):
|
|
# loads images in a mosaic
|
|
|
|
labels4 = []
|
|
s = self.img_size
|
|
yc, xc = [int(random.uniform(-x, 2 * s + x)) for x in self.mosaic_border] # mosaic center x, y
|
|
indices = [index] + [self.indices[random.randint(0, self.n - 1)] for _ in range(3)] # 3 additional image indices
|
|
for i, index in enumerate(indices):
|
|
# Load image
|
|
img, _, (h, w) = load_image(self, index)
|
|
|
|
# place img in img4
|
|
if i == 0: # top left
|
|
img4 = np.full((s * 2, s * 2, img.shape[2]), 114, dtype=np.uint8) # base image with 4 tiles
|
|
x1a, y1a, x2a, y2a = max(xc - w, 0), max(yc - h, 0), xc, yc # xmin, ymin, xmax, ymax (large image)
|
|
x1b, y1b, x2b, y2b = w - (x2a - x1a), h - (y2a - y1a), w, h # xmin, ymin, xmax, ymax (small image)
|
|
elif i == 1: # top right
|
|
x1a, y1a, x2a, y2a = xc, max(yc - h, 0), min(xc + w, s * 2), yc
|
|
x1b, y1b, x2b, y2b = 0, h - (y2a - y1a), min(w, x2a - x1a), h
|
|
elif i == 2: # bottom left
|
|
x1a, y1a, x2a, y2a = max(xc - w, 0), yc, xc, min(s * 2, yc + h)
|
|
x1b, y1b, x2b, y2b = w - (x2a - x1a), 0, w, min(y2a - y1a, h)
|
|
elif i == 3: # bottom right
|
|
x1a, y1a, x2a, y2a = xc, yc, min(xc + w, s * 2), min(s * 2, yc + h)
|
|
x1b, y1b, x2b, y2b = 0, 0, min(w, x2a - x1a), min(y2a - y1a, h)
|
|
|
|
img4[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b] # img4[ymin:ymax, xmin:xmax]
|
|
padw = x1a - x1b
|
|
padh = y1a - y1b
|
|
|
|
# Labels
|
|
x = self.labels[index]
|
|
labels = x.copy()
|
|
if x.size > 0: # Normalized xywh to pixel xyxy format
|
|
labels[:, 1] = w * (x[:, 1] - x[:, 3] / 2) + padw
|
|
labels[:, 2] = h * (x[:, 2] - x[:, 4] / 2) + padh
|
|
labels[:, 3] = w * (x[:, 1] + x[:, 3] / 2) + padw
|
|
labels[:, 4] = h * (x[:, 2] + x[:, 4] / 2) + padh
|
|
labels4.append(labels)
|
|
|
|
# Concat/clip labels
|
|
if len(labels4):
|
|
labels4 = np.concatenate(labels4, 0)
|
|
np.clip(labels4[:, 1:], 0, 2 * s, out=labels4[:, 1:]) # use with random_perspective
|
|
# img4, labels4 = replicate(img4, labels4) # replicate
|
|
|
|
# Augment
|
|
img4, labels4 = random_perspective(img4, labels4,
|
|
degrees=self.hyp['degrees'],
|
|
translate=self.hyp['translate'],
|
|
scale=self.hyp['scale'],
|
|
shear=self.hyp['shear'],
|
|
perspective=self.hyp['perspective'],
|
|
border=self.mosaic_border) # border to remove
|
|
|
|
return img4, labels4
|
|
|
|
|
|
def replicate(img, labels):
|
|
# Replicate labels
|
|
h, w = img.shape[:2]
|
|
boxes = labels[:, 1:].astype(int)
|
|
x1, y1, x2, y2 = boxes.T
|
|
s = ((x2 - x1) + (y2 - y1)) / 2 # side length (pixels)
|
|
for i in s.argsort()[:round(s.size * 0.5)]: # smallest indices
|
|
x1b, y1b, x2b, y2b = boxes[i]
|
|
bh, bw = y2b - y1b, x2b - x1b
|
|
yc, xc = int(random.uniform(0, h - bh)), int(random.uniform(0, w - bw)) # offset x, y
|
|
x1a, y1a, x2a, y2a = [xc, yc, xc + bw, yc + bh]
|
|
img[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b] # img4[ymin:ymax, xmin:xmax]
|
|
labels = np.append(labels, [[labels[i, 0], x1a, y1a, x2a, y2a]], axis=0)
|
|
|
|
return img, labels
|
|
|
|
|
|
def letterbox(img, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True):
|
|
# Resize image to a 32-pixel-multiple rectangle https://github.com/ultralytics/yolov3/issues/232
|
|
shape = img.shape[:2] # current shape [height, width]
|
|
if isinstance(new_shape, int):
|
|
new_shape = (new_shape, new_shape)
|
|
|
|
# Scale ratio (new / old)
|
|
r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
|
|
if not scaleup: # only scale down, do not scale up (for better test mAP)
|
|
r = min(r, 1.0)
|
|
|
|
# Compute padding
|
|
ratio = r, r # width, height ratios
|
|
new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
|
|
dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding
|
|
if auto: # minimum rectangle
|
|
dw, dh = np.mod(dw, 32), np.mod(dh, 32) # wh padding
|
|
elif scaleFill: # stretch
|
|
dw, dh = 0.0, 0.0
|
|
new_unpad = (new_shape[1], new_shape[0])
|
|
ratio = new_shape[1] / shape[1], new_shape[0] / shape[0] # width, height ratios
|
|
|
|
dw /= 2 # divide padding into 2 sides
|
|
dh /= 2
|
|
|
|
if shape[::-1] != new_unpad: # resize
|
|
img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR)
|
|
top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
|
|
left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
|
|
img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # add border
|
|
return img, ratio, (dw, dh)
|
|
|
|
|
|
def random_perspective(img, targets=(), degrees=10, translate=.1, scale=.1, shear=10, perspective=0.0, border=(0, 0)):
|
|
# torchvision.transforms.RandomAffine(degrees=(-10, 10), translate=(.1, .1), scale=(.9, 1.1), shear=(-10, 10))
|
|
# targets = [cls, xyxy]
|
|
|
|
height = img.shape[0] + border[0] * 2 # shape(h,w,c)
|
|
width = img.shape[1] + border[1] * 2
|
|
|
|
# Center
|
|
C = np.eye(3)
|
|
C[0, 2] = -img.shape[1] / 2 # x translation (pixels)
|
|
C[1, 2] = -img.shape[0] / 2 # y translation (pixels)
|
|
|
|
# Perspective
|
|
P = np.eye(3)
|
|
P[2, 0] = random.uniform(-perspective, perspective) # x perspective (about y)
|
|
P[2, 1] = random.uniform(-perspective, perspective) # y perspective (about x)
|
|
|
|
# Rotation and Scale
|
|
R = np.eye(3)
|
|
a = random.uniform(-degrees, degrees)
|
|
# a += random.choice([-180, -90, 0, 90]) # add 90deg rotations to small rotations
|
|
s = random.uniform(1 - scale, 1 + scale)
|
|
# s = 2 ** random.uniform(-scale, scale)
|
|
R[:2] = cv2.getRotationMatrix2D(angle=a, center=(0, 0), scale=s)
|
|
|
|
# Shear
|
|
S = np.eye(3)
|
|
S[0, 1] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # x shear (deg)
|
|
S[1, 0] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # y shear (deg)
|
|
|
|
# Translation
|
|
T = np.eye(3)
|
|
T[0, 2] = random.uniform(0.5 - translate, 0.5 + translate) * width # x translation (pixels)
|
|
T[1, 2] = random.uniform(0.5 - translate, 0.5 + translate) * height # y translation (pixels)
|
|
|
|
# Combined rotation matrix
|
|
M = T @ S @ R @ P @ C # order of operations (right to left) is IMPORTANT
|
|
if (border[0] != 0) or (border[1] != 0) or (M != np.eye(3)).any(): # image changed
|
|
if perspective:
|
|
img = cv2.warpPerspective(img, M, dsize=(width, height), borderValue=(114, 114, 114))
|
|
else: # affine
|
|
img = cv2.warpAffine(img, M[:2], dsize=(width, height), borderValue=(114, 114, 114))
|
|
|
|
# Visualize
|
|
# import matplotlib.pyplot as plt
|
|
# ax = plt.subplots(1, 2, figsize=(12, 6))[1].ravel()
|
|
# ax[0].imshow(img[:, :, ::-1]) # base
|
|
# ax[1].imshow(img2[:, :, ::-1]) # warped
|
|
|
|
# Transform label coordinates
|
|
n = len(targets)
|
|
if n:
|
|
# warp points
|
|
xy = np.ones((n * 4, 3))
|
|
xy[:, :2] = targets[:, [1, 2, 3, 4, 1, 4, 3, 2]].reshape(n * 4, 2) # x1y1, x2y2, x1y2, x2y1
|
|
xy = xy @ M.T # transform
|
|
if perspective:
|
|
xy = (xy[:, :2] / xy[:, 2:3]).reshape(n, 8) # rescale
|
|
else: # affine
|
|
xy = xy[:, :2].reshape(n, 8)
|
|
|
|
# create new boxes
|
|
x = xy[:, [0, 2, 4, 6]]
|
|
y = xy[:, [1, 3, 5, 7]]
|
|
xy = np.concatenate((x.min(1), y.min(1), x.max(1), y.max(1))).reshape(4, n).T
|
|
|
|
# # apply angle-based reduction of bounding boxes
|
|
# radians = a * math.pi / 180
|
|
# reduction = max(abs(math.sin(radians)), abs(math.cos(radians))) ** 0.5
|
|
# x = (xy[:, 2] + xy[:, 0]) / 2
|
|
# y = (xy[:, 3] + xy[:, 1]) / 2
|
|
# w = (xy[:, 2] - xy[:, 0]) * reduction
|
|
# h = (xy[:, 3] - xy[:, 1]) * reduction
|
|
# xy = np.concatenate((x - w / 2, y - h / 2, x + w / 2, y + h / 2)).reshape(4, n).T
|
|
|
|
# clip boxes
|
|
xy[:, [0, 2]] = xy[:, [0, 2]].clip(0, width)
|
|
xy[:, [1, 3]] = xy[:, [1, 3]].clip(0, height)
|
|
|
|
# filter candidates
|
|
i = box_candidates(box1=targets[:, 1:5].T * s, box2=xy.T)
|
|
targets = targets[i]
|
|
targets[:, 1:5] = xy[i]
|
|
|
|
return img, targets
|
|
|
|
|
|
def box_candidates(box1, box2, wh_thr=2, ar_thr=20, area_thr=0.1): # box1(4,n), box2(4,n)
|
|
# Compute candidate boxes: box1 before augment, box2 after augment, wh_thr (pixels), aspect_ratio_thr, area_ratio
|
|
w1, h1 = box1[2] - box1[0], box1[3] - box1[1]
|
|
w2, h2 = box2[2] - box2[0], box2[3] - box2[1]
|
|
ar = np.maximum(w2 / (h2 + 1e-16), h2 / (w2 + 1e-16)) # aspect ratio
|
|
return (w2 > wh_thr) & (h2 > wh_thr) & (w2 * h2 / (w1 * h1 + 1e-16) > area_thr) & (ar < ar_thr) # candidates
|
|
|
|
|
|
def cutout(image, labels):
|
|
# Applies image cutout augmentation https://arxiv.org/abs/1708.04552
|
|
h, w = image.shape[:2]
|
|
|
|
def bbox_ioa(box1, box2):
|
|
# Returns the intersection over box2 area given box1, box2. box1 is 4, box2 is nx4. boxes are x1y1x2y2
|
|
box2 = box2.transpose()
|
|
|
|
# Get the coordinates of bounding boxes
|
|
b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3]
|
|
b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3]
|
|
|
|
# Intersection area
|
|
inter_area = (np.minimum(b1_x2, b2_x2) - np.maximum(b1_x1, b2_x1)).clip(0) * \
|
|
(np.minimum(b1_y2, b2_y2) - np.maximum(b1_y1, b2_y1)).clip(0)
|
|
|
|
# box2 area
|
|
box2_area = (b2_x2 - b2_x1) * (b2_y2 - b2_y1) + 1e-16
|
|
|
|
# Intersection over box2 area
|
|
return inter_area / box2_area
|
|
|
|
# create random masks
|
|
scales = [0.5] * 1 + [0.25] * 2 + [0.125] * 4 + [0.0625] * 8 + [0.03125] * 16 # image size fraction
|
|
for s in scales:
|
|
mask_h = random.randint(1, int(h * s))
|
|
mask_w = random.randint(1, int(w * s))
|
|
|
|
# box
|
|
xmin = max(0, random.randint(0, w) - mask_w // 2)
|
|
ymin = max(0, random.randint(0, h) - mask_h // 2)
|
|
xmax = min(w, xmin + mask_w)
|
|
ymax = min(h, ymin + mask_h)
|
|
|
|
# apply random color mask
|
|
image[ymin:ymax, xmin:xmax] = [random.randint(64, 191) for _ in range(3)]
|
|
|
|
# return unobscured labels
|
|
if len(labels) and s > 0.03:
|
|
box = np.array([xmin, ymin, xmax, ymax], dtype=np.float32)
|
|
ioa = bbox_ioa(box, labels[:, 1:5]) # intersection over area
|
|
labels = labels[ioa < 0.60] # remove >60% obscured labels
|
|
|
|
return labels
|
|
|
|
|
|
def create_folder(path='./new'):
|
|
# Create folder
|
|
if os.path.exists(path):
|
|
shutil.rmtree(path) # delete output folder
|
|
os.makedirs(path) # make new output folder
|
|
|
|
|
|
def flatten_recursive(path='../coco128'):
|
|
# Flatten a recursive directory by bringing all files to top level
|
|
new_path = Path(path + '_flat')
|
|
create_folder(new_path)
|
|
for file in tqdm(glob.glob(str(Path(path)) + '/**/*.*', recursive=True)):
|
|
shutil.copyfile(file, new_path / Path(file).name)
|
|
|
|
|
|
def extract_boxes(path='../coco128/'): # from utils.datasets import *; extract_boxes('../coco128')
|
|
# Convert detection dataset into classification dataset, with one directory per class
|
|
|
|
path = Path(path) # images dir
|
|
shutil.rmtree(path / 'classifier') if (path / 'classifier').is_dir() else None # remove existing
|
|
files = list(path.rglob('*.*'))
|
|
n = len(files) # number of files
|
|
for im_file in tqdm(files, total=n):
|
|
if im_file.suffix[1:] in img_formats:
|
|
# image
|
|
im = cv2.imread(str(im_file))[..., ::-1] # BGR to RGB
|
|
h, w = im.shape[:2]
|
|
|
|
# labels
|
|
lb_file = Path(img2label_paths([str(im_file)])[0])
|
|
if Path(lb_file).exists():
|
|
with open(lb_file, 'r') as f:
|
|
lb = np.array([x.split() for x in f.read().strip().splitlines()], dtype=np.float32) # labels
|
|
|
|
for j, x in enumerate(lb):
|
|
c = int(x[0]) # class
|
|
f = (path / 'classifier') / f'{c}' / f'{path.stem}_{im_file.stem}_{j}.jpg' # new filename
|
|
if not f.parent.is_dir():
|
|
f.parent.mkdir(parents=True)
|
|
|
|
b = x[1:] * [w, h, w, h] # box
|
|
# b[2:] = b[2:].max() # rectangle to square
|
|
b[2:] = b[2:] * 1.2 + 3 # pad
|
|
b = xywh2xyxy(b.reshape(-1, 4)).ravel().astype(np.int)
|
|
|
|
b[[0, 2]] = np.clip(b[[0, 2]], 0, w) # clip boxes outside of image
|
|
b[[1, 3]] = np.clip(b[[1, 3]], 0, h)
|
|
assert cv2.imwrite(str(f), im[b[1]:b[3], b[0]:b[2]]), f'box failure in {f}'
|
|
|
|
|
|
def autosplit(path='../coco128', weights=(0.9, 0.1, 0.0)): # from utils.datasets import *; autosplit('../coco128')
|
|
""" Autosplit a dataset into train/val/test splits and save path/autosplit_*.txt files
|
|
# Arguments
|
|
path: Path to images directory
|
|
weights: Train, val, test weights (list)
|
|
"""
|
|
path = Path(path) # images dir
|
|
files = list(path.rglob('*.*'))
|
|
n = len(files) # number of files
|
|
indices = random.choices([0, 1, 2], weights=weights, k=n) # assign each image to a split
|
|
txt = ['autosplit_train.txt', 'autosplit_val.txt', 'autosplit_test.txt'] # 3 txt files
|
|
[(path / x).unlink() for x in txt if (path / x).exists()] # remove existing
|
|
for i, img in tqdm(zip(indices, files), total=n):
|
|
if img.suffix[1:] in img_formats:
|
|
with open(path / txt[i], 'a') as f:
|
|
f.write(str(img) + '\n') # add image to txt file
|